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NEW ADVANCES ON THE GROTHENDIECK’S INEQUALITY
PROBLEM FOR BILINEAR FORMS ON JB*-TRIPLES

ANTONIO M. PERALTA

(communicated by F. Hansen)

Abstract. We give a positive answer to the Barton-Friedman’s conjecture on “Grothendieck’s
inequalities” for Cartan factors and JBW*-triples.

1. Introduction

The results known as Grothendieck’s inequalities began with the famous paper
[8] in which A. Grothendieck proved the so-called “Grothendieck’s inequalities” for
commutative C*-dlgebras. These inequalities were generalized by G. Pisier [18] and U.
Haagerup [10, 9] to the setting of C*-algebras.

Every C*-algebra belongs to a more general class of Banach spaces known as
JB*-triples (see definition and examples below). JB*-triples were introduced by Kaup
[14] in the study of bounded symmetric domains in complex Banach spaces. The class
of JB*-triples has been intensively developed in the last twenty years. In the setting of
JB*-triples, Grothendieck’s inequalities were studied by T. Barton and Y. Friedman [1],
C.-H. Chu, B. Tochum and G. Loupias [3], A. M. Peralta [15] and A. M. Peralta and A.
Rodriguez Palacios [16, 17].

The natural prehilbertian seminorms associated derived from states in a C*-algebra
do not make sense in a JB*-triple because the latter needs not have, in general, a natural
order structure. In the setting of JB*-triples, the prehilbertian seminorms associated to
norm-one functionals are constructed as follows: Let ¢ be a norm-one element in the
dual space of a JB*-triple E. Let z be a norm-one element in E (or in E**) such
that @(z) = 1. By [l, Proposition 1.2] the mapping (x,y) — @ {x,y,z} defines a
positive sesquilinear form on E which does not depend on the element z. Thus the law
x = |xllg :== (¢ {x,x, Z})% (x € E) defines a prehilbert seminorm on E .

It is shown in [15, 16] that some technical results from the Banach space geometry
on weak*-continuous bilinear forms, applied in [1] and [3], did not weak in general
(compare [16], Example 1 and comments before). Therefore, previously published
results on Grothendieck’s inequalities for JB*-triples in [1, 3] cannot be considered
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fully proved. In the amendment provided in [16, Corollaries 1 and 7] it is shown that
the assertions in [1, Theorems 1.3 and 1.4] remains true when the seminorms of the

form ||.||, are replaced by seminorms of the form ||x||¢, ¢, = +/[Ix[I3, + ||x[|3,. More

precisely, there exists a universal constant M > 0O such that for every pair of JB*-triples
(E, F) and every bounded bilinear form V on E x F there exist norm-one functionals
¢, ¢ € E* and yy, y, € F* satisfying

VO <M VIHixllgr00 131w (1)

forall (x,y) in E X F. However, until this moment we do not know a counterexample
to the version of Grothendieck’s inequality for JB*-triples established by Barton and
Friedman. Therefore, it is natural to ask whether the seminorms of the form ||x||¢, ¢,
appearing in (1) can be replaced by seminorms of the form ||x||y, as it is established
in [1]. More concretely, let ¢ denote the set of all bounded bilinear forms V on E X F
such that there exist norm-one functionals ¢ € E* and y € F* satisfying

V) <MV ixllg 1yl

forall (x,y) € E x F. Although it is known that ¢ is norm-dense in L(>(E x F)), the
space of all bounded bilinear forms on E x F (see [16, Theorem 1]), we do not know
if 4 coincides or not with whole space L(*>(E x F)).

When E and F are JBW*-triples (JB*-triples which are dual Banach spaces)
and the bilinear form ia assumed to be separately weak*-continuous it seems natural
to request that the functionals appearing in (1) belong to the preduals of E and F,
respectively.

In the present paper we present a big class of JB*-triples where the above problem
have a positive answer. We shall show that this class includes all Cartan factors and all
atomic JBW*-triples.

Let X and Y be Banach spaces. Throughout the paper, L(X,Y) will stand for the
Banach space of all bounded linear operators from X to Y. We usually write L(X)
instead of L(X,X).

A JB*-triple is a complex Banach space E equipped with a continuous triple
product

{,, }' EQEQE—E

(6,,2) = {x,y,2}
which is bilinear and symmetric in the outer variables and conjugate linear in the middle

one and satisfies:
(@) (Jordan Identity)

L(x>y)L(a> b) - L(a7 b)L(x7 y) = L(L(x7 y)a, b) - L(a7 L(y7x)b)7

for all x,y,a,b € E, where L(x,y) : E — E is the linear mapping given by
L(x,y)z = {x,y,2};

(b) The map L(x,x) is an hermitian operator with non-negative spectrum for all
xeE;

(¢) | {x,x,x}| = ||x|]® forall x € E.
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Every C* -algebra is a JB * -triple with respect to the triple product
{x,y,2} =27 (xy* 2 + 2y%x).
Every JB * -algebra is a JB * -triple with triple product given by
{a,b,c} =(aob*)oc+ (cob*)oa—(aoc)ob”.

The (classical) Cartan factors constitute and interesting variety of examples of
JB*-triples. Cartan factors are defined as follows (see [13] for more details): Let H
and K be complex Hilbert spaces. A type 1 Cartan factor is a JB*-triple of the form
L(H,K) with operator norm and triple product defined by

v, 2h = %(xy*z + 29" x). (2)

Let j: H — H be a conjugation (conjugate linear isometry of period 2) on H.

For each x € L(H) we define x' = jx*j. Then the law x — x' defines linear
isometry of period 2 on L(H). S, := {x € L(H) : x' = —x} with product (2) and
operator norm is a Cartan factor of type 2 or of symplectic type and H, := {x € L(H) :
x'" = x} with product (2) and operator norm is a Cartan factor of type 3 or of symplectic
type.

A type-4 Cartan factor, (also called spin factor) is a complex Hilbert space provided
with a conjugation x — X, triple product

{5y, 2} = (xly) 2+ (zly) x — (x|2) v,

and norm given by ||x||2 = (x|x) 4+ 1/ (x[x)* — | (x[T) 2.
The type 6 Cartan factor is the space H3(Q) of all 3 x 3 hermitian matrices over
the complex Cayley algebra O with product

{32t =(x0y")oz+ (zoy")ox—(xoz)oy", 3)

where aob = %(ab + ba) . The type 5 Cartan factor consists of all 1 by 2 matrices over
O and can be regarded as a JB*-subtriple of the Cartan factor of type 6.

A JBWH*-triple is a JB*-triple which is also a dual Banach space. The bidual of
a JB*-triple is a JBW*-triple with respect to a triple product extending the one of E
[4]. Every JBW*-triple has a unique predual and its triple product is separately weak*
continuous [2].

Let E be a JB*-triple. An element e € E is said to be a tripotent if {e,e,e} =e.
The set of all tripotents of E is denoted by Tri (E) . Given a tripotent e € E there exists
a decomposition of E in terms of the eigenspaces of L(e, ¢) given by

E = Ey(e) ® Ey(¢) ® Ex(e), (4)

where E(e) := {x € E : L(e,e)x = £x} is a subtriple of E (k : 0,1,2). The natural
projection of E onto Ej(e) will be denoted by Pi(e). The following rules are also
satisfied

{Ek(e)7El(e)7 Em(e)} c Ek—l+m(e)7
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{E0(6)7E2(e)>E} = {E2(6)7E0(e)7E} =0,

where E;_;im(e) = 0 whenever k — [ + m is not in {0,1,2}. It is also known
that E,(e) is a unital JB * -algebra with respect to the product and involution given by
xoy = {x,e,y} and x* = {e, x, e}, respectively. When E is a JBW*-triple then E;(e)
is a JBW*-algebra.

For background about JB- and JBW-algebras the reader is referred to [11]. We
recall that JB-algebras (respectively, JBW-algebras) are nothing but the self-adjoint
parts of JB*-algebras (respectively, IBW*-algebras) [21] (respectively, [5]).

2. Grothendieck’s Inequalities

The natural strategy to approach Grothendieck’s inequalities in the setting of JB*-
triples is based on the study of the so called “Little Grothendieck’s Theorem” for
JB*-triples. The results in [16] provide a new approach to Grothendieck’s inequalities
for JB*-triples, which allows us to avoid some difficulties in the proofs of [1, Theorems
1.3 and 1.4] and [3, Proposition 4, Theorem 6]. In [16, Corollary 1] it is proved the
following Little Grothendieck’s Theorem:

THEOREM 2.1. Let W be a complex JBW*-triple and T a weak*-continuous
linear operator from W to a complex Hilbert space. Then there exist norm-one
functionals @1, @y € W. such that, for every x € W', we have

1T < 20T [I]x]lg1.2- O

The question if in the above Theorem we can replace the seminorm ||.||g,. ¢, by
a seminorm of the form ||.||, remains open. The aim of this section is to give an
affirmative answer to the above question in the case of an atomic JBW*-triple.

REMARK 2.2. Let E be a finite dimensional JB*-triple and let 7 be a bounded
linear operator from E to a complex Hilbert space .77 . Since T attains its norm we
conclude from [16, Lemma 3] that there exists a norm-one functional ¢ € E, satisfying

TG < V2T [,

forall x € E.
Let H and K be Hilbert spaces. Let 7 in H and k in K we denote by k ® h the
elementin L(H,K) givenby k ® h(x) := (x|h)k (x € H).

PROPOSITION 2.3. Let H be a complex Hilbert space and let p be a projection
in L(H). Suppose that p(H) = K is infinite dimensional. Let E = L(H,K) be the
JBW*-subtriple of L(H) of all bounded linear operators from H to K. Then for every
normal state ¢ in L(H), there exists a norm-one element @ in E, satisfying

Fello < V6 [lxllg

forall x in E.



GROTHENDIECK’S INEQUALITY PROBLEM FOR BILINEAR FORMS ON JB*-TRIPLES 11

Proof. Let ¢ be a normal state of L(H). Write g =1 —p. Let x € L(H). By
the Cauchy-Schwarz inequality we deduce that
[0 (px*xq)* = |9(gx"3p)* < ¢ (px"xp) ¢(gx"xq),

which implies that

O(x*x) = ¢(px*xp) + ¢(px*xq) + ¢(gx*xp) + ¢(gx"xq)
¢ (px*“xp) + ¢(gx"xq) + 2 /9 (px*xp) ¢(gx*xq)
2(¢(px*xp) + 9 (gx"xq)).

Write ¢;(x) := ¢(pxp) and @,(x) := ¢(gxq). Then @; and @, are positive normal

functionals of L(H), [|g1[|+[|92[l = @1 (1) + @2(1) = ¢(1), ¢1(p) = @i(1), ¢2(q) =
@,(1), and for every positive element y € L(H) we have

<
<

0(y) < 2(1(y) + 2(v))- (5)
Since @, is a positive normal functional of pL(H)p, it follows that
=Y Jn(x(ma)ma) (x € L(H)), (6)
neN

where (7,) is an orthonormal sequence in p(H) = K and (4,) is a sequence of
non-negative real numbers with > A, = [[@1]| = @i(1) (compare [20, Corollary
1.15.4]). Analogously we deduce that

= Z.un(x(én)‘én) ()C € L(H))> (7)

neN

where (&,) is an orthonormal sequence in p(H) = K and (u,) is a sequence of
non-negative real numbers with 3, = |2 = @2(1).

If ||@:|| =0 then ¢ = ¢, is a norm-one element in (pL(H)p). = (Ep). C E.,
which gives the desired conclusion for ¢ = ¢.

If ||@i]] = O then ¢ = ¢, is a normal state of gL(H)g. Since p(H) = K is
infinite dimensional we can choose an orthonormal sequence (v,) in K. Let ¢ be the
norm-one functional in E, defined by

X) =Y ta(x(&)[va) (x € E).
neN

Let us denote by e the tripotentin E givenby e = 3 _ v, ®&,. Let x be an arbitrary
elementin E. Since ¢(e) =1 and ¢(q) = 1, we deduce that

1 * % ‘bLn * *
||x\|é =@ {x,xe} = Eqo()cx e+ex*x) = Z 7((xx e+ ex*x)(&)|vn)
neN

=32 (Il ()P + Ix(E)IP)

neN
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and

1 1
I3 = 0 {330} = 3000"q + gx'x) = E¢<qx*x>

= > Blavrn@)lE) = > B (@l

neN neN
From the above expressions we see that
Il13 < [1x[15,

forall x € E.
Flnally we assume |[¢1, [|¢2f] # 0. Set ¢ := [[¢y]|” Vo (1 <i<2)and

q> =271, + @) . Itis clear that ¢ is a normal state of L(H). Since for each x € E,
{x,x,1} is a positive element in L(H), we conclude from (5) that the inequality

15 = @ fxe, 1} <261+ 02) oo 1} = 49 L, 1} = 4l (8)
holds for each x € E. From (6) and (7) we see that the expression
2 e 1 Y * *
||x\|$ = ¢{x,x 1} = 3 O(xx™ +x"x)

_ By (e 1 (2
- %(4”@1”“' (nn)H +|| (nn)H) 4” H

holds for all x € E.
Let ¢ be the norm-one functional in E, given by

26 n |nn XEE)>

neN

X&), )

where (&) is the orthonormal sequence in H defined by &, = 1 and &, | = &

(Vk € N), and (8,) is the sequence in Rj given by &y = gz"‘lm’i

—1 —1
e 192l H;"" Il (vk € N). It is not hard to check from the above definition
that 383, > 2 |01~ 3821 >ty a1, 38, > e, and 3,008, = 1. Set

€= enM ® & € E. Itis easy to see that @(e) = 1. Thus, for each x € E we get

82n 1
Ixllf = ¢ {x,x e} =D —||x m)ll* + Z x> + Z ()12

neN neN neN

and 52/(_1 =

From (8), (9) and the above expression we deduce that
ell§ < 4llel% < 6 [1x][5,

forall xe E. O
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COROLLARY 2.4. Let E = L(H,K) be a type 1 Cartan factor with H and K
infinite dimensional and let 7€ be a complex Hilbert space. Then for every weak*-
continuous linear operator T from E to F there exists a norm-one functional ¢ in
E. satisfying

ITCNl < 2V3 I [xllgs

forall x in E.

Proof. Since L(H,K) and L(K,H) are triple isomorphic we may assume that K
is a Hilbert subspace of H. Let p be a projection in L(H) such that p(H) = K. Let
T : E — S be a weak*-continuous linear operator. The law z +— T(pz) defines a
weak’*-continuous linear operator 7 from L(H) to .# which satisfies T(x) = T(x)
for all x € E. By [10, Proposition 2.3] (see also [16, Remark 1]) there exists a normal
state ¢ € L(H), satisfying

IT@1 < V2IT] [1zllo,

forall z € L(H) . From Proposition 2.3 it follows that there exists a norm-one functional
¢ € E, satisfying
el < V6 [lxllo,

forall x € E. Therefore
1T < 2V3 T [Ixlo,

forall xe E. [

The case of a type 1 Cartan factor E = L(H,K) with dim (K) finite will need an
special development.

REMARK 2.5. Let E be a JBW*-triple. From [16, Remark 3, (i) < (iii)] it
follows that the following assertions are equivalent:
(a) Thereis a universal constant G such that, for every couple (@;, ¢;) of norm-one
functionals in E, X E,, we can find a norm-one functional ¢ € E, satisfying

[IXllg; < Gllxll

forevery x€ Eand i =1,2.

(b) There is a universal constant G such that for every weak*-continuous linear
operator T from E to acomplex Hilbert space, there exists a norm-one functional
¢ € E, satisfying

1T < GIT lxllo

forall x e W.
Moreover, in the implication (a) = (b) we can take G = 2v/2G. and in
(b) = (a) we can choose G = v/2G (compare [16, Corollary 1]).
Let V and W be JBW*-triples satisfying one of the above equivalent statements.
From [16, Remark 3 (ii) < (i)] (see also the proof of [16, Theorem 6]), we deduce
that there is a universal constant G = 62(1 + 24/3) such that for every separately
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weak*-continuous bilinear form U on V x W, there are norm-one functionals ¢ € V.,
and y € W, satisfying

U ) < G U xllollylly
forall (x,y) e Vx W.

The following result describes the pre-hilbertian semi-norms of the form ||.||, in
a type 1 Cartan factor.

Let A be a C*-algebra with involution *. Let o denote the natural Jordan product
on A defined by xoy = J(xy+yx). Itis well known that A has a JB*-algebra structure
with respect to the product o, the involution *, and the natural norm. The JB*-algebra
(A, 0, %) will be denoted by A*. Moreover A" is a JBW*-algebra whenever A is a
von Neumann algebra. It is also known that AT and A has the same normal states.

LEMMA 2.6. Let E = L(H,K) be a type 1 Cartan factor. Suppose that there
exists a projection p in L(H) with p(H) = K. Let @ be a norm-one functional in E, .
Then there exists a partial isometry e in L(H) such that pe = e in E, an orthonormal
sequence (&,) in e*(H), and a sequence of non-negative real numbers (A,) such that

Y onen M = 1 and
= (x(&)e(&)),

neN
forall x in E. As a consequence, for each x in E we have

el = 32 (I )P + (&) P)-

neN

Proof. 1t is immediate that every tripotent e € E is also a tripotent in L(H), since
E = pL(H) is a JBW*-subtriple of L(H). Thus every tripotent e € E is a partial
isometry e € L(H) satisfying pe = e. Let e be a tripotentin E. Then ee* = p; and
e*e = q are projectionsin L(H) with p; < p and e« : e*(H) = p1(H) — e(H) =
q1(H) a surjective isometry. It is easy to check that E,(e) = p1L(H)q1 = p1L(H)q;.
Let us denote by e, and f, the product and involution on E;(e) given by

xe,y:=xe*y (x,y € Ex(e))
and
X = ex*e (x € Ey(e)),

respectively. It is clear that (E;(e), e,, ) is a von Neumann algebra and the mapping
Ex(e) — L(e*(H))

X e'x
is a *-isomorphism from (E;(e), e,,f,) to L(e*(H)).
Let ¢ be a norm-one functional in E,. By [6, Proposition 2], there exists a

tripotent e € E such that ¢ = @P;(e) and @|g, () is a positive normal functional on
the JBW*-algebra (E;(e), 0, *) = (Ea(e), o, ti.)". Therefore, by [20, Corollary 1.15.4],
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there exists an orthonormal sequence (&,) in ¢*(H), and a sequence of non-negative

real numbers (A,) such that ZneN/l =1 and
=S (B,
neN

for all x € Ey(e). Finally, the above expression remains valid for all x € E, because
@ = @Py(e) and Py(e)(x) = ee*xe*e (Vx € E). O

REMARK 2.7. Let E = L(H,K) be a type 1 Cartan factor with dim (H) >
dim (K). Let ¢ be a norm-one element in the predual of E and let e be the tripotent in
E given by Lemma 2.6 above. We claim that we can always assume that ee* coincide
with the orthogonal projection of H onto K (i.e., ee*(H) = e(H) = K ). Indeed, from
the above proposition we deduce that there is an orthonormal sequence (&,) in e¢*(H),
and a sequence of non-negative real numbers (A,) such that > _ A, =1 and

= 3" Ay (&) lel&0)).

neN

neN

forall x € E. If e(H) # K we write K; = (e(H))* N K. Since dim (H) > dim (K),
there exists a Hilbert subspace H; C (e*(H)): N H and a surjective isometry e;
mapping H; to K;. Then, when e; is regarded as a tripotent in E it follows that
u=e+ e isatripotentin E satisfying @(u) =1 and u(H) =K.

PROPOSITION 2.8. Let K be a finite dimensional subspace of a Hilbert space
H. Let E = L(H,K) be a type 1 Cartan factor. Then for every couple of norm-one
functionals @y, @, in E, there exists a norm-one functional ¢ in E, satisfying

xllg: < 2v2 [lx]lg,
forall x in E, i=1,2.

Proof. Let p denote the orthogonal projection of H onto K. Let ¢y, ¢» norm-
one functionals in E,. By Lemma 2.6 there are partial isometries ej,e, € L(H)
such that pe; = ¢; € E (i € {1,2}), orthonormal sequences (&,) C ef(H) and
(N.) C e5(H), and sequences of non-negative real numbers (4,) and (u,) such that

ZnEN A = ZnEN Mo =1,

ZA én ‘el én)) (VXGE)7 (10)
neN

and
=t (x(ma)lea(na)) (Vx € E), (11)
neN

As a consequence, for each x € E we have

2, = 3 2 (I e ) IP + (E)P) (12)

neN
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and

Il = D2 5 (I ea(m)I + x(na) ) (13)

neN

Let H; be the subspace of H generated by ef(H) and e3(H) and let p; be
the orthogonal projection of H onto H;. Since K is finite dimensional and for each
i €{1,2}, eilerm) : e (H) — e;(H) C K is a surjective isometry, we conclude that H;
is finite dimensional. Set F = Ep; = pL(H)p; . Then F is a finite dimensional JBW*-
subtripleof E and e}, e, € F. Since ||.||¢,.¢, |F comes from a suitable separately weak*-
continuous positive sesquilinear form (.|.) on F given by the equality [|x[|3, ,, := (x[x),
it follows from the proof of [19, Corollary]| that there exists a weak*-continuous linear
operator T from F to a Hilbert space satisfying ||7(x)|| = ||x||¢,,, for each x € F.
Since F is finite dimensional, it follows from Remark 2.2 that there exists a norm-one
functional ¢ € F, C E, satisfying

91131, < 2[1¥[l5, (14)

forall y € F. Let e beatripotentin F suchthat ¢(e) = 1. Wenote that F»(e) = Ex(e)
and ep; = e. We may also assume ee* = p (see Remark 2.7).

Write g = 1 —p;. Then E = F® Eq;. Let z3 € Eq;. Since {z3,73,¢} isa
positive element in the von Neumann algebra (E;(e), ., ti.) (the latter is defined in the
proof of 2.6), then there exists y € E,(e) satisfying y% =y and {z3,23,¢} =y e, .
From the equality y* = ey*e = y we deduce that ye* = ey*, e*y = y*e and
hence {y,y,e} = yy*e = {z3,23,¢} = yy*e = 1z3z5e. As a consequence we get
yw* =yy*ee" = %z3z§ee* = %z3z§, and

[1¥llo = llzall-

It follows from (14) that
2llzsllg = 2Ivl5 = lIvlly, (1 <i<2).

We compute now the right hand side of the above inequality. From (10) and (11) itis
easily seen that @;(e;y*y) > 0 forall i € {1,2}. Thus

1 * *
2lzslly = 2lyll5 = IVl = i {y.y, e} = S0 e + ey)
1. 1 X 1 1
> soiw'e) = zoi@ze) = 50 {56} = S sl
Therefore, for each z3 € Eq; and i € {1,2} we get

lzs% < 4llzsll5 (15)

Finally, let x € E. Then x = y + z3 for suitable y € F and z3 € Eq; . From (14)
and (15) we obtain:

Fellgr < I llgs + lzallor <2 (llg + llzslle) < 2V2 4 /IVI3 + 12313,
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forall i € {1,2}. Since ez} = ep1qi1z; = 0 = yz; we deduce that

(,D{Z3,y,€} = (,D{y,z3,e} = (p(o) =0
and hence
Ixl5 = Iv15 + NIzl
which implies
xllgr < 2v2 [lx]lg,
forall i € {1,2}. O

The following corollary shows that every rectangular type 1 Cartan factor satisfies
the Little Grothendieck’s inequality.

COROLLARY 2.9. Let E = L(H,K) be a type 1 Cartan factor with dim (H) >
dim (K). Then for every complex Hilbert space S and every weak*-continuous linear
operator T : E — FC there exists a norm-one functional ¢ in E, satisfying

1T < 8T [Ixlo,
forall x in E.

Proof. When H and K are finite dimensional then E is finite dimensional and
hence Remark 2.2 gives the desired conclusion. If H and K are infinite dimensional
then the statement follows from Proposition 2.3. Finally, if H is infinite dimensional
and K is finite dimensional the conclusion follows from Remark 2.5 and Proposition
28. O

We have already proved the Little Grothendieck’s inequality in the particular case
of a finite dimensional Cartan factor (see Remark 2.2) and in the case of a rectangular
Cartan factor (Corollary 2.9). We shall discuss now the remaining Cartan factors.

Let J be a JB*-triple. We recall that a tripotent # € J is said to be unitary if
L(u,u) coincides with the identity operator on J . In this case J = J,(u) and hence J is
aJB*-algebra with product and involution given by xoy = {x,u,y} and x* = {u, x,u},
respectively. When E is a JBW*-triple with a unitary element u then E is a JBW*-
algebra with respect to the product and involution given above. We can now rephrase
[16, Theorem 4] as follows.

PROPOSITION 2.10. Let M > 2 andlet E be a JBW*-triple with a unitary element
u. Then for every complex Hilbert space and every weak*-continuous linear operator
T : E — H there exists a norm-one functional ¢ € E, such that
1T < M [|T]] [1x[lo,
forall x € E.

Proof. Let T be a weak*-continuous linear operator from E to a complex Hilbert
space. Since E contains a unitary element u, then E is a JBW*-algebra with product
and involution given by x oy = {x,u,y} and x* = {u,x,u}, respectively. By [16,
Theorem 4], there exists a norm-one positive linear functional ¢ € E, such that

T < M |IT| (p(xox™)?,
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forall x € E. Since ¢ is norm-one and positive then @(u) =1 = ||¢@||, and hence for
each x € E we have ||x[|3 = @ {x,x,u} = @(x o x*), which completes the proof. [J

Let S be a spin factor and let # be a norm-one element in S satisfying u = u.
It is easily seen that L(u,u) coincides with the identity operator on S and hence u
is a unitary element in S. It is also known that every Cartan factor of type 1 with
dim (H) =dim (K), every Cartan factor of type 2 with dim (H) even , or infinite, every
Cartan factors of type 3 and every type 6 Cartan factor contains a unitary element (see
for instance [12, Proposition 2]). As a consequence, we can assure that when C is one
of the above Cartan factors and Q is a hyperstonean compact Hausdorff space then
C(Q, C) is a JBW*-triple containing a unitary element.

COROLLARY 2.11.  Let E = C(Q,C), where Q is a hyperstonean Hausdorff
space and C is a Cartan factor of type 1 with with dim (H) =dim (K), or a Cartan
factor of type 2 with dim (H) even , or infinite, or a Cartan factors of type 3, or a spin
factor, or a type 6 Cartan factor. Let M > 2. Then for every complex Hilbert space and
every weak*-continuous linear operator T : E — H there exists a norm-one functional
@ in E, such that

1T <M T xlly,
forall x in E. [

The next theorem shows that the family of all JBW*-triples satisfying the Little
Grothendieck’s inequality is stable by ¢, -sums.

THEOREM 2.12. Let M > 0. Let {Eq}aca be afamily of IBW*-triples such that
forevery o € A and every weak*-continuous linear operator T from E to a complex
Hilbert space H there exists a norm-one functional @y € (Ey). satisfying that

1T <M T x] o (16)

forall x € Ey. Let E = @fx"é/\ Ey. Then for every complex Hilbert space ¢
and every weak*-continuous linear operator T : E — € there exists a norm-one

Sfunctional ¢ € E, such that
1T < 4vV2M || [|x]lg,
forall x € E.

Proof. By [16, Remark 3] (see also Remark 2.5 above) it suffices to prove that
for every pair (@1, @) of norm-one functionals in E, x E, there exists a norm-one
functional ¢ € E, satisfying

1xllg1.0. < 2M x|,

0

forall x € E. Let ¢, ¢ norm-one functionals in E, = aeA

countably subsets Aj, A, C A such that

Q= Z Ua Py, and @y = Z Vada

ach ach;

(Eq)«. Then there are
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where () € £1(A1), (V) € £i(A2), Ha, Ve = 0, @), are norm-one elements in
(EOC)* VJ 172ava7 H(PIH = Zae/\l .uOl and H%” = ZaeAz v&'

Let ] = A\NAy, I} = (A\Az) NA; and I, = (A\Al) N Ay . By hypothesis
and [16, Remark 3] it follows that for each o € I there exists a norm-one functional
Vo € (Eq)« such that

Fellgno < V2M 2]l

forall x € E,. Let ¢ be the norm-one functional in E, defined by

pi=Y By e S Bl 3 g2

ael ael ach

It is not hard to see that in this case
||xH<p1,q>z <2M ||XH<p,

for all x € E, which proves the theorem. [J

Let e be atripotentin a JB*-triple J. When J,(e) = Ce we say that ¢ is a minimal
tripotent. A JBW*-triple E is called atomic if E coincides with the weak*-cosed ideal
generated by all its minimal tripotents. From [7, Proposition 2] it follows that every
atomic JBW*-triple coincides with an £, -sum of Cartan factors.

THEOREM 2.13.  Let E be an atomic JBW*-triple. Then for every weak*-
continuous linear operator T from E to a complex Hilbert space there exists a norm-one
functional ¢ in E, satisfying

ITCOll < 3292 (|71 [lxllo,
forall x in E.

Proof. Let E be an atomic JBW*-triple. We have already commented that E
admits a decomposition in the form @e"o Cq, where each C,, is a Cartan factor. If we
prove that each factor C,, satisfies the hypothesis of Theorem 2.12 for M = 8, then
the assertion will follow from the just quoted theorem.

Let T : C,, — 7 be a weak*-continuous linear operator from C,, to a complex
Hilbert space. If C,, is a type 1 Cartan factor with dim (H) > dim (K), then Corollary
2.9 assures the existence of a norm-one functional @, € (Cg). satisfying inequality
(16) for M = 8. If C is a Cartan factor of type 1 with with dim (H) =dim (K), or a
Cartan factor of type 2 with dim (H) even, or infinite, or a Cartan factors of type 3, or
a type 6 Cartan factor, then Corollary 2.11 gives the existence of a norm-one functional
Qo € (Cq)« satisfying (16) for M > 2. Finally, if C, is finite dimensional, then it
follows from Remark 2.2 that there exists a norm-one functional @, € (Cy )+ satisfying
(16) for M =+/2. O

Let E be aJB*-triple. We have already mentioned that E** is a JBW*-triple. From
[6, Theorems 1 and 2] it follows that E** and E* admit the following decompositions:
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and

E* =A,®"N,,
where A is the weak*-closed ideal of E** generated by all minimal tripotents of E**,
N contains no minimal tripotents, A, is the predual of A and coincides with the norm
closure of the linear span of the extreme points of the closed unit ball of E*, and the
closed unit ball of N, contains no extreme points. A is called the atomic part of E**.
Moreover, by [7, Proposition 2] we conclude that A is an £, -sum of Cartan factors.

COROLLARY 2.14. Let E be a JB*-triple and let A denote the atomic part of
E**. Then for every pair (@1, ¢2) of norm-one functionals in A, C E*, there exists a
norm-one functional ¢ € A, C E* satisfying

Xl 1.0, < 32 V2 [l o,
forall x € E.

Proof. Let (@1, @2) be acouple of norm-one functionalsin A, C E*. By Theorem
2.13 there exists a norm-one functional ¢ € A, satisfying

Izllgrg. < 32 V2 l2llo, (17)

forall z€ A.

Let i denote the canonical embedding of E in its bidual and let 7 be the natural
projection of E** onto A. From the proof of [7, Proposition 1] we deduce that o is
a triple embedding of E into A. Let ¢ be a norm-one functionalin A, . ¢ can be also
regarded as a norm-one element in E*. Since ¢ attains its norm at a tripotent in A, it
is not hard to see that for each x € E we have

I o i(x)llo = llxllo-
The conclusion of the corollary follows now from the above expression and inequality
(17). O
From the last part of Remark 2.5 and Theorem 2.13 we derive the following
Grothendieck’s Theorem for atomic JBW*-triples.

THEOREM 2.15. Let V and W be atomic JBW*-triples. Then for every separately
weak*-continuous bilinear form U on V X W, there are norm-one functionals ¢ € V..,
and y in W, satisfying

UG, y)| <24 (1+2V3) U] [Ixllpllly
Sforall (x,y)in VxWwW. O
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