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ON (p, k)–QUASIHYPONORMAL OPERATORS

IN HYOUN KIM

(communicated by T. Furuta)

Abstract. An operator T is called (p, k) -quasihyponormal if T∗k(|T|2p − |T∗|2p)Tk � 0 ,
( 0 < p � 1 ; k ∈ Z

+ ), which is a common generalization of p -quasihyponormality and
k -quasihyponormality. In this paper we consider the Putnam’s inequality, the Berger-Shaw’s
inequality, the Weyl’s theorem and the tensor product for (p, k) -quasihyponormal operators.

1. Introduction

Throughout this paper let H be a separable complex Hilbert space with inner
product 〈 ·, ·〉 . Let B(H) denote the C∗ -algebra of all bounded linear operators on H
and let K(H) be the ideal of all compact operators on H . For an operator T ∈ B(H) , let
σ(T),σp(T),σe(T) and π00(T) denote the spectrum, the point spectrum, the essential
spectrum and the set of all isolated eigenvalues of finite multiplicity of T , respectively.
An operator T ∈ B(H) is called Fredholm, denoted by T ∈ F , if ran(T) is closed and
both ker(T) and H/ ran(T) are finite dimensional. The index of a Fredholm operator
T ∈ B(H) , denoted by ind(T) , is given by the integer

ind(T) = dimker(T) − dim (H/ran(T)) .

An operator T ∈ B(H) is called Weyl, denoted by T ∈ F0 , if it is Fredholm of index
zero. The Weyl spectrum w(T) of T ∈ B(H) is defined by

w(T) = {λ ∈ C : T − λ /∈ F0}.
It is well known that w(T) is non-empty and w(T) =

⋂
K∈K(H) σ(T + K) . According

to Corburn [3], we say that Weyl’s theorem holds for T ∈ B(H) if

σ(T) \ w(T) = π00(T).

For p such as 0 < p � 1 , an operator T ∈ B(H) is called p -hyponormal if (T∗T)p −
(TT∗)p � 0 , and is called (p, k) -quasihyponormal if T∗k(|T|2p−|T∗|2p)Tk � 0 , where
0 < p � 1 and k is a positive integer. Especially, when p = 1, k = 1 and p = k = 1 , T
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is called k -quasihyponormal, p -quasihyponormal and quasihyponormal, respectively.
It is clear that

the class of hyponormal operators ⊆ the class of p − hyponormal operators

⊆ the class of p − quasihyponormal operators

⊆ the class of (p, k) − quasihyponormal operators.

and

the class of hyponormal operators ⊆ the class of k − quasihyponormal operators

⊆ the class of (p, k) − quasihyponormal operators.

Corburn [5], Cho-Itoh-Oshio [4], Campbell-Gupta [2] and Uchiyama-Djordjevic
[20] showed that Weyl’s theorem holds for hyponormal operators, p -hyponormal oper-
ators, k -quasihyponormal operators and p -quasihyponormal operators, respectively.

On the other hand, J. Hou [12] and J. Stochel [17] showed that T⊗S is hyponormal
on H ⊗ H if and only if each of T and S is hyponormal. More recently, B.P. Duggal
[6] demonstrated that the Hou–Stochel theorem remains true when one substitutes the
term “p -hyponormal” for “hyponormal”. Very recently, in [8], it was shown that Hou–
Stochel theorem remains true when one substitutes the term “p -quasihyponormal or
w -hyponormal” for “hyponormal”.

In this paper we consider the Putnam’s inequality, the Berger-Shaw’s inequality,
the Weyl’s theorem and the tensor product for (p, k) -quasihyponormal operators. To
do this we adopt Uchiyama’s ideas (see [18, 19, 20]) and W.Y. Lee’s ideas (see [14]).

2. Main Results

We begin with:

LEMMA 1. If T is (p, k) -quasihyponormal operator, then T has the following
matrix representation:

T =
(

T1 T2

0 T3

)
,

where T1 is p -hyponormal on ran(Tk) and T3
k = 0 . Furthermore, σ(T) = σ(T1) ∪

{0} .

Proof. Consider the matrix representation of T with respect to the decomposition

H = ran(Tk)⊕ ker(T∗k) : T =
(

T1 T2

0 T3

)
. Let P be the projection onto ran(Tk) .

Since T1 = TP , we have T1
∗T1 = PT∗TP . By Hansen’s inequality [11] we have

(T∗
1 T1)p = (PT∗TP)p � P(T∗T)pP,

while T1T∗
1 = TPT∗ = PTPT∗P . So we have

(T1T
∗
1 )p = (TPT∗)p = P(TPT∗)pP � P(TT∗)pP.
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Therefore if T is (p, k) -quasihyponormal operator, then

(T∗
1 T1)p � P(T∗T)pP � P(TT∗)pP � (T1T

∗
1 )p.

That is, T1 is p -hyponormal on the ran(Tk) .
On the other hand, for any x = (x1, x2) ∈ H ,

〈T3
kx2, x2〉 = 〈Tk(I − P)x, (I − P)x〉 = 〈 (I − P)x, T∗k(I − P)x〉 = 0,

which implies T3
k = 0 .

Since σ(T1) ∪ σ(T3) = σ(T) ∪ G , where G is the union of the holes in σ(T)
which happen to be subset of σ(T1) ∩ σ(T3) by [10, Corollary 7], and σ(T1) ∩ σ(T3)
has no interior points and T3 is nilpotent, we have σ(T) = σ(T1) ∪ {0} . �

COROLLARY 2. If T is a (p, k) -quasihyponormal and the restriction T1 of T on
ran(Tk) is invertible, then T is similar to a direct sum of a p -hyponormal operator and
a nilpotent operator.

Proof. Let T =
(

T1 T2

0 T3

)
on H = ran(Tk) ⊕ ker(T∗k) . By Lemma 1, T1 is

p -hyponormal and T3
k = 0 . By assumption we have σ(T1) ∩ σ(T3) = φ . Hence by

Rosenblum’s Corollary there exists an operator S such that T1S−ST3 = T2 . Therefore(
T1 T2

0 T3

)
=
(

I S
0 I

)−1(
T1 0
0 T3

)(
I S
0 I

)
,

which gives the result. �
COROLLARY 3. If T is a (p, k) -quasihyponormal and λ0 is an isolated point of

σ(T) then λ0 is an eigenvalue, i.e., T is isoloid.

Proof. Suppose T is a (p, k) -quasihyponormal operator and let T =
(

T1 T2

0 T3

)
on H = ran(Tk) ⊕ ker(T∗k) . Then from (1, 1) , σ(T) = σ(T1) ∪ {0}. Assume that
λ0 ∈ isoσ(T) . Then λ0 ∈ isoσ(T1) or λ0 = 0 . If λ0 ∈ isoσ(T1) , then λ0 ∈ σp(T1)
because T1 is p -hyponormal. Thus we may assume λ0 = 0 and λ0 
∈ σ(T1) , so
dim ker(T3) > 0 . Therefore if x ∈ ker(T3) , then −T1

−1T2x⊕ x ∈ ker(T) . Thus λ0 is
an eigenvalue of T . �

For some operators, there is an intimate relationship between the plannar Lebesgue
measure of its spectrum and its self-commutator. For example, Putnam [16] obtained
the norm estimation for the self-commutator of a hyponormal operator, called Putnam’s
inequality. This inequality is extended for a p -hyponormal operator by Xia [21], Cho-
Itoh [3] and Duggal [7]. Also, this is extended for a p -quasihyponormal operator by
Uchiyama [19]. On the other hand, Berger-Shaw [1] showed the trace norm estimation
for the self-commutator of n -multicyclic hyponormal operator, called Berger-Shaw’s
inequality. This is extended for a p -hyponormal and p -quasihyponormal operator by
Uchiyama [18, 19].

In the sequel we need:
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LEMMA 4. [3, 7, 21] If T is p -hyponormal operator, then

‖(T∗T)p − (TT∗)p‖ � min

{
p
π

∫
σ(T)

r2p−1drdθ,

(
1
π

∫
σ(T)

rdrdθ

)p}
.

The following theorem extends a result of M. Cho and M. Itoh [3].

THEOREM 5. If T is a (p, k) -quasihyponormal operator, then

‖P {(T∗T)p − (TT∗)p}P‖ � min

{
p
π

∫
σ(T)

r2p−1drdθ,

(
1
π

∫
σ(T)

rdrdθ

)p}
,

where P is the projection onto ran(Tk) .

Proof. Let T =
(

T1 T2

0 T3

)
on H = ran(Tk) ⊕ ker(T∗k) . From Lemma 1 we

have
0 � P {(T∗T)p − (TT∗)p}P � (T1

∗T1)p − (T1T1
∗)p

and T1 is p -hyponormal. Hence by Lemmas 1 and 4,

‖P {(T∗T)p − (TT∗)p}P‖ � ‖(T1
∗T1)p − (T1T1

∗)p‖

� min

{
p
π

∫
σ(T1)

r2p−1drdθ,

(
1
π

∫
σ(T1)

rdrdθ

)p}

= min

{
p
π

∫
σ(T)

r2p−1drdθ,

(
1
π

∫
σ(T)

rdrdθ

)p}
.

�
COROLLARY 6. If T is a (p, k) -quasihyponormal operator and σ(T) is Lebesgue

null-set, then T is the direct sum of normal operator and nilpotent operator.

Proof. Let T =
(

T1 T2

0 T3

)
on ran(Tk) ⊕ ker(T∗k) and let P be the orthogonal

projection onto ran(Tk) . Then T1 is p -hyponormal and Tk
3 = 0 by Lemma 1 and

||(T∗
1 T1)p − (T1T∗

1 )p|| = 0 by Theorem 5. Hence T1 is normal. Since(
(T∗

1 T1)p 0
0 0

)
� P(T∗T)pP � P(TT∗)pP �

(
(T1T∗

1 )p 0
0 0

)
=
(

(T∗
1 T1)p 0
0 0

)
,

(TT∗)p is of the form

(
(T∗

1 T1)p A
A∗ B

)
. Put (TT∗)

p
2 =

(
X Y
Y∗ Z

)
. Then

(
X 0
0 0

)
= P(TT∗)

p
2 P � P(TPT∗)

p
2 P =

(
(T∗

1 T1)
p
2 0

0 0

)
.

Hence, X � (T∗
1 T1)

p
2 . Since X2+YY∗ = (T∗

1 T1)p , we have X = (T∗
1 T1)

p
2 and Y = 0 .

Therefore, (
T1T∗

1 + T2T∗
2 T2T∗

3
T3T∗

2 T3T∗
3

)
= TT∗ =

(
T1T∗

1 0

0 Z
2
p

)
,
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and T2 = 0 . This completes the proof. �
For T ∈ B(H) , R(σ(T)) denotes the set of all rational functions being analytic on

σ(T) . The operator T is said to be n -multicyclic if there are n vectors x1, · · · , xn ∈ H ,
called generating vectors, such that

∨{g(T)xi | i = 1, · · · , n and g ∈ R(σ(T))} =
H .

LEMMA 7. [18, Theorem] If T is an n -multicyclic p -hyponormal operator, then
(T∗T)p − (TT∗)p belongs to the Schatten 1

p -class and

tr
(
{(T∗T)p − (TT∗)p} 1

p

)
� n

π
Area(σ(T)).

The following theorem is an extension of Berger-Shaw’s inequality to the case of
(p, k) -quasihyponormal operators.

THEOREM 8. If T is an n -multicyclic (p, k) -quasihyponormal operator, then we
have:

(i) The restriction T1 of T on ran(Tk) is also an n -multcyclic operator;

(ii) {P(T∗T)pP − P(TT∗)pP} 1
p belongs to the Schatten 1

p -class and

tr
(
{P(T∗T)pP − P(TT∗)pP} 1

p

)
� n

π
Area(σ(T)),

where P is the projection onto ran(Tk) .

Proof. Let T =
(

T1 T2

0 T3

)
on H = ran(Tk) ⊕ ker(T∗k) . Since σ(T1) ⊂ σ(T)

by Lemma 1, R(σ(T)) ⊂ R(σ(T1)) . By hypothesis there exist n vectors, x1, · · · , xn ∈
H , such that

H =
∨

{g(T)xi | i = 1, · · · , n and g ∈ R(σ(T))}.

Now let yi = Tkxi, i = 1 · · · , n . Then we have the following∨
{g(T1)yi | i = 1, · · · , n, g ∈ R(σ(T1))} ⊃

∨
{g(T1)yi | i = 1, · · · , n, g ∈ R(σ(T))}

=
∨

{g(T1)Tkxi | i = 1, · · · , n, g ∈ R(σ(T))}
=
∨

{g(T)Tkxi | i = 1, · · · , n, g ∈ R(σ(T))}
=
∨

{Tkg(T)xi | i = 1, · · · , n, g ∈ R(σ(T))}
= ran(Tk)

and {y1, · · · , yn} are n -multicyclic vectors of T1 . This proves the (i).
On the other hand, since T1 is an n -multicyclic p -hyponormal operator by (i), it

follows from Lemma 7

tr
(
{(T1

∗T1)p − (T1T1
∗)p} 1

p

)
� n

π
Area(σ(T1)) =

n
π

Area(σ(T)).



634 IN HYOUN KIM

On the other hand, since

0 � P(T∗T)pP − P(TT∗)pP � (T1
∗T1)p − (T1T1

∗)p,

we have that P(T∗T)pP−P(TT∗)pP and (T1
∗T1)p−(T1T1

∗)p are both positive compact
operators and

sj (P(T∗T)pP − P(TT∗)pP) � sj ((T1
∗T1)p − (T1T1

∗)p) for j = 1, 2, · · · ,

where sj(T) is the n -th singular number of T . Therefore

sj

(
{P(T∗T)pP − P(TT∗)pP} 1

p

)
� sj

(
{(T1

∗T1)p − (T1T1
∗)p} 1

p

)
for j = 1, 2, · · · .

Hence we have

0 � tr
(
{P(T∗T)pP − P(TT∗)pP} 1

p

)
� tr

(
{(T1

∗T1)p − (T1T1
∗)p} 1

p

)
� n

π
Area(σ(T)). �

The following lemma shows that the passage from w(A) ∪ w(B) to w

(
A C
0 B

)
.

LEMMA 9. [13, Theorem 6] For a given operators A, B, C ∈ B(H) there is equality

w(A) ∪ w(B) = w(MC) ∪ G,

where MC =
(

A C
0 B

)
and G is the union of certain of the holes in w(MC) which

happen to be subsets of w(A) ∩ w(B) .

The following theorem shows that the spectral mapping theorem for Weyl spectrum
holds for (p, k) -quasihyponormal operators.

THEOREM 10. If T is (p, k) -quasihyponormal, then f (w(T)) = w(f (T)) for any
analytic function f on a neighborhood of σ(T) .

Proof. We need only to prove that w(p(T)) = p(w(T)) for any polynomial p .

Since T has thematrix representation T =
(

T1 T2

0 T3

)
, where T1 is p -hyponormal and

T3
k = 0 , and the spectral mapping theorem for Weyl spectrum holds for p -hyponormal

operator, it follows that

w(p(T)) = w(p(T1)) ∪ w(p(T3))
= p(w(T1)) ∪ p(w(T3))
= p (w(T1) ∪ w(T3))
= p(w(T)). �

The following corollary is immediate result from above theorem.
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COROLLARY 11. The spectral mapping theorem for Weyl spectrum holds for quasi-
hyponormal operators, p -quasihyponormal operators and k -quasihyponormal opera-
tors.

It was known [13] if A and B are isoloid and if Weyl’s theorem holds for A and
B then

Weyl’s theorem holds for

(
A 0
0 B

)
⇔ w

(
A C
0 B

)
= w(A) ∪ w(B).

The “spectral picture” [15] of the operator T ∈ B(H) , denoted by SP(T) , which
consists of the set σe(T) , the collection of holes and pseudoholes in σe(T) , and the
indices associated with these holes and pseudoholes.

In general, Weyl’s theorem does not hold for operator matrix

(
A C
0 B

)
even

though Weyl’s theorem holds for

(
A 0
0 B

)
(see [14]). But W.Y. Lee [14] showed that

following Lemma:

LEMMA 12. If either SP(A) or SP(B) has no pseudoholes and if A is an isoloid
operator for which Weyl’s theorem holds then for every C ∈ B(H) ,

Weyl’s theorem holds for

(
A 0
0 B

)
⇒ Weyl’s theorem holds for

(
A C
0 B

)
.

We have the following result from above Lemma.

COROLLARY 13. Weyl’s theorem holds for every (p, k) -quasihyponormaloperator.

Proof. Let T ∈ B(H) is a (p, k) -quasihyponormal operator. Then by Lemma 1
T has the following matrix representation:

T =
(

T1 T2

0 T3

)
on H = ran(Tk) ⊕ ker(T∗k),

where T1 is p -hyponormal operator and T3 is nilpotent operator. Therefore Weyl’s

theorem holds for

(
T1 0
0 T3

)
because Weyl’s theorem holds for p -hyponormal oper-

ator and nilpotent operator and both p -hyponormal operator and nilpotent operator are

isoloid. Hence by Lemma 11 Weyl’s theorem holds for

(
T1 T2

0 T3

)
because SP(T3)

has no pseudoholes. �

The next theorem extends J. Hou [12, Theorem 1.4] and Farenick and Kim [7,
Theorem 9].

THEOREM 14. Let A ∈ B(H) and B ∈ B(K) are nonzero operators. Then A ⊗ B
is (p, k) -quasihyponormal if and only if one of the following holds:

1. Ak = 0 or Bk = 0 ,
2. A and B are (p,k)-quasihyponormal.
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Proof. It is clear that A ⊗ B is (p, k) -quasihyponormal if and only if

A∗k (|A|2p − |A∗|2p
)
Ak ⊗ B∗k|B|2pBk

+ A∗k|A∗|2pAk ⊗ B∗k (|B|2p − |B∗|2p
)
Bk � 0. (14.1)

Therefore the sufficiency is clear.
To prove the necessity, let ξ ∈ H and η ∈ K be arbitrary. Then we have〈

A∗k (|A|2p − |A∗|2p
)
Akξ , ξ

〉〈
B∗k|B|2pBkη,η

〉
+
〈
A∗k|A∗|2pAkξ , ξ

〉〈
B∗k (|B|2p − |B∗|2p

)
Bkη,η

〉
� 0 (14.2)

and 〈
A∗k (|A|2p − |A∗|2p

)
Akξ , ξ

〉〈
B∗k|B∗|2pBkη,η

〉
+
〈
A∗k|A|2pAkξ , ξ

〉〈
B∗k (|B|2p − |B∗|2p

)
Bkη,η

〉
� 0. (14.3)

Suppose that Ak 
= 0 and Bk 
= 0 . To the contrary, assume that A is not (p, k) -
quasihyponormal, then there exists a vector ξ0 ∈ H such that〈

A∗k (|A|2p − |A∗|2p
)
Akξ0, ξ0

〉
= α < 0 and

〈
A∗k|A∗|2pAkξ0, ξ0

〉
= β > 0.

From (14.2) we have

(α + β)
〈
B∗k|B|2pBkη,η

〉
� β

〈
B∗k|B∗|2pBkη,η

〉
for all η. (14.4)

By using Hölder-McCarcy inequality: For A � 0 and x ∈ H ,

(1) 〈Ax, x〉 � ||x||2(1− 1
p ) 〈Apx, x〉 1

p if p � 1

(2) 〈Ax, x〉 � ||x||2(1− 1
p ) 〈Apx, x〉 1

p if 0 < p � 1 ,

we have 〈
B∗k|B|2pBkη,η

〉
=
〈
(B∗B)pBkη, Bkη

〉
�
〈
(B∗B)Bkη, Bkη

〉p ||Bkη||2(1−p) (by(2))

= ||Bk+1η||2p||Bkη||2(1−p) for all η,

〈
B∗k|B∗|2pBkη,η

〉
=
〈
B∗k−1(B∗B)p+1Bk−1η,η

〉
=
〈
(B∗B)p+1Bk−1η, Bk−1η

〉
�
〈
(B∗B)Bk−1η, Bk−1η

〉p+1 ||Bk−1η||−2p (by (1))

= ||Bkη||2(p+1)||Bk−1η||−2p for all η,

and

(α + β)||Bk+1η||2p||Bkη||2(1−p) � β ||Bkη||2(p+1)||Bk−1η||−2p for all η by (14.4).
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Hence, we have

β ||Bkη||2 � (α + β)||Bk+1η|| ||Bk−1η|| for all η, (14.5)

and (replacing η by Bη ) we have

β ||Bk+1η||2 � (α + β)||Bk+2η|| ||Bkη|| for all η. (14.6)

Now let B =
(

B1 B2

0 B3

)
on ran(Bk)⊕ ker(B∗k) . Then B is (p, k) -quasihyponormal

by (14.4) and B1 is p -hyponormal (hence it is normaloid) by Lemma 1. By (14.6) we
have

β ||B1ζ ||2 � (α + β)||B2
1ζ || ||ζ || for all ζ ∈ ran(Bk),

so we have

β ||B1||2 � (α + β)||B2
1|| = (α + β)||B1||2 (since B1 is normaloid).

This implies that B1 = 0 . Since Bk+1η = B1Bkη = 0 for all η , Bk+1 = 0 and
Bk = 0 by (14.5). This contradicts the assumption Bk 
= 0 . Hence A must be (p, k) -
quasihyponormal. A similar argument shows that B is also (p, k) -quasihyponormal. �
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