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PROBLEM FOR BILINEAR FORMS ON JB*–TRIPLES
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Abstract. We give a positive answer to the Barton-Friedman’s conjecture on “Grothendieck’s
inequalities” for Cartan factors and JBW*-triples.

1. Introduction

The results known as Grothendieck’s inequalities began with the famous paper
[8] in which A. Grothendieck proved the so-called “Grothendieck’s inequalities” for
commutative C*-álgebras. These inequalities were generalized by G. Pisier [18] and U.
Haagerup [10, 9] to the setting of C*-algebras.

Every C*-algebra belongs to a more general class of Banach spaces known as
JB*-triples (see definition and examples below). JB*-triples were introduced by Kaup
[14] in the study of bounded symmetric domains in complex Banach spaces. The class
of JB*-triples has been intensively developed in the last twenty years. In the setting of
JB*-triples, Grothendieck’s inequalities were studied by T. Barton and Y. Friedman [1],
C.-H. Chu, B. Iochum and G. Loupias [3], A. M. Peralta [15] and A. M. Peralta and A.
Rodrı́guez Palacios [16, 17].

The natural prehilbertian seminorms associated derived from states in a C*-algebra
do not make sense in a JB*-triple because the latter needs not have, in general, a natural
order structure. In the setting of JB*-triples, the prehilbertian seminorms associated to
norm-one functionals are constructed as follows: Let ϕ be a norm-one element in the
dual space of a JB*-triple E . Let z be a norm-one element in E (or in E∗∗ ) such
that ϕ(z) = 1 . By [1, Proposition 1.2] the mapping (x, y) �→ ϕ {x, y, z} defines a
positive sesquilinear form on E which does not depend on the element z . Thus the law

x �→ ‖x‖ϕ := (ϕ {x, x, z}) 1
2 (x ∈ E) defines a prehilbert seminorm on E .

It is shown in [15, 16] that some technical results from the Banach space geometry
on weak*-continuous bilinear forms, applied in [1] and [3], did not weak in general
(compare [16], Example 1 and comments before). Therefore, previously published
results on Grothendieck’s inequalities for JB*-triples in [1, 3] cannot be considered
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fully proved. In the amendment provided in [16, Corollaries 1 and 7] it is shown that
the assertions in [1, Theorems 1.3 and 1.4] remains true when the seminorms of the

form ‖.‖ϕ are replaced by seminorms of the form ‖x‖ϕ1,ϕ2 =
√
‖x‖2

ϕ1
+ ‖x‖2

ϕ2
. More

precisely, there exists a universal constant M > 0 such that for every pair of JB*-triples
(E, F) and every bounded bilinear form V on E × F there exist norm-one functionals
ϕ1,ϕ2 ∈ E∗ and ψ1,ψ2 ∈ F∗ satisfying

|V(x, y)| � M ‖V‖ ‖x‖ϕ1,ϕ2 ‖y‖ψ1,ψ2 (1)

for all (x, y) in E × F . However, until this moment we do not know a counterexample
to the version of Grothendieck’s inequality for JB*-triples established by Barton and
Friedman. Therefore, it is natural to ask whether the seminorms of the form ‖x‖ϕ1,ϕ2

appearing in (1) can be replaced by seminorms of the form ‖x‖ϕ , as it is established
in [1]. More concretely, let G denote the set of all bounded bilinear forms V on E×F
such that there exist norm-one functionals ϕ ∈ E∗ and ψ ∈ F∗ satisfying

|V(x, y)| � M ‖V‖ ‖x‖ϕ ‖y‖ψ ,

for all (x, y) ∈ E×F . Although it is known that G is norm-dense in L(2(E×F)) , the
space of all bounded bilinear forms on E × F (see [16, Theorem 1]), we do not know
if G coincides or not with whole space L(2(E × F)) .

When E and F are JBW*-triples (JB*-triples which are dual Banach spaces)
and the bilinear form ia assumed to be separately weak*-continuous it seems natural
to request that the functionals appearing in (1) belong to the preduals of E and F,
respectively.

In the present paper we present a big class of JB*-triples where the above problem
have a positive answer. We shall show that this class includes all Cartan factors and all
atomic JBW*-triples.

Let X and Y be Banach spaces. Throughout the paper, L(X, Y) will stand for the
Banach space of all bounded linear operators from X to Y . We usually write L(X)
instead of L(X, X) .

A JB*-triple is a complex Banach space E equipped with a continuous triple
product

{., ., .} : E ⊗ E ⊗ E → E

(x, y, z) �→ {x, y, z}
which is bilinear and symmetric in the outer variables and conjugate linear in the middle
one and satisfies:
(a) (Jordan Identity)

L(x, y)L(a, b) − L(a, b)L(x, y) = L(L(x, y)a, b) − L(a, L(y, x)b),

for all x, y, a, b ∈ E, where L(x, y) : E → E is the linear mapping given by
L(x, y)z = {x, y, z} ;

(b) The map L(x, x) is an hermitian operator with non-negative spectrum for all
x ∈ E ;

(c) ‖ {x, x, x} ‖ = ‖x‖3 for all x ∈ E .
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Every C ∗ -algebra is a JB ∗ -triple with respect to the triple product

{x, y, z} = 2−1(xy∗z + zy∗x).

Every JB ∗ -algebra is a JB ∗ -triple with triple product given by

{a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗.

The (classical) Cartan factors constitute and interesting variety of examples of
JB*-triples. Cartan factors are defined as follows (see [13] for more details): Let H
and K be complex Hilbert spaces. A type 1 Cartan factor is a JB*-triple of the form
L(H, K) with operator norm and triple product defined by

{x, y, z} =
1
2
(xy∗z + zy∗x). (2)

Let j : H → H be a conjugation (conjugate linear isometry of period 2) on H .
For each x ∈ L(H) we define xt = jx∗j . Then the law x �→ xt defines linear

isometry of period 2 on L(H) . Sn := {x ∈ L(H) : xt = −x} with product (2) and
operator norm is a Cartan factor of type 2 or of symplectic type and Hn := {x ∈ L(H) :
xt = x} with product (2) and operator norm is a Cartan factor of type 3 or of symplectic
type.

A type-4Cartan factor, (also called spin factor) is a complexHilbert space provided
with a conjugation x �→ x , triple product

{x, y, z} = (x|y) z + (z|y) x − (x|z̄) ȳ,

and norm given by ‖x‖2 = (x|x) +
√

(x|x)2 − | (x|x) |2 .
The type 6 Cartan factor is the space H3(O) of all 3 × 3 hermitian matrices over

the complex Cayley algebra O with product

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x − (x ◦ z) ◦ y∗, (3)

where a ◦ b = 1
2 (ab+ ba) . The type 5 Cartan factor consists of all 1 by 2 matrices over

O and can be regarded as a JB*-subtriple of the Cartan factor of type 6.
A JBW*-triple is a JB*-triple which is also a dual Banach space. The bidual of

a JB*-triple is a JBW*-triple with respect to a triple product extending the one of E
[4]. Every JBW*-triple has a unique predual and its triple product is separately weak*
continuous [2].

Let E be a JB*-triple. An element e ∈ E is said to be a tripotent if {e, e, e} = e .
The set of all tripotents of E is denoted by Tri (E) . Given a tripotent e ∈ E there exists
a decomposition of E in terms of the eigenspaces of L(e, e) given by

E = E0(e) ⊕ E1(e) ⊕ E2(e), (4)

where Ek(e) := {x ∈ E : L(e, e)x = k
2x} is a subtriple of E ( k : 0, 1, 2 ). The natural

projection of E onto Ek(e) will be denoted by Pk(e) . The following rules are also
satisfied

{Ek(e), El(e), Em(e)} ⊆ Ek−l+m(e),
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{E0(e), E2(e), E} = {E2(e), E0(e), E} = 0,

where Ek−l+m(e) = 0 whenever k − l + m is not in {0, 1, 2} . It is also known
that E2(e) is a unital JB ∗ -algebra with respect to the product and involution given by
x◦y = {x, e, y} and x∗ = {e, x, e} , respectively. When E is a JBW*-triple then E2(e)
is a JBW*-algebra.

For background about JB- and JBW-algebras the reader is referred to [11]. We
recall that JB-algebras (respectively, JBW-algebras) are nothing but the self-adjoint
parts of JB*-algebras (respectively, JBW*-algebras) [21] (respectively, [5]).

2. Grothendieck’s Inequalities

The natural strategy to approach Grothendieck’s inequalities in the setting of JB*-
triples is based on the study of the so called “Little Grothendieck’s Theorem” for
JB*-triples. The results in [16] provide a new approach to Grothendieck’s inequalities
for JB*-triples, which allows us to avoid some difficulties in the proofs of [1, Theorems
1.3 and 1.4] and [3, Proposition 4, Theorem 6]. In [16, Corollary 1] it is proved the
following Little Grothendieck’s Theorem:

THEOREM 2.1. Let W be a complex JBW*-triple and T a weak*-continuous
linear operator from W to a complex Hilbert space. Then there exist norm-one
functionals ϕ1,ϕ2 ∈ W∗ such that, for every x ∈ W , we have

‖T(x)‖ � 2‖T‖‖x‖ϕ1,ϕ2 . �

The question if in the above Theorem we can replace the seminorm ‖.‖ϕ1,ϕ2 by
a seminorm of the form ‖.‖ϕ remains open. The aim of this section is to give an
affirmative answer to the above question in the case of an atomic JBW*-triple.

REMARK 2.2. Let E be a finite dimensional JB*-triple and let T be a bounded
linear operator from E to a complex Hilbert space H . Since T attains its norm we
conclude from [16, Lemma 3] that there exists a norm-one functional ϕ ∈ E∗ satisfying

‖T(x)‖ �
√

2 ‖T‖ ‖x‖ϕ ,
for all x ∈ E .

Let H and K be Hilbert spaces. Let h in H and k in K we denote by k ⊗ h the
element in L(H, K) given by k ⊗ h(x) := (x|h)k ( x ∈ H ).

PROPOSITION 2.3. Let H be a complex Hilbert space and let p be a projection
in L(H) . Suppose that p(H) = K is infinite dimensional. Let E = L(H, K) be the
JBW*-subtriple of L(H) of all bounded linear operators from H to K . Then for every
normal state φ in L(H)∗ there exists a norm-one element ϕ in E∗ satisfying

‖x‖φ �
√

6 ‖x‖ϕ
for all x in E .
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Proof. Let φ be a normal state of L(H) . Write q = 1 − p . Let x ∈ L(H) . By
the Cauchy-Schwarz inequality we deduce that

|φ(px∗xq)|2 = |φ(qx∗xp)|2 � φ(px∗xp) φ(qx∗xq),

which implies that

φ(x∗x) = φ(px∗xp) + φ(px∗xq) + φ(qx∗xp) + φ(qx∗xq)

� φ(px∗xp) + φ(qx∗xq) + 2
√
φ(px∗xp) φ(qx∗xq)

� 2(φ(px∗xp) + φ(qx∗xq)).

Write ϕ1(x) := φ(pxp) and ϕ2(x) := φ(qxq) . Then ϕ1 and ϕ2 are positive normal
functionals of L(H), ‖ϕ1‖+‖ϕ2‖ = ϕ1(1)+ϕ2(1) = φ(1), ϕ1(p) = ϕ1(1) , ϕ2(q) =
ϕ2(1), and for every positive element y ∈ L(H) we have

φ(y) � 2(ϕ1(y) + ϕ2(y)). (5)

Since ϕ1 is a positive normal functional of pL(H)p , it follows that

ϕ1(x) :=
∑
n∈N

λn(x(ηn)|ηn) (x ∈ L(H)), (6)

where (ηn) is an orthonormal sequence in p(H) = K and (λn) is a sequence of
non-negative real numbers with

∑
n∈N

λn = ‖ϕ1‖ = ϕ1(1) (compare [20, Corollary
1.15.4]). Analogously we deduce that

ϕ2(x) :=
∑
n∈N

μn(x(ξn)|ξn) (x ∈ L(H)), (7)

where (ξn) is an orthonormal sequence in p(H) = K and (μn) is a sequence of
non-negative real numbers with

∑
n∈N

μn = ‖ϕ2‖ = ϕ2(1) .
If ‖ϕ2‖ = 0 then φ = ϕ1 is a norm-one element in (pL(H)p)∗ = (Ep)∗ ⊆ E∗ ,

which gives the desired conclusion for ϕ = φ .
If ‖ϕ1‖ = 0 then φ = ϕ2 is a normal state of qL(H)q . Since p(H) = K is

infinite dimensional we can choose an orthonormal sequence (νn) in K . Let ϕ be the
norm-one functional in E∗ defined by

ϕ(x) =
∑
n∈N

μn(x(ξn)|νn) (x ∈ E).

Let us denote by e the tripotent in E given by e =
∑

n∈N
νn⊗ξn. Let x be an arbitrary

element in E . Since ϕ(e) = 1 and φ(q) = 1 , we deduce that

‖x‖2
ϕ = ϕ {x, x, e} =

1
2
ϕ(xx∗e + ex∗x) =

∑
n∈N

μn

2
((xx∗e + ex∗x)(ξn)|νn)

=
∑
n∈N

μn

2

(‖x∗(νn)‖2 + ‖x(ξn)‖2
)
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and

‖x‖2
φ = φ {x, x, q} =

1
2
φ(xx∗q + qx∗x) =

1
2
φ(qx∗x)

=
∑
n∈N

μn

2
((qx∗x)(ξn)|ξn) =

∑
n∈N

μn

2

(‖x(ξn)‖2
)
.

From the above expressions we see that

‖x‖2
φ � ‖x‖2

ϕ ,

for all x ∈ E .
Finally we assume ‖φ1‖, ‖φ2‖ �= 0 . Set φi := ‖ϕi‖−1 ϕi (1 � i � 2 ) and

φ̃ = 2−1(ϕ1 + ϕ2) . It is clear that φ̃ is a normal state of L(H) . Since for each x ∈ E ,
{x, x, 1} is a positive element in L(H) , we conclude from (5) that the inequality

‖x‖2
φ = φ {x, x, 1} � 2(φ1 + φ2) {x, x, 1} = 4φ̃ {x, x, 1} = 4‖x‖2

φ̃
(8)

holds for each x ∈ E . From (6) and (7) we see that the expression

‖x‖2
φ̃

= φ̃ {x, x, 1} =
1
2
φ̃(xx∗ + x∗x)

=
∑
n∈N

( λn

4‖ϕ1‖
(‖x∗(ηn)‖2 + ‖x(ηn)‖2

)
+

μn

4‖ϕ2‖‖x(ξn)‖2
)
, (9)

holds for all x ∈ E .
Let ϕ be the norm-one functional in E∗ given by

ϕ(x) =
∑
n∈N

δn(x(ξ
′
n)|ηn) (x ∈ E),

where (ξ
′
n) is the orthonormal sequence in H defined by ξ

′
2k = ηk and ξ

′
2k−1 = ξk

(∀k ∈ N ), and (δn) is the sequence in R
+
0 given by δ2k = λ2k+λk

3 ‖ϕ1‖ and δ2k−1 =
μk ‖ϕ2‖−1+λ2k−1 ‖ϕ1‖−1

3 (∀k ∈ N ). It is not hard to check from the above definition
that 3δ2n � λn ‖ϕ1‖−1, 3δ2n−1 � μn ‖ϕ2‖−1, 3δn � λn

‖ϕ1‖ , and
∑

n∈N
δn = 1 . Set

e =
∑

n∈N
ηn ⊗ ξ

′
n ∈ E. It is easy to see that ϕ(e) = 1. Thus, for each x ∈ E we get

‖x‖2
ϕ = ϕ {x, x, e} =

∑
n∈N

δn

2
‖x∗(ηn)‖2 +

∑
n∈N

δ2n−1

2
‖x(ξn)‖2 +

∑
n∈N

δ2n

2
‖x(ηn)‖2.

From (8), (9) and the above expression we deduce that

‖x‖2
φ � 4‖x‖2

φ̃
� 6 ‖x‖2

ϕ ,

for all x ∈ E . �



GROTHENDIECK’S INEQUALITY PROBLEM FOR BILINEAR FORMS ON JB*-TRIPLES 13

COROLLARY 2.4. Let E = L(H, K) be a type 1 Cartan factor with H and K
infinite dimensional and let H be a complex Hilbert space. Then for every weak*-
continuous linear operator T from E to H there exists a norm-one functional ϕ in
E∗ satisfying

‖T(x)‖ � 2
√

3 ‖T‖ ‖x‖ϕ ,

for all x in E .

Proof. Since L(H, K) and L(K, H) are triple isomorphic we may assume that K
is a Hilbert subspace of H . Let p be a projection in L(H) such that p(H) = K . Let
T : E → H be a weak*-continuous linear operator. The law z �→ T(pz) defines a
weak*-continuous linear operator T̃ from L(H) to H which satisfies T̃(x) = T(x)
for all x ∈ E . By [10, Proposition 2.3] (see also [16, Remark 1]) there exists a normal
state φ ∈ L(H)∗ satisfying

‖T̃(z)‖ �
√

2 ‖T‖ ‖z‖φ ,
for all z ∈ L(H) . From Proposition 2.3 it follows that there exists a norm-one functional
ϕ ∈ E∗ satisfying

‖x‖φ �
√

6 ‖x‖ϕ ,

for all x ∈ E. Therefore
‖T(x)‖ � 2

√
3 ‖T‖ ‖x‖ϕ ,

for all x ∈ E . �

The case of a type 1 Cartan factor E = L(H, K) with dim (K) finite will need an
special development.

REMARK 2.5. Let E be a JBW*-triple. From [16, Remark 3, (i) ⇔ (iii) ] it
follows that the following assertions are equivalent:
(a) There is a universal constant G such that, for every couple (ϕ1,ϕ2) of norm-one

functionals in E∗ × E∗ , we can find a norm-one functional ϕ ∈ E∗ satisfying

‖x‖ϕi � G‖x‖ϕ
for every x ∈ E and i = 1, 2 .

(b) There is a universal constant G̃ such that for every weak*-continuous linear
operator T from E to a complexHilbert space, there exists a norm-one functional
ϕ ∈ E∗ satisfying

‖T(x)‖ � G̃ ‖T‖ ‖x‖ϕ
for all x ∈ W .

Moreover, in the implication (a) ⇒ (b) we can take G̃ = 2
√

2G . and in
(b) ⇒ (a) we can choose G =

√
2G̃ (compare [16, Corollary 1]).

Let V and W be JBW*-triples satisfying one of the above equivalent statements.
From [16, Remark 3 (ii) ⇔ (i) ] (see also the proof of [16, Theorem 6]), we deduce
that there is a universal constant Ĝ = G̃2(1 + 2

√
3) such that for every separately
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weak*-continuousbilinear form U on V×W , there are norm-one functionals ϕ ∈ V∗ ,
and ψ ∈ W∗ satisfying

|U(x, y)| � Ĝ ‖U‖ ‖x‖ϕ‖y‖ψ
for all (x, y) ∈ V × W .

The following result describes the pre-hilbertian semi-norms of the form ‖.‖ϕ in
a type 1 Cartan factor.

Let A be a C*-algebra with involution ∗ . Let ◦ denote the natural Jordan product
on A defined by x◦y = 1

2 (xy+yx) . It is well known that A has a JB*-algebra structure
with respect to the product ◦ , the involution ∗ , and the natural norm. The JB*-algebra
(A, ◦, ∗) will be denoted by A+ . Moreover A+ is a JBW*-algebra whenever A is a
von Neumann algebra. It is also known that A+ and A has the same normal states.

LEMMA 2.6. Let E = L(H, K) be a type 1 Cartan factor. Suppose that there
exists a projection p in L(H) with p(H) = K . Let ϕ be a norm-one functional in E∗ .
Then there exists a partial isometry e in L(H) such that pe = e in E , an orthonormal
sequence (ξn) in e∗(H), and a sequence of non-negative real numbers (λn) such that∑

n∈N
λn = 1 and

ϕ(x) =
∑
n∈N

λn (x(ξn)|e(ξn)),

for all x in E . As a consequence, for each x in E we have

‖x‖2
ϕ =

∑
n∈N

λn

2

(
‖x∗(e(ξn))‖2 + ‖x(ξn)‖2

)
.

Proof. It is immediate that every tripotent e ∈ E is also a tripotent in L(H) , since
E = pL(H) is a JBW*-subtriple of L(H) . Thus every tripotent e ∈ E is a partial
isometry e ∈ L(H) satisfying pe = e . Let e be a tripotent in E . Then ee∗ = p1 and
e∗e = q1 are projections in L(H) with p1 � p and e|e∗(H) : e∗(H) = p1(H) → e(H) =
q1(H) a surjective isometry. It is easy to check that E2(e) = p1L(H)q1 = p1L(H)q1.

Let us denote by •e and �e the product and involution on E2(e) given by

x •e y := xe∗y (x, y ∈ E2(e))

and
x�e = ex∗e (x ∈ E2(e)),

respectively. It is clear that (E2(e), •e, �e) is a von Neumann algebra and the mapping

E2(e) → L(e∗(H))

x �→ e∗x

is a *-isomorphism from (E2(e), •e, �e) to L(e∗(H)) .
Let ϕ be a norm-one functional in E∗ . By [6, Proposition 2], there exists a

tripotent e ∈ E such that ϕ = ϕP2(e) and ϕ|E2(e) is a positive normal functional on
the JBW*-algebra (E2(e), ◦, ∗) = (E2(e), •e, �e)+. Therefore, by [20, Corollary 1.15.4],



GROTHENDIECK’S INEQUALITY PROBLEM FOR BILINEAR FORMS ON JB*-TRIPLES 15

there exists an orthonormal sequence (ξn) in e∗(H), and a sequence of non-negative
real numbers (λn) such that

∑
n∈N

λn = 1 and

ϕ(x) =
∑
n∈N

λn (x(ξn)|e(ξn)),

for all x ∈ E2(e). Finally, the above expression remains valid for all x ∈ E , because
ϕ = ϕP2(e) and P2(e)(x) = ee∗xe∗e (∀x ∈ E ). �

REMARK 2.7. Let E = L(H, K) be a type 1 Cartan factor with dim (H) �
dim (K). Let ϕ be a norm-one element in the predual of E and let e be the tripotent in
E given by Lemma 2.6 above. We claim that we can always assume that ee∗ coincide
with the orthogonal projection of H onto K (i.e., ee∗(H) = e(H) = K ). Indeed, from
the above proposition we deduce that there is an orthonormal sequence (ξn) in e∗(H),
and a sequence of non-negative real numbers (λn) such that

∑
n∈N

λn = 1 and

ϕ(x) =
∑
n∈N

λn (x(ξn)|e(ξn)),

for all x ∈ E . If e(H) �= K we write K1 = (e(H))⊥ ∩ K . Since dim (H) � dim (K),
there exists a Hilbert subspace H1 ⊆ (e∗(H))⊥ ∩ H and a surjective isometry e1

mapping H1 to K1 . Then, when e1 is regarded as a tripotent in E it follows that
u = e + e1 is a tripotent in E satisfying ϕ(u) = 1 and u(H) = K .

PROPOSITION 2.8. Let K be a finite dimensional subspace of a Hilbert space
H . Let E = L(H, K) be a type 1 Cartan factor. Then for every couple of norm-one
functionals ϕ1,ϕ2 in E∗ there exists a norm-one functional ϕ in E∗ satisfying

‖x‖ϕi � 2
√

2 ‖x‖ϕ ,
for all x in E, i = 1, 2 .

Proof. Let p denote the orthogonal projection of H onto K . Let ϕ1,ϕ2 norm-
one functionals in E∗ . By Lemma 2.6 there are partial isometries e1, e2 ∈ L(H)
such that pei = ei ∈ E (i ∈ {1, 2}) , orthonormal sequences (ξn) ⊂ e∗1(H) and
(ηn) ⊂ e∗2(H), and sequences of non-negative real numbers (λn) and (μn) such that∑

n∈N
λn =

∑
n∈N

μn = 1,

ϕ1(x) =
∑
n∈N

λn (x(ξn)|e1(ξn)) (∀x ∈ E), (10)

and

ϕ2(x) =
∑
n∈N

μn (x(ηn)|e2(ηn)) (∀x ∈ E), (11)

As a consequence, for each x ∈ E we have

‖x‖2
ϕ1

=
∑
n∈N

λn

2

(
‖x∗(e1(ξn))‖2 + ‖x(ξn)‖2

)
(12)
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and

‖x‖2
ϕ2

=
∑
n∈N

μn

2

(
‖x∗(e2(ηn))‖2 + ‖x(ηn)‖2

)
. (13)

Let H1 be the subspace of H generated by e∗1(H) and e∗2 (H) and let p1 be
the orthogonal projection of H onto H1 . Since K is finite dimensional and for each
i ∈ {1, 2} , ei|e∗i (H) : e∗i (H) → ei(H) ⊆ K is a surjective isometry, we conclude that H1

is finite dimensional. Set F = Ep1 = pL(H)p1 . Then F is a finite dimensional JBW*-
subtriple of E and e1, e2 ∈ F . Since ‖.‖ϕ1,ϕ2 |F comes from a suitable separatelyweak*-
continuous positive sesquilinear form (.|.) on F given by the equality ‖x‖2

ϕ1,ϕ2
:= (x|x),

it follows from the proof of [19, Corollary] that there exists a weak*-continuous linear
operator T from F to a Hilbert space satisfying ‖T(x)‖ = ‖x‖ϕ1,ϕ2 for each x ∈ F .
Since F is finite dimensional, it follows from Remark 2.2 that there exists a norm-one
functional ϕ ∈ F∗ ⊆ E∗ satisfying

‖y‖2
ϕ1,ϕ2

� 2‖y‖2
ϕ , (14)

for all y ∈ F . Let e be a tripotent in F such that ϕ(e) = 1 . We note that F2(e) = E2(e)
and ep1 = e . We may also assume ee∗ = p (see Remark 2.7).

Write q1 = 1 − p1 . Then E = F ⊕ Eq1 . Let z3 ∈ Eq1 . Since {z3, z3, e} is a
positive element in the von Neumann algebra (E2(e), •e, �e) (the latter is defined in the
proof of 2.6), then there exists y ∈ E2(e) satisfying y�e = y and {z3, z3, e} = y •e y .
From the equality y�e = ey∗e = y we deduce that ye∗ = ey∗, e∗y = y∗e and
hence {y, y, e} = yy∗e = {z3, z3, e} = yy∗e = 1

2 z3z∗3e . As a consequence we get
yy∗ = yy∗ee∗ = 1

2 z3z∗3ee∗ = 1
2 z3z∗3 , and

‖y‖ϕ = ‖z3‖ϕ .

It follows from (14) that

2‖z3‖2
ϕ = 2‖y‖2

ϕ � ‖y‖2
ϕi

(1 � i � 2).

We compute now the right hand side of the above inequality. From (10) and (11) it is
easily seen that ϕi(eiy∗y) � 0 for all i ∈ {1, 2} . Thus

2‖z3‖2
ϕ = 2‖y‖2

ϕ � ‖y‖2
ϕi

= ϕi {y, y, ei} =
1
2
ϕi(yy∗ei + eiy

∗y)

� 1
2
ϕi(yy∗ei) =

1
4
ϕi(z3z

∗
3ei) =

1
2
ϕi {z3, z3, ei} =

1
2
‖z3‖2

ϕi
.

Therefore, for each z3 ∈ Eq1 and i ∈ {1, 2} we get

‖z3‖2
ϕi

� 4‖z3‖2
ϕ (15)

Finally, let x ∈ E . Then x = y + z3 for suitable y ∈ F and z3 ∈ Eq1 . From (14)
and (15) we obtain:

‖x‖ϕi � ‖y‖ϕi + ‖z3‖ϕi � 2
(‖y‖ϕ + ‖z3‖ϕ

)
� 2

√
2

√
‖y‖2

ϕ + ‖z3‖2
ϕ ,
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for all i ∈ {1, 2} . Since ez∗3 = ep1q1z∗3 = 0 = yz∗3 we deduce that

ϕ {z3, y, e} = ϕ {y, z3, e} = ϕ(0) = 0

and hence
‖x‖2

ϕ = ‖y‖2
ϕ + ‖z3‖2

ϕ ,

which implies
‖x‖ϕi � 2

√
2 ‖x‖ϕ ,

for all i ∈ {1, 2} . �
The following corollary shows that every rectangular type 1 Cartan factor satisfies

the Little Grothendieck’s inequality.

COROLLARY 2.9. Let E = L(H, K) be a type 1 Cartan factor with dim (H) �
dim (K) . Then for every complex Hilbert space H and every weak*-continuous linear
operator T : E → H there exists a norm-one functional ϕ in E∗ satisfying

‖T(x)‖ � 8 ‖T‖ ‖x‖ϕ ,
for all x in E .

Proof. When H and K are finite dimensional then E is finite dimensional and
hence Remark 2.2 gives the desired conclusion. If H and K are infinite dimensional
then the statement follows from Proposition 2.3. Finally, if H is infinite dimensional
and K is finite dimensional the conclusion follows from Remark 2.5 and Proposition
2.8. �

We have already proved the Little Grothendieck’s inequality in the particular case
of a finite dimensional Cartan factor (see Remark 2.2) and in the case of a rectangular
Cartan factor (Corollary 2.9). We shall discuss now the remaining Cartan factors.

Let J be a JB*-triple. We recall that a tripotent u ∈ J is said to be unitary if
L(u, u) coincides with the identity operator on J . In this case J = J2(u) and hence J is
a JB*-algebra with product and involution given by x◦y = {x, u, y} and x∗ = {u, x, u} ,
respectively. When E is a JBW*-triple with a unitary element u then E is a JBW*-
algebra with respect to the product and involution given above. We can now rephrase
[16, Theorem 4] as follows.

PROPOSITION 2.10. Let M > 2 and let E be a JBW*-triple with a unitary element
u . Then for every complex Hilbert space and every weak*-continuous linear operator
T : E → H there exists a norm-one functional ϕ ∈ E∗ such that

‖T(x)‖ � M ‖T‖ ‖x‖ϕ ,
for all x ∈ E .

Proof. Let T be a weak*-continuous linear operator from E to a complex Hilbert
space. Since E contains a unitary element u , then E is a JBW*-algebra with product
and involution given by x ◦ y = {x, u, y} and x∗ = {u, x, u} , respectively. By [16,
Theorem 4], there exists a norm-one positive linear functional ϕ ∈ E∗ such that

‖T(x)‖ � M ‖T‖ (ϕ(x ◦ x∗))
1
2 ,
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for all x ∈ E . Since ϕ is norm-one and positive then ϕ(u) = 1 = ‖ϕ‖ , and hence for
each x ∈ E we have ‖x‖2

ϕ = ϕ {x, x, u} = ϕ(x ◦ x∗) , which completes the proof. �
Let S be a spin factor and let u be a norm-one element in S satisfying u = u .

It is easily seen that L(u, u) coincides with the identity operator on S and hence u
is a unitary element in S . It is also known that every Cartan factor of type 1 with
dim (H) =dim (K) , every Cartan factor of type 2 with dim (H) even , or infinite, every
Cartan factors of type 3 and every type 6 Cartan factor contains a unitary element (see
for instance [12, Proposition 2]). As a consequence, we can assure that when C is one
of the above Cartan factors and Ω is a hyperstonean compact Hausdorff space then
C(Ω, C) is a JBW*-triple containing a unitary element.

COROLLARY 2.11. Let E = C(Ω, C), where Ω is a hyperstonean Hausdorff
space and C is a Cartan factor of type 1 with with dim (H) =dim (K) , or a Cartan
factor of type 2 with dim (H) even , or infinite, or a Cartan factors of type 3, or a spin
factor, or a type 6 Cartan factor. Let M > 2 . Then for every complex Hilbert space and
every weak*-continuous linear operator T : E → H there exists a norm-one functional
ϕ in E∗ such that

‖T(x)‖ � M ‖T‖ ‖x‖ϕ ,
for all x in E . �

The next theorem shows that the family of all JBW*-triples satisfying the Little
Grothendieck’s inequality is stable by �∞ -sums.

THEOREM 2.12. Let M > 0 . Let {Eα}α∈Λ be a family of JBW*-triples such that
for every α ∈ Λ and every weak*-continuous linear operator T from Eα to a complex
Hilbert space H there exists a norm-one functional ϕα ∈ (Eα)∗ satisfying that

‖T(x)‖ � M ‖T‖ ‖x‖ϕα , (16)

for all x ∈ Eα . Let E =
⊕�∞

α∈Λ Eα . Then for every complex Hilbert space H
and every weak*-continuous linear operator T : E → H there exists a norm-one
functional ϕ ∈ E∗ such that

‖T(x)‖ � 4
√

2 M ‖T‖ ‖x‖ϕ ,
for all x ∈ E .

Proof. By [16, Remark 3] (see also Remark 2.5 above) it suffices to prove that
for every pair (ϕ1,ϕ2) of norm-one functionals in E∗ × E∗ there exists a norm-one
functional ϕ ∈ E∗ satisfying

‖x‖ϕ1,ϕ2 � 2M‖x‖ϕ ,

for all x ∈ E . Let ϕ1,ϕ2 norm-one functionals in E∗ =
⊕�1

α∈Λ(Eα)∗. Then there are
countably subsets Λ1,Λ2 ⊆ Λ such that

ϕ1 =
∑
α∈Λ1

μαφ1
α , and ϕ2 =

∑
α∈Λ2

ναφ2
α ,
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where (μα) ∈ �1(Λ1), (να) ∈ �1(Λ2), μα , να � 0 , φ j
α are norm-one elements in

(Eα)∗ ∀j : 1, 2, ∀α, ‖ϕ1‖ =
∑

α∈Λ1
μα and ‖ϕ2‖ =

∑
α∈Λ2

να .
Let I = Λ1 ∩ Λ2 , I1 = (Λ\Λ2) ∩ Λ1 and I2 = (Λ\Λ1) ∩ Λ2 . By hypothesis

and [16, Remark 3] it follows that for each α ∈ I there exists a norm-one functional
ψα ∈ (Eα)∗ such that

‖x‖ϕ1,ϕ2 �
√

2M ‖x‖ψα ,

for all x ∈ Eα . Let ϕ be the norm-one functional in E∗ defined by

ϕ :=
∑
α∈I

μα + να
2

ψα +
∑
α∈I1

μα
2

φ1
α +

∑
α∈I2

να
2

φ2
α .

It is not hard to see that in this case

‖x‖ϕ1,ϕ2 � 2M ‖x‖ϕ ,
for all x ∈ E, which proves the theorem. �

Let e be a tripotent in a JB*-triple J . When J2(e) = Ce we say that e is a minimal
tripotent. A JBW*-triple E is called atomic if E coincides with the weak*-cosed ideal
generated by all its minimal tripotents. From [7, Proposition 2] it follows that every
atomic JBW*-triple coincides with an �∞ -sum of Cartan factors.

THEOREM 2.13. Let E be an atomic JBW*-triple. Then for every weak*-
continuous linear operator T from E to a complex Hilbert space there exists a norm-one
functional ϕ in E∗ satisfying

‖T(x)‖ � 32
√

2 ‖T‖ ‖x‖ϕ ,
for all x in E .

Proof. Let E be an atomic JBW*-triple. We have already commented that E
admits a decomposition in the form

⊕�∞ Cα , where each Cα is a Cartan factor. If we
prove that each factor Cα satisfies the hypothesis of Theorem 2.12 for M = 8 , then
the assertion will follow from the just quoted theorem.

Let T : Cα → H be a weak*-continuous linear operator from Cα to a complex
Hilbert space. If Cα is a type 1 Cartan factor with dim (H) > dim (K) , then Corollary
2.9 assures the existence of a norm-one functional ϕα ∈ (Cα)∗ satisfying inequality
(16) for M = 8 . If Cα is a Cartan factor of type 1 with with dim (H) =dim (K) , or a
Cartan factor of type 2 with dim (H) even, or infinite, or a Cartan factors of type 3, or
a type 6 Cartan factor, then Corollary 2.11 gives the existence of a norm-one functional
ϕα ∈ (Cα)∗ satisfying (16) for M > 2 . Finally, if Cα is finite dimensional, then it
follows from Remark 2.2 that there exists a norm-one functional ϕα ∈ (Cα)∗ satisfying
(16) for M =

√
2 . �

Let E be a JB*-triple. We have already mentioned that E∗∗ is a JBW*-triple. From
[6, Theorems 1 and 2] it follows that E∗∗ and E∗ admit the following decompositions:

E∗∗ = A ⊕∞ N
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and
E∗ = A∗ ⊕�1 N∗,

where A is the weak*-closed ideal of E∗∗ generated by all minimal tripotents of E∗∗,
N contains no minimal tripotents, A∗ is the predual of A and coincides with the norm
closure of the linear span of the extreme points of the closed unit ball of E∗, and the
closed unit ball of N∗ contains no extreme points. A is called the atomic part of E∗∗ .
Moreover, by [7, Proposition 2] we conclude that A is an �∞ -sum of Cartan factors.

COROLLARY 2.14. Let E be a JB*-triple and let A denote the atomic part of
E∗∗ . Then for every pair (ϕ1,ϕ2) of norm-one functionals in A∗ ⊆ E∗, there exists a
norm-one functional ϕ ∈ A∗ ⊆ E∗ satisfying

‖x‖ϕ1,ϕ2 � 32
√

2 ‖x‖ϕ ,
for all x ∈ E .

Proof. Let (ϕ1,ϕ2) be a couple of norm-one functionals in A∗ ⊆ E∗. By Theorem
2.13 there exists a norm-one functional ϕ ∈ A∗ satisfying

‖z‖ϕ1,ϕ2 � 32
√

2 ‖z‖ϕ , (17)

for all z ∈ A .
Let i denote the canonical embedding of E in its bidual and let π be the natural

projection of E∗∗ onto A . From the proof of [7, Proposition 1] we deduce that π ◦ i is
a triple embedding of E into A . Let φ be a norm-one functional in A∗ . φ can be also
regarded as a norm-one element in E∗ . Since φ attains its norm at a tripotent in A , it
is not hard to see that for each x ∈ E we have

‖π ◦ i(x)‖φ = ‖x‖φ .
The conclusion of the corollary follows now from the above expression and inequality
(17) . �

From the last part of Remark 2.5 and Theorem 2.13 we derive the following
Grothendieck’s Theorem for atomic JBW*-triples.

THEOREM 2.15. Let V and W be atomic JBW*-triples. Then for every separately
weak*-continuousbilinear form U on V×W , there are norm-one functionals ϕ ∈ V∗ ,
and ψ in W∗ satisfying

|U(x, y)| � 211 (1 + 2
√

3) ‖U‖ ‖x‖ϕ‖y‖ψ
for all (x, y) in V × W . �
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