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INEQUALITIES BETWEEN 7 (||A||) AND ||f (|A])|

ROMAN DRNOVSEK AND TOMAZ KOSEM

(communicated by F. Hansen)

Abstract. Let f be a nonnegative concave function on [0,00), and let || - || be a unitarily
invariant norm on the space of n x n complex matrices. We prove that, for any n X n complex
matrix A, f(||A|]) < |If (JA])|| provided the norm || - || is normalized. On the other hand, if

the norm of the identity matrix is 1, then f (||A||) = |If (|A|)|| for any matrix A. These results
extend the theorems of F. Hiai and X. Zhan that were proved in the case when f is an operator
monotone function.

1. Introduction

Let M, be the space of n x n complex matrices. The singular values of A € M,
are denoted by s1(A) = s2(A) > ... > s,(A). Anorm || - || on M, is called unitarily
invariant if ||[UAV| = ||A|| for all A,U,V € M, with U,V unitary. Throughout
the paper, let E and I denote the matrix diag(1,0,...,0) and the identity matrix,
respectively. A norm || - || on M, is called normalized whenever ||E|| = 1. A real-
valued function f on [0, 00) is said to be operator monotone if 0 < A < B implies that
f(A) < f(B) for any Hermitian matrices A, B € M, of all orders n. Here < denotes
the Lowner partial order, i.e., A < B iff B — A is a positive-semidefinite matrix.

The following results have been recently proved by F. Hiai and X. Zhan [5] (see
also [6]).

THEOREM 1. Let f be a nonnegative operator monotone function on [0, 00) and
Il - I be a normalized unitarily invariant norm on M, . Then for every A € M,,,

faAD < liFqapll-

THEOREM 2. Let f be a nonnegative operator monotone function on [0, 00) and
Il - I be a unitarily invariant norm on M,, with ||I|| = 1. Then for every A € M,,,

I (ADIE < f (A

COROLLARY 3. Let f be a nonnegative operator monotone function on [0, c0)

and || - || be a unitarily invariant norm on M, . Then for every A € M,,,
1Al 1A]
let-s (gt ) < wraani<ia-s ().
1] 1]
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COROLLARY 4. Let g be a strictly increasing function on [0,00) such that
2(0) =0, g(c0) = oo and the inverse function g=! is operator monotone. Let || - ||
be a unitarily invariant norm on M,,. Then for every A € M,,,

Ml -g (%) < lls(ADI < IE] - (%) .

For the sake of completeness we now give a short proof of the well-known fact that
every nonnegative operator monotone function on [0, c0) is concave. In fact, it is even
operator concave, i.e., f((1 —A)A 4+ AB) = (1 — A)f (A) + Af (B) forany A € [0, 1]
and for any positive-semidefinite matrices A, B € M,, of all orders n. For the proof of
this last assertion see [1, Theorem V.2.5], where the proof is taken from the papers [2]
and [4]. As the editor pointed out, the following proof was essentially given in [3, p. 3].

PROPOSITION 5. If a continuous function f : [0,00) — [0, 00) is operator mono-
tone, then f is concave.

Proof. Since f is a continuous function, it is not difficult to verify that it suffices

to show that
Fx)+f0) <f (x+y +£)
= 2

2
forall x,y > 0 and € > 0. To prove this, we start with the following equality

0 V2 V2 y  y=x v2 N2
X _ | = 2 2 2 2 2

0 vy V2 A2 yoxooxty _V2 V2T
2 2 2 2 2 2

Then, with A = <X;€'V>z + 22, we have

<
=

and so

(f<x> 0)<<%5 —§>(f(‘¥+e) 0)<£ i)
0 fly)) "\ » 0 )\ v v )

It follows that

F)+£) <<f

_<(f?%y0+8) f&))((l))((l) >—f("¥+s). 0

In view of Proposition 5 one may conjecture that Theorems 1 and 2 hold if f is
a concave nonnegative function on [0, 00). In this paper we give very short proofs of
both conjectures.
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2. Results

We first extend Theorem 1 to a class of nonnegative functions on [0, c0) containing
all concave functions.

THEOREM 6. Let f be a nonnegative function on [0,00), and let || - || be a
normalized unitarily invariant norm.
(i) Suppose that f satisfies the condition f (Ax) < Af (x) for every x > 0 and
A = 1. Then for every A € M,

FaAD < iF(apl-

(ii) Suppose that f satisfies the condition f (Ax) > Af (x) for every x > 0 and
A > 1, and that f (0) = 0. Then for every A € M,

FAAD = 1 (ADII-

Proof. We may assume with no loss of generality that A > 0,A # 0.

(i) Since || - || is a normalized unitarily invariant norm, the spectrum of A is
contained in [0, [|A]|]. The assumptionon f yields f (ux) > uf (x) forevery
x>0and pu €[0,1]. For t € [0, ||A||]] we therefore have

t
@) =D 7—-
1Al

Using the functional calculus we obtain

fUAD, (£UAD
i e vy > (s

f(A) =

forall j = 1,2,...,n. Since every unitarily invariant norm is a monotone
function of singular values, we conclude that

fAlD

=55

141 =7 ([IA]D-

(ii) Similarly as above, the assumption on f implies that f(ux) < uf (x) for
every x > 0 and pu € [0,1]. For ¢ € [0, ||A||] we then have
t

70 < (A -

and so

fAlD
1Al

IF (A < 1A[] = (AL 0

Imitating the well-known proof of Jensen’s inequality we now prove the following
extension of Theorem 2.

THEOREM 7. Let [ be a nonnegative function on [0,00), and let || - || be a
unitarily invariant norm with ||I|| = 1.
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(i) If f is a concave function, then for every A € M,,,

FAIALN = [IF (A
(ii) If f is a convex function with f (0) = 0, then for every A € M,,,

Al < liF(apll-

Proof. We may assume that A > 0,A # 0.
(i) We define
FUAD ~r ()

z<\|Au Al -t

Since the function f is nonnegative, it is increasing, and therefore § > 0
The concavity of f implies that

[ @) = f(IAlD

B>
t—[lA]l

for t > ||A||. From this inequality and the definition of B we conclude that
the inequality
f@) <flAl) + B@ — Al

holds for all ¢ > 0, and therefore

si(f (A)) < s;((f (lAll) = BIIAIDI + BA)

forall j = 1,2,...,n. Since every unitarily invariant norm is a monotone
function of singular values and since B||A|| < f(||A|]) —f(0) < f(J|A]]), we
obtain

lF @I < I AIALD = BllAIDI+ BA|

NN

(7 (il = BllaD iz + BliAl = s (lAlD,

applying the triangle inequality and the assumption that ||I|| = 1.
(ii) Similarly as above, we define

_ e LUAID = £ ()
= S0 =ar=r

and note that B||A|| = f (J|A]]) —f(0) = f(||A]]) . The convexity of f gives
f@) = f (Al + B( — Al
for all ¢+ > 0, which implies that

f(A) + (BlIA]l = £ (Al = BA.

Using the triangle inequality we conclude from this that

I (A + (BIIAI = f (A= BlIA]I-
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Since ||I|| =1 by the assumption, we finally obtain the desired inequality

If ()l = £ (IA]]).- B

Combining Theorems 6 and 7 we obtain the following generalizations of Corollar-
ies 3 and 4.

COROLLARY 8. Let f be a nonnegative function on [0,00), and let || - || be a
unitarily invariant norm.
(i) Let f be a concave function. Then for every A € M,,,

let-s () < wraant < ir-r ().

(ii) Let f be a convex function with f (0) = 0. Then for every A € M,,,

-7 () < raani < et (f51)-

Proof. We introduce the unitarily invariant norms || - ||£ := H and ||-[|f := H ,

which obviously satisfy the conditions ||E||® =1 and ||I||' = 1.
(i) Every nonnegative concave functionon [0, co) satisfies the condition f (Ax) <
Af (x) forevery x > 0 and A > 1. By means of || - ||¥ and Theorem 6 (i)
we obtain the first inequality and similarly with || - ||/ and Theorem 7 (i) the
second one.
(ii) Since the proof is similar, we omitit. [

Theorem 6 remains valid under a weaker assumption that ||E|| > 1. However,
Corollary 8 gives a better estimate, which makes the case | E|| > 1 irrelevant. Similarly,

Theorem 7 is true in the case ||I|| < 1, but only the case ||I|| = 1 is interesting.
As in [5] we now consider the case of the equality in Theorem 6. Recall that a
matrix norm || - || is strictly increasing if 0 < A < B and ||A|| = ||B|| imply A = B.

THEOREMY. Let f be a nonnegative concave function on [0, 0o) with the property
that there is no € > 0 such that the restriction of f on [0, €] is linear. Let || - || be
a strictly increasing normalized unitarily invariant norm on M, with n > 2. Then

FUIAI = If (A if and only if £ (0) = 0 and rankA < 1.

Proof. We may assume without any loss of generality that A = diag(sy, $2, ..., ),
where s; > 55 > --+s, > 0. First assume that f(0) = 0 and A = diag(4,0,...,0)
with A > 0. Then ||A|| = A by the normalization assumption, and so

IF(ADI = IIf (A)diag(1,0, . .., 0)[| = £ (2) = F ([|A[])-

Conversely, assume that f (||A|]) = |If (|A])]]. If A =0, then f£(0) = 0. Indeed,
otherwise we would have f (||A||) = £ (0) < |If (0)I|| = ||If (JA])||. since the norm || - ||
is normalized and strictly increasing.
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Suppose now that A = diag(sy, s2,...,5,) # 0, so that s; > 0. Putting ¢; :=
si/s1, we have

IF (A = diag(f (s1).f (£251), - - . .f (tus1))]|
> ||diag(f (s1), tof (s1), - - -, taf (s1))|
:f(sl)‘ldiag(l’ [yeney tn)Hv

since the assumption on f imply that f(zx) > #f (x) for every x > 0 and every
t € [0,1]. Assume that #, > 0. Since the norm || - || is strictly increasing and
normalized, we have ||diag(1,,...,2,)| > ||diag(1,0,...,0)|| = 1. The assumptions
on f yield f(zx) < tf (x) forevery x > 0 and 7 > 1, so that

f(”AH) :f(s1||diag(l,t2, e 7tﬂ)H)
<f(s1)||diag(1,t2, Cey tn)H
< |l diag(f (s1),f (s2), - (sa)) | = [IF (A,

which s a contradiction. It follows that s, = --- =5, = 0, orequivalently rank A = 1.
Since f([|A]l) = [If (|A])[| means

S (s1) = |If (s1)diag(1,0,...,0)|| = |If (s1)diag(1,0,...,0) +f(0)diag(0, 1,...,1)|,

we have f(0) = 0 because of the strict increasingness of || - || again. O
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