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INEQUALITIES BETWEEN f (‖A‖) AND ‖f (|A|)‖

ROMAN DRNOVŠEK AND TOMAŽ KOSEM

(communicated by F. Hansen)

Abstract. Let f be a nonnegative concave function on [0,∞) , and let ‖ · ‖ be a unitarily
invariant norm on the space of n × n complex matrices. We prove that, for any n × n complex
matrix A , f (‖A‖) � ‖f (|A|)‖ provided the norm ‖ · ‖ is normalized. On the other hand, if
the norm of the identity matrix is 1 , then f (‖A‖) � ‖f (|A|)‖ for any matrix A . These results
extend the theorems of F. Hiai and X. Zhan that were proved in the case when f is an operator
monotone function.

1. Introduction

Let Mn be the space of n × n complex matrices. The singular values of A ∈ Mn

are denoted by s1(A) � s2(A) � . . . � sn(A) . A norm ‖ · ‖ on Mn is called unitarily
invariant if ‖UAV‖ = ‖A‖ for all A, U, V ∈ Mn with U, V unitary. Throughout
the paper, let E and I denote the matrix diag(1, 0, . . . , 0) and the identity matrix,
respectively. A norm ‖ · ‖ on Mn is called normalized whenever ‖E‖ = 1 . A real-
valued function f on [0,∞) is said to be operator monotone if 0 � A � B implies that
f (A) � f (B) for any Hermitian matrices A , B ∈ Mn of all orders n . Here � denotes
the Löwner partial order, i.e., A � B iff B − A is a positive-semidefinite matrix.

The following results have been recently proved by F. Hiai and X. Zhan [5] (see
also [6]).

THEOREM 1. Let f be a nonnegative operator monotone function on [0,∞) and
‖ · ‖ be a normalized unitarily invariant norm on Mn . Then for every A ∈ Mn ,

f (‖A‖) � ‖f (|A|)‖.
THEOREM 2. Let f be a nonnegative operator monotone function on [0,∞) and

‖ · ‖ be a unitarily invariant norm on Mn with ‖I‖ = 1 . Then for every A ∈ Mn ,

‖f (|A|)‖ � f (‖A‖).
COROLLARY 3. Let f be a nonnegative operator monotone function on [0,∞)

and ‖ · ‖ be a unitarily invariant norm on Mn . Then for every A ∈ Mn ,

‖E‖ · f
(‖A‖
‖E‖

)
� ‖f (|A|)‖ � ‖I‖ · f

(‖A‖
‖I‖

)
.
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COROLLARY 4. Let g be a strictly increasing function on [0,∞) such that
g(0) = 0 , g(∞) = ∞ and the inverse function g−1 is operator monotone. Let ‖ · ‖
be a unitarily invariant norm on Mn . Then for every A ∈ Mn ,

‖I‖ · g
(‖A‖
‖I‖

)
� ‖g(|A|)‖ � ‖E‖ · g

(‖A‖
‖E‖

)
.

For the sake of completeness we now give a short proof of the well-known fact that
every nonnegative operator monotone function on [0,∞) is concave. In fact, it is even
operator concave, i.e., f ((1 − λ )A + λB) � (1 − λ )f (A) + λ f (B) for any λ ∈ [0, 1]
and for any positive-semidefinite matrices A , B ∈ Mn of all orders n . For the proof of
this last assertion see [1, Theorem V.2.5], where the proof is taken from the papers [2]
and [4]. As the editor pointed out, the following proof was essentially given in [3, p. 3].

PROPOSITION 5. If a continuous function f : [0,∞) → [0,∞) is operator mono-
tone, then f is concave.

Proof. Since f is a continuous function, it is not difficult to verify that it suffices
to show that

f (x) + f (y)
2

� f

(
x + y

2
+ ε
)

for all x, y � 0 and ε > 0 . To prove this, we start with the following equality(
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It follows that
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2 + ε). �

In view of Proposition 5 one may conjecture that Theorems 1 and 2 hold if f is
a concave nonnegative function on [0,∞) . In this paper we give very short proofs of
both conjectures.



INEQUALITIES BETWEEN f (‖A‖) AND ‖f (|A|)‖ 3

2. Results

We first extendTheorem1 to a class of nonnegative functions on [0,∞) containing
all concave functions.

THEOREM 6. Let f be a nonnegative function on [0,∞) , and let ‖ · ‖ be a
normalized unitarily invariant norm.

(i) Suppose that f satisfies the condition f (λx) � λ f (x) for every x � 0 and
λ � 1 . Then for every A ∈ Mn ,

f (‖A‖) � ‖f (|A|)‖.
(ii) Suppose that f satisfies the condition f (λx) � λ f (x) for every x � 0 and

λ � 1 , and that f (0) = 0 . Then for every A ∈ Mn ,

f (‖A‖) � ‖f (|A|)‖.
Proof. We may assume with no loss of generality that A � 0, A �= 0 .
(i) Since ‖ · ‖ is a normalized unitarily invariant norm, the spectrum of A is

contained in [0, ‖A‖] . The assumption on f yields f (μx) � μf (x) for every
x � 0 and μ ∈ [0, 1] . For t ∈ [0, ‖A‖] we therefore have

f (t) � f (‖A‖) t
‖A‖ .

Using the functional calculus we obtain

f (A) � f (‖A‖)
‖A‖ A, i.e., sj(f (A)) � sj

(
f (‖A‖)
‖A‖ A

)

for all j = 1, 2, . . . , n . Since every unitarily invariant norm is a monotone
function of singular values, we conclude that

‖f (A)‖ � f (‖A‖)
‖A‖ ‖A‖ = f (‖A‖).

(ii) Similarly as above, the assumption on f implies that f (μx) � μf (x) for
every x � 0 and μ ∈ [0, 1] . For t ∈ [0, ‖A‖] we then have

f (t) � f (‖A‖) t
‖A‖ ,

and so

‖f (A)‖ � f (‖A‖)
‖A‖ ‖A‖ = f (‖A‖). �

Imitating the well-known proof of Jensen’s inequality we now prove the following
extension of Theorem 2.

THEOREM 7. Let f be a nonnegative function on [0,∞) , and let ‖ · ‖ be a
unitarily invariant norm with ‖I‖ = 1 .
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(i) If f is a concave function, then for every A ∈ Mn ,

f (‖A‖) � ‖f (|A|)‖.
(ii) If f is a convex function with f (0) = 0 , then for every A ∈ Mn ,

f (‖A‖) � ‖f (|A|)‖.
Proof. We may assume that A � 0, A �= 0 .
(i) We define

β = inf
t<‖A‖

f (‖A‖) − f (t)
‖A‖ − t

.

Since the function f is nonnegative, it is increasing, and therefore β � 0 .
The concavity of f implies that

β � f (t) − f (‖A‖)
t − ‖A‖

for t > ‖A‖ . From this inequality and the definition of β we conclude that
the inequality

f (t) � f (‖A‖) + β(t − ‖A‖)
holds for all t � 0 , and therefore

sj(f (A)) � sj((f (‖A‖) − β‖A‖)I + βA)

for all j = 1, 2, . . . , n . Since every unitarily invariant norm is a monotone
function of singular values and since β‖A‖ � f (‖A‖)− f (0) � f (‖A‖) , we
obtain

‖f (A)‖ � ‖(f (‖A‖) − β‖A‖)I + βA‖
� (f (‖A‖) − β‖A‖)‖I‖+ β‖A‖ = f (‖A‖),

applying the triangle inequality and the assumption that ‖I‖ = 1 .
(ii) Similarly as above, we define

β = sup
t<‖A‖

f (‖A‖) − f (t)
‖A‖ − t

,

and note that β‖A‖ � f (‖A‖) − f (0) = f (‖A‖) . The convexity of f gives

f (t) � f (‖A‖) + β(t − ‖A‖)
for all t � 0 , which implies that

f (A) + (β‖A‖ − f (‖A‖))I � βA.

Using the triangle inequality we conclude from this that

‖f (A)‖ + (β‖A‖ − f (‖A‖)‖I‖ � β‖A‖.
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Since ‖I‖ = 1 by the assumption, we finally obtain the desired inequality

‖f (A)‖ � f (‖A‖). �

Combining Theorems 6 and 7 we obtain the following generalizations of Corollar-
ies 3 and 4.

COROLLARY 8. Let f be a nonnegative function on [0,∞) , and let ‖ · ‖ be a
unitarily invariant norm.

(i) Let f be a concave function. Then for every A ∈ Mn ,

‖E‖ · f
(‖A‖
‖E‖

)
� ‖f (|A|)‖ � ‖I‖ · f

(‖A‖
‖I‖

)
.

(ii) Let f be a convex function with f (0) = 0 . Then for every A ∈ Mn ,

‖I‖ · f
(‖A‖
‖I‖

)
� ‖f (|A|)‖ � ‖E‖ · f

(‖A‖
‖E‖

)
.

Proof. We introduce the unitarily invariant norms ‖ · ‖E := ‖·‖
‖E‖ and ‖ · ‖I := ‖·‖

‖I‖ ,

which obviously satisfy the conditions ‖E‖E = 1 and ‖I‖I = 1 .
(i) Every nonnegative concave function on [0,∞) satisfies the condition f (λx) �

λ f (x) for every x � 0 and λ � 1 . By means of ‖ · ‖E and Theorem 6 (i)
we obtain the first inequality and similarly with ‖ · ‖I and Theorem 7 (i) the
second one.

(ii) Since the proof is similar, we omit it. �

Theorem 6 remains valid under a weaker assumption that ‖E‖ � 1 . However,
Corollary 8 gives a better estimate, which makes the case ‖E‖ > 1 irrelevant. Similarly,
Theorem 7 is true in the case ‖I‖ � 1 , but only the case ‖I‖ = 1 is interesting.

As in [5] we now consider the case of the equality in Theorem 6. Recall that a
matrix norm ‖ · ‖ is strictly increasing if 0 � A � B and ‖A‖ = ‖B‖ imply A = B .

THEOREM 9. Let f be a nonnegative concave function on [0,∞) with the property
that there is no ε > 0 such that the restriction of f on [0, ε] is linear. Let ‖ · ‖ be
a strictly increasing normalized unitarily invariant norm on Mn with n � 2 . Then
f (‖A‖) = ‖f (|A|)‖ if and only if f (0) = 0 and rankA � 1 .

Proof. Wemay assumewithout any loss of generality that A = diag(s1, s2, . . . , sn) ,
where s1 � s2 � · · · sn � 0 . First assume that f (0) = 0 and A = diag(λ , 0, . . . , 0)
with λ � 0 . Then ‖A‖ = λ by the normalization assumption, and so

‖f (|A|)‖ = ‖f (λ )diag(1, 0, . . . , 0)‖ = f (λ ) = f (‖A‖).

Conversely, assume that f (‖A‖) = ‖f (|A|)‖ . If A = 0 , then f (0) = 0 . Indeed,
otherwise we would have f (‖A‖) = f (0) < ‖f (0)I‖ = ‖f (|A|)‖ , since the norm ‖ · ‖
is normalized and strictly increasing.
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Suppose now that A = diag(s1, s2, . . . , sn) �= 0 , so that s1 > 0 . Putting ti :=
si/s1 , we have

‖f (A)‖ = ‖diag(f (s1), f (t2s1), . . . , f (tns1))‖
� ‖diag(f (s1), t2f (s1), . . . , tnf (s1))‖
= f (s1)‖diag(1, t2, . . . , tn)‖,

since the assumption on f imply that f (tx) � tf (x) for every x > 0 and every
t ∈ [0, 1] . Assume that t2 > 0 . Since the norm ‖ · ‖ is strictly increasing and
normalized,we have ‖diag(1, t2, . . . , tn)‖ > ‖diag(1, 0, . . . , 0)‖ = 1 . The assumptions
on f yield f (tx) < tf (x) for every x > 0 and t > 1 , so that

f (‖A‖) = f (s1‖diag(1, t2, . . . , tn)‖)
< f (s1)‖diag(1, t2, . . . , tn)‖
� ‖diag(f (s1), f (s2), . . . , f (sn))‖ = ‖f (A)‖,

which is a contradiction. It follows that s2 = · · · = sn = 0 , or equivalently rankA = 1 .
Since f (‖A‖) = ‖f (|A|)‖ means

f (s1) = ‖f (s1)diag(1, 0, . . . , 0)‖ = ‖f (s1)diag(1, 0, . . . , 0) + f (0)diag(0, 1, . . . , 1)‖,
we have f (0) = 0 because of the strict increasingness of ‖ · ‖ again. �
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Ann. 258 3 (1981/82), 229–241.
[5] F. HIAI AND X. ZHAN, Inequalities involving unitarily invariant norms and operator monotone

functions, Lin. Alg. Appl., 341 (2002), 151–169.
[6] X. ZHAN, Matrix inequalities, Springer-Verlag, Berlin, 2002.

(Received April 5, 2004) Institute of Mathematics, Physics and Mechanics
University of Ljubljana

Jadranska 19
SI-1000 Ljubljana

Slovenia
e-mail: roman.drnovsek@fmf.uni-lj.si

e-mail: tomaz.kosem@fmf.uni-lj.si

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


