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ON (p,k)—-QUASIHYPONORMAL OPERATORS

IN HyouN KM

(communicated by T. Furuta)

Abstract. An operator T is called (p, k) -quasihyponormal if T*k (|72 — |T*2P)T* > 0,
(0 < p < 1; k € Z"), which is a common generalization of p -quasihyponormality and
k -quasihyponormality. In this paper we consider the Putnam’s inequality, the Berger-Shaw’s
inequality, the Weyl’s theorem and the tensor product for (p, k) -quasihyponormal operators.

1. Introduction

Throughout this paper let H be a separable complex Hilbert space with inner
product (-,-) . Let B(H) denote the C* -algebra of all bounded linear operators on H
and let K(H) be the ideal of all compact operators on H . Foran operator T € B(H), let
o(T),0,(T),0.(T) and my(T) denote the spectrum, the point spectrum, the essential
spectrum and the set of all isolated eigenvalues of finite multiplicity of T, respectively.
Anoperator T € B(H) is called Fredholm, denoted by T € F, if ran(T) is closed and
both ker(7) and H/ ran(T) are finite dimensional. The index of a Fredholm operator
T € B(H), denoted by ind(7T), is given by the integer

ind(T) = dimker(T) — dim (H/ran(T)) .

An operator T € B(H) is called Weyl, denoted by T € Fy, if it is Fredholm of index
zero. The Weyl spectrum w(T) of T € B(H) is defined by

w(l)={AeC:T—A ¢ F}.

Itis well known that w(T)) is non-empty and w(T) = (\gcx(y) 0(T + K). According
to Corburn [3], we say that Weyl’s theorem holds for 7 € B(H) if

O'(T) \W(T) = TL'()()(T).

For p suchas 0 < p < 1, an operator T € B(H) is called p-hyponormal if (T*T)? —
(TT*) > 0,andis called (p, k) -quasihyponormalif T**(|T|% —|T*|?)T* > 0, where
0 < p < 1 and k isapositive integer. Especially, whenp =1, k=1landp=k=1,T
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is called k-quasihyponormal, p -quasihyponormal and quasihyponormal, respectively.
It is clear that

the class of hyponormal operators C the class of p — hyponormal operators
C the class of p — quasihyponormal operators

C the class of (p, k) — quasihyponormal operators.
and

the class of hyponormal operators C the class of k — quasihyponormal operators
C the class of (p,k) — quasihyponormal operators.

Corburn [5], Cho-Itoh-Oshio [4], Campbell-Gupta [2] and Uchiyama-Djordjevic
[20] showed that Weyl’s theorem holds for hyponormal operators, p -hyponormal oper-
ators, k-quasihyponormal operators and p -quasihyponormal operators, respectively.

On the other hand, J. Hou [12] and J. Stochel [17] showed that 7 ® S is hyponormal
on H ® H if and only if each of T and § is hyponormal. More recently, B.P. Duggal
[6] demonstrated that the Hou—Stochel theorem remains true when one substitutes the
term “p -hyponormal” for “hyponormal”. Very recently, in [8], it was shown that Hou—
Stochel theorem remains true when one substitutes the term “p -quasihyponormal or
w -hyponormal” for “hyponormal”.

In this paper we consider the Putnam’s inequality, the Berger-Shaw’s inequality,
the Weyl’s theorem and the tensor product for (p, k) -quasihyponormal operators. To
do this we adopt Uchiyama’s ideas (see [18, 19, 20]) and W.Y. Lee’s ideas (see [14]).

2. Main Results

We begin with:

LEMMA 1. If T is (p,k)-quasihyponormal operator, then T has the following

matrix representation:
n T,
T:
(5 %)

where Ty is p-hyponormal on ran(T*) and Ts* = 0. Furthermore, o(T) = o(T) U
{0}
Proof. Consider the matrix representation of 7" with respect to the decomposition

H = ran(TF) @ ker(T**) : T = (Tl Tz) . Let P be the projection onto ran(7*).

0 T;
Since Ty = TP, we have T;*T) = PT*TP. By Hansen’s inequality [11] we have

(ITT))P = (PT*TP)" > P(T*T)"P,
while T\ T} = TPT* = PTPT*P. So we have
(I\Ty )P = (TPT*)P = P(TPT*)’P < P(TT")"P.
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Therefore if T is (p, k) -quasihyponormal operator, then

(T;T))? > P(T*T)’P > P(TT*Y'P > (T, T} ).

Thatis, T} is p-hyponormal on the ran(7T*).
On the other hand, for any x = (x;,x;) € H,

(T5*x3,x3) = (T*(I = P)x, (I = P)x) = ((I — P)x,T**(I — P)x) =0,

which implies T3* = 0.

Since o(T1) U o(T3) = o(T) U &, where & is the union of the holes in o(7)
which happen to be subset of o(7}) N 6(T3) by [10, Corollary 7], and o(T,) N o(T3)
has no interior points and 73 is nilpotent, we have o(T) = o(T;) U{0}. O

COROLLARY 2. If T is a (p, k) -quasihyponormal and the restriction Ty of T on
ran(T*) is invertible, then T is similar to a direct sum of a p -hyponormal operator and
a nilpotent operator.

I T,
0 T

p-hyponormal and 73F = 0. By assumption we have o(7;) N o(T3) = ¢. Hence by
Rosenblum’s Corollary there exists an operator S such that 7S — ST; = T, . Therefore

(5 5)-G0) (526

which gives the result. [

Proof. Let T = < ) on H = ran(T*) @ ker(T**). By Lemma 1, T is

COROLLARY 3. If T is a (p,k)-quasihyponormal and Aq is an isolated point of
o(T) then Ay is an eigenvalue, i.e., T is isoloid.

Proof. Suppose T is a (p, k) -quasihyponormal operator and let T = <7(;1 ;2)
3

on H = ran(T¥) @ ker(T**). Then from (1,1), o(T) = o(T}) U {0}. Assume that
Ao € is00(T). Then A € isoo(Ty) or Ay = 0. If Ay € isoo(T1), then Ay € 6,(T))
because T) is p-hyponormal. Thus we may assume Ay = 0 and Ay & o(7T1), so
dimker(T3) > 0. Therefore if x € ker(73), then —T; ' Tox © x € ker(T). Thus A is
an eigenvalueof 7. [J

For some operators, there is an intimate relationship between the plannar Lebesgue
measure of its spectrum and its self-commutator. For example, Putnam [16] obtained
the norm estimation for the self-commutator of a hyponormal operator, called Putnam’s
inequality. This inequality is extended for a p -hyponormal operator by Xia [21], Cho-
Itoh [3] and Duggal [7]. Also, this is extended for a p-quasihyponormal operator by
Uchiyama [19]. On the other hand, Berger-Shaw [1] showed the trace norm estimation
for the self-commutator of n-multicyclic hyponormal operator, called Berger-Shaw’s
inequality. This is extended for a p -hyponormal and p -quasihyponormal operator by
Uchiyama [18, 19].

In the sequel we need:
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LEMMA 4. [3,7,21] If T is p-hyponormal operator, then

p
I(T*TY — (TT*Y)| < min { 2 / Pr-lgrge, L / rdrdo | V.
T Jo(r) T Jo(r)

The following theorem extends a result of M. Cho and M. Itoh [3].

THEOREM 5. If T is a (p, k) -quasihyponormal operator, then

p
P Ty — (1Y P <mind 2 [ P larae, (L[ rarae) V,
T
o(T) T Jo(t)

where P is the projection onto ran(T*).

. T,

Proof. Let T = ( 0 T

) on H = ran(T%) @ ker(T*"). From Lemma 1 we

have
O<SP{TTY —(IT*Y}P < (TV'Th)" — (T'TV ")
and 7T; is p-hyponormal. Hence by Lemmas 1 and 4,

IPL(T*TY = (TT*)P} P < (VTP — (VT )7l

p
1
<mind 2 / 2 =\drae, | = / rdrd®
T Jo(t) T Jo(t)
1 p
= min ‘1—7/ P~ drdo, —/ rdrd0 .
T Jo(m) Tt Jo(r)

O

COROLLARY 6. If T is a (p, k) -quasihyponormal operator and o(T) is Lebesgue
null-set, then T is the direct sum of normal operator and nilpotent operator.
T
0 Ti

projection onto ran(7*%). Then T is p-hyponormal and 7% = 0 by Lemma 1 and
[|(T{Ty)P — (T\T{)?|| = 0 by Theorem 5. Hence T is normal. Since

(0 0) s mrrye s pirrpes (57 0) (@000

Proof. Let T = ( ) on ran(T*) @ ker(T**) and let P be the orthogonal

0 0 0 0 0 0
. (T:T1)P A v (X Y
*\p * _
(TT*)P is of the form ( n B/ Put (TT*)z = vz . Then
X 0\ _ N oo (T 0
(0 O)—P(TT )2P > P(TPT )ZP_( 0 K

Hence, X > (T;T))? . Since X>+YY* = (T:T,)”,wehave X = (T;T;)? and ¥ = 0.

Therefore,
NT + ol DI _ o _ (D100
:T; T3 0 75 )’
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and 7, = 0. This completes the proof. [

For T € B(H), R(o(T)) denotes the set of all rational functions being analytic on
o(T) . The operator T is said to be n -multicyclic if there are n vectors x,- -+ ,x, € H,
called generating vectors, such that \/{g(T)x; | i=1,---,n and g€ R(o(T))} =
H.

LEMMA 7. [18, Theorem] If T is an n-multicyclic p-hyponormal operator, then
(T*T) — (TT* ) belongs to the Schatten % -class and

tr ({(T*T)” - (TT*)P}%) < %Area(G(T)).
The following theorem is an extension of Berger-Shaw’s inequality to the case of

(p, k) -quasihyponormal operators.

THEOREM 8. If T is an n-multicyclic (p, k) -quasihyponormal operator, then we
have:
(i) The restriction Ty of T on ran(T*) is also an n-multcyclic operator;
(ii)) {P(T*T)yP— P(TT* )”P}f’l belongs to the Schatten 117 -class and

i ({P(T*T)”P — P(TT* )PP}%) < %Area(G(T)),

where P is the projection onto ran(T*).

T T,
0 T3
by Lemma 1, R(o(T)) C R(o(T1)). By hypothesis there exist n vectors, xi, -+ ,x, €
H , such that

Proof. Let T = < > on H = ran(T*) @ ker(T**). Since o(T}) C o(T)

H=\/{g(T)xi|i=1,--,n and g€ R(c(T))}.
Now let y; = T*x;, i=1---,n. Then we have the following

VAe(myili=1,---n, g e R(o(T)} > \/{e(T)yi | i=1,--- ,n, g € R(a(T))}
= \V{e(m)Tx |i=1,--- ,n, g € R(a(T))}
=\ |i=1,---,n, g € R(o(T))}
= \{T%(T)xi | i=1,--- ,n, g € R(o(T))}
= ran(T*)

and {y,--- ,yn} are n-multicyclic vectors of T; . This proves the (i).
On the other hand, since 7 is an n-multicyclic p -hyponormal operator by (i), it
follows from Lemma 7

tr ({(Tl*Tl)p - (TITI*)P}#) < %Area(G(Tl)) - %Area(G(T)).
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On the other hand, since
0 P(T*TYPP—P(TT*YP < (Ty'Th Y — (/T ¥ )P,

we havethat P(T*T)?P—P(TT*)'P and (T,*T )P —(T\T,* )" are both positive compact
operators and

Sj (P(T*T)ppip(TT*)pP) < Sj((Tl*Tl)p - (TITI*)p) for J: 1a27' B

where s;(T) is the n-th singular number of T. Therefore
5j ({P(T*T)pP—P(TT*)pP}’L’) <5 (‘{(Tl*Tl)p - (TITI*)p}%) for j=1,2,---
Hence we have
0<tr ({P(T*T)PP - P(TT*)PP}#)
Str ({(Tl*Tl)p - (T1T1*)”}’l’) < %Area(G(T)). O

The following lemma shows that the passage from w(A) Uw(B) to w (18 g) .

LEMMA 9. [13, Theorem 6] For a given operators A, B,C € B(H) there is equality
w(A) Uw(B) = w(Mc) U &,

A C
0 B
happen to be subsets of w(A) N w(B).

where M¢ = and & is the union of certain of the holes in w(M¢) which

The following theorem shows that the spectral mapping theorem for Weyl spectrum
holds for (p, k) -quasihyponormal operators.

THEOREM 10. If T is (p, k) -quasihyponormal, then f (w(T)) = w(f (T)) for any
analytic function f on a neighborhood of o(T).

Proof. We need only to prove that w(p(T)) = p(w(T)) for any polynomial p.
I T,
0 Ti
T5* = 0, and the spectral mapping theorem for Weyl spectrum holds for p -hyponormal
operator, it follows that

w(p(T)) =

Since T has the matrix representation T = > , where T7 is p-hyponormal and

(p(T1))
(W(Tl)) (

p w(T1) Uw(T3))
(W(T ).

\
=

)
)

T3
T3

|
<

The following corollary is immediate result from above theorem.
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COROLLARY 11. The spectral mapping theorem for Weyl spectrum holds for quasi-
hyponormal operators, p -quasihyponormal operators and k -quasihyponormal opera-
tors.

It was known [13] if A and B are isoloid and if Weyl’s theorem holds for A and
B then

: A0 A C\
Weyl’s theorem holds for (0 B)<:>W<O B)-w(A)Uw(B).

The “spectral picture” [15] of the operator T € B(H), denoted by SP(T), which
consists of the set 0,(7T), the collection of holes and pseudoholes in c,(7), and the
indices associated with these holes and pseudoholes.

In general, Weyl’s theorem does not hold for operator matrix (13 g) even

though Weyl’s theorem holds for (g g) (see [14]). But W.Y. Lee [14] showed that

following Lemma:

LEMMA 12. [f either SP(A) or SP(B) has no pseudoholes and if A is an isoloid
operator for which Weyl’s theorem holds then for every C € B(H),

Weyl’s theorem holds for (g g) = Weyl’s theorem holds for (g g) .

We have the following result from above Lemma.
COROLLARY 13. Weyl’s theorem holds for every (p, k) -quasihyponormal operator.

Proof. Let T € B(H) is a (p, k) -quasihyponormal operator. Then by Lemma 1
T has the following matrix representation:

T = I 1o on H = ran(T%) & ker(T*),
0 Tz

where T is p-hyponormal operator and 73 is nilpotent operator. Therefore Weyl’s

theorem holds for ( 7(;1 79 ) because Weyl’s theorem holds for p -hyponormal oper-
3

ator and nilpotent operator and both p -hyponormal operator and nilpotent operator are

T T2> because SP(T3)

isoloid. Hence by Lemma 11 Weyl’s theorem holds for ( 0 T
3

has no pseudoholes. [

The next theorem extends J. Hou [12, Theorem 1.4] and Farenick and Kim [7,
Theorem 9].

THEOREM 14. Let A € B(H) and B € B(K) are nonzero operators. Then A ® B
is (p, k) -quasihyponormal if and only if one of the following holds:
1. Ax=0o0rB*=0,
2. A and B are (p,k)-quasihyponormal.
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Proof. Ttis clear that A ® B is (p, k) -quasihyponormal if and only if
A*k (‘A‘ZP o ‘A*‘Zp) Ak ® B*k‘B‘Zka
+ A AT P Ak @ B (B — |B*|7) B* > 0. (14.1)

Therefore the sufficiency is clear.
To prove the necessity, let & € H and 1 € K be arbitrary. Then we have

(A (AP — A" pr) ate, &) (B BB, )

+ (atarPrare, £ ) (B (1B — |B*P7) Bn,m) > 0 (142)
and

(A (A7 = A" Pr) AE, € ) (BB PP B*n, m)

+ (atjaprace, &) (B (1B — |B*r) Bn,m) > 0. (14.3)

Suppose that A* # 0 and B* # 0. To the contrary, assume that A is not (p,k)-
quasihyponormal, then there exists a vector & € H such that

(A (AP — A7) 4G, &) =@ < 0 and (A4 [PARG, &) = B > 0.
From (14.2) we have

(a+B) (BB B*n,n) > B (B B"Bn,n) forall 1. (14.4)
By using Holder-McCarcy inequality: For A > 0 and x € H,
(1) (Ax2) <[P0 (A 7 i p > 1
(2) (Ax,x) > ||lx|P" 77 (APx,x) 7 if O <p < 1,
we have
(B |BPrB*n,n) = ((B"BY'B*n, Bn)
< ((B°B)B*n, B*n)" ||Bn|[*" ™) (by(2))
= [|B'n|[*||Bn]| "7 forall n,

<B*k\B*\2”Bkn, 77> _ <B*k 1 (B B”“Bk n, 77>
— < B BP+1B/< ln Bk ln>

<B BBk ln Bk 1 >P+1|‘Bk lnH 2p (by (1))
= ||B*n||***V|[B*'n|| =% for all 1,

Vool

and

(o + B)|[B | [*[[Bn| P17 > BI|B 0|7V |B"n|~* for all n by (14.4).
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Hence, we have

BlIB nl* < (ac+ B)||B* || [[B || forall n, (14.5)
and (replacing n by Bn) we have

BIIB“!n|[* < (o + B)||B“*n| [|B*n|| for all 0. (14.6)

By B
0 B;
by (14.4) and B, is p-hyponormal (hence it is normaloid) by Lemma 1. By (14.6) we
have

Now let B = ) on ran(B¥) @ ker(B*"). Then B is (p, k) -quasihyponormal

BlIBICI[* < (e + B)IIBIEII (S]] forall £ € ran(BY),

so we have
Bl|Bi1])* < (o + B)||B}|| = (a + B)||B1|* (since By is normaloid).

This implies that B, = 0. Since B*''n = B;B*n = 0 for all n, B**! = 0 and
B = 0 by (14.5). This contradicts the assumption B* # 0. Hence A must be (p,k)-
quasihyponormal. A similar argument shows that B isalso (p, k) -quasihyponormal. [
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