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IMPROVEMENTS OF SOME INEQUALITIES
FOR MOMENTS OF GUESSING FUNCTION

J. PECARIC AND B. TEPES

(communicated by I. Pinelis)

Abstract. Further improvements of some inequalities for moments of guessing function are given.

1. Introduction

J. L. Massey in [1] considered the problem of guessing the value of a realization of
a discrete random variable X by asking questions of the form: "Is X equal to x ?" until
the answer is "Yes".

Let G(X) denote the number of guesses required by a particular guessing strategy
for X = x.

Massey observed that E(G(x)), the average number of guesses, is minimized by a
guessing strategy that possible values of X sort in decreasing order of probability.

We begin by giving a formal and generalized statement of the above problem,
following E. Arikan [2].

Let (X, Y) be a pair of random variables with X taking values in a finite set ¥
of size n, Y taking values in countable set y . Call a function G(X) of the random
variable X a guessing function for X if G : x — {l,....,n} is one-to-one. Call a
function G(X|Y) a guessing function for X given Y if, for any fixed value ¥ =y,
G(X|y) is a guessing function for X. G(X|Y) will be thought of as the number of
guesses required to determine X where the value of Y is given. E. Arikan, in [2],
proved some inequalities on the moments of G(X) and G(X|Y).

To simplify the notation, we assume that the x; (x; € y) are numbered such that
X is always kth guess. Then p-moment of guessing function G(x) is defined by

E(GX))=> Kp
k=1

where py =Pr(X =x), k=1,...,n.

Several inequalities for this moment was obtained by S. S. Dragomir and J. van
der Hoek [3] and [4]. S. S. Dragomir, J. Pecari¢ and J. van der Hoek [5] proved the
following improvements of results from [3] and [4]:
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THEOREM 1.1. Let X be a random variable having the probability distribution
(p1, ..., Pn) . Then we have the inequality:

‘E (G (X)) — %Sp (n)
G s o)
< % {’fﬂ (0 — 1) (Py — Pu)
<MD by by,

44444

THEOREM 1.2. With assumptions of Theorem 1.1, we have inequality
1 1 _
‘(pT )E(G(X)”) - (p; )E(G(X)” 1) + o
1
+ (-1 (p; )E(G(X)) (=1

o pn? (Py — Py) o (p+ 1)t
So2yp+1 4

(PM_Pm)7

where p € N,p > 1.

In this paper we shall give further improvements of these results.

2. Around the Griiss inequality

Note that the above results are obtained as consequence of some inequalities
which are in conection to the well known Griiss inequality. For example, in proof of
Theorem 1.1 the well known inequality of Biernacki, Pidek and Ryll-Nardzewski (see,
for instance, [6, Chapter X]) is used. Generalization of this inequality is given by D.
Andrica and C. Badea [7] (for a new proof see paper of S. Izumino and J. Pe€aric [8]):

THEOREM 2.1. Let a = (ay, ...,a,) and b = (by, ..., b,) be n-tuples satisfying:
O0<m <My, 0<mp <My, m <a <My, my<b;<M, (i=1,...,n).
Then for any n— weight p = (p1,...,ps) and Y., p; = 1 we have
n n n
; piaib; ; pia; ; pibi| < (My —my) (My — ma) max P (J) (1 = P (J)),

n

where P (J) = ., pi and I, = {1,...,n}.

In 2002, X. Cheng and J. Sun [9] established the following improvement of Griiss
inequality:
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THEOREM 2.2. Let h,g : [a,b] — R be two integrable functions such that ¢ <
g (x) < @ for some constants @, ® for all x € [a,b], than

b b

blaa/bh(x)g(x)dx— (bla)z/h(x)dx/g(x)dx

b

d—¢ 1
< — . -

a

In 2002. P. Cerone and S. S. Dragomir [10] gave the weighted version of Theorem
2.2 as well as the following discrete analogue:

THEOREM 2.3. Let (ai,...,a,), (b1, ...,b,) be n-tuples of real numbers with. If
b < b;<B,ic{l,..,n}, then for any n—weight p = (p1,...,p,) and Y . pi =1
one has the inequality

S

n n n (B
Zpiaibi - Zl’iai . Zpibi <
i1 i-1 i1

n
i |di — E pidi|.
i=1

In fact, Theorem 2.3 is an improvement of Theorem 2.1, that is the following
results is valid:

THEOREM 2.4. Let a = (ay, ...,a,) and b = (by, ..., b,) be n-tuples satisfying:
0<m <M, 0<my <My, m <a <My, my<b;<M, (i=1,...,n)

Then for any n—weight p = (p1,...,pa) and Y ., p; = 1 we have

n
Zpiaib szaz sz i \ M2 m2 Zl’z a; — szaz
i=1

=1  j=1
< (My —my) (My — mp) max P (J) (1 = P (J))

Proof. We shall use the following result [8, Corollary 2.4]:

> pjlai — af < (M, my)max P (J) (1 — P (J))

(ij)eA 8
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where A = {(i,j) € I, x I,; i <j}. Then we have

2

n n n
_ My —my) S S pa S b
=1 |j=1 =1

My —my) ¢
o S
i=1

n
ai — E pidi
i=1

(M2 _ mz) n n (M2 _ mz) n n
=5 ZP:‘ ij (ai —a))| < — ZP:‘ZPJ’ lai — aj
=1 ]j=1 =l j=1
< (My—ma) Y pipjlai —aj| < (My —my) (M — my) max P (J) (1 — P (J))
(ij)eA "

O

We shall use un-weighted version of Theorem 2.3, that is the following result:
,by) be n-tuples of real numbers with. If

THEOREM 2.3°. Let (ay,...,a,), (b1, ...
b < b <B,i€{l,...,n} then one has the inequality

1 n 1 n 1 n
Z;aibi* Z;ai';;bi <

s (i8]

n

(B—b)-

u,># E ai
i-1

Proof. If weput p; =1, (i =

l ¢ l ¢ l

D abi— > ja > b
i=1 i=1 i=1

On the other-hand side we have

n lﬂ 1” 1”
Z(m;gm)— Z (aiZ. ai>+ Z (aiz._lal)_()’

i=1

1,...,n)in Theorem 2.3 we have the inequality:

(B—b) 1 <
STEa

and
Zai%Zai =2 Z ((1,‘%. (1,‘).

Hence we obtain our result. [

We shall also use the following:
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COROLLARY 2.1. Let g,h : [a,b] — R be two integrable functions such that
¢ < g (x) < @ forsome constants @, ® forall x € |a,b] and h(x) = (x —a)', p >0,
than

b b
1
b_aa/ (x)g(x)dx(ba)za/h(x)dxa/g(x)dx
<(D—¢)- P (b —a)
(@) (p+1)7(p+1)7 )

Proof. Using Theorem 2.2 we can state:

biau/bh(X)g(x)dxﬁjh(x)dxu/bg(x)dx

b

b
P-¢ 1 1
< . — .
<= bfa/h(x) bia/h(y)dydx

a

(]
Now, Corollary 2.1 is a simple consequence of the following result:

LEMMA 2.1. Let h: [a,b] — R, h(x) = (x — a) where p > 0 than

b b b b
1 1 o , 1 )
b—a/h(x) b—a/h(y)dydx_b—a (x —a) b—a/(y a)’ dy| dx
2
. Y

P+ 1> (p+1)7

Proof. Obviously, we have

b b
1 1 ! .1 )
[ 0= [rmaar= = [la-ar - 2 [ o= ara|a

b
1 b—a)
= /(x—a)p—( 2) dx.
b—a p+1
We have
b—a) b—a) b—a)
(x—a)p—( %) =( —a)p—( %) for (xfa)pZ( @)
p+1 p+1 p+1
b—a
or xo=a+—<x<b
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p (b=a)| (b—a) v R b —a)’
&) p+1 p+1 (x—a) for( )<p+1
b—a
or a<x<a+——-— =xp,
p+1)r
and hence we obtained
LT 1o 7 b
b—a/h(x)_b—a/h(y)dydx:b,a/(x a)p_(p:rdl) i
X0 b
1 (b*a)p p B pi(bfa)p .
b_“a/<p+1 (x“))d”x/((x aof == >d
L (=l (o= o
Cb—a\prl p+1 p+1
(xo—a)pJrl (b—a)

- p+l ptl (b_")>
:m((bia)p(x()*a*bJra*bero)*Z(xofa)pﬂ)
- g (6@ o h) —ca—ar™)

- ¥ —a).
_(17+1)2(p+1)%(b )

3. Main results

Now we shall give improvements of Theorem 1.1 and 1.2.

THEOREM 3.1. Let X be a random variable having the probability distribution
(p1,...,pn) and p > 0. Then we have the inequality:

E(G (X))~ 5, n)

<@u-rae (55,00 150).

where
k

S, k) =>"1" = [(S,,T(n))p]

i=1

et =1
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Proof. Using Theorem 2.3’, we can state

1 n 1 n 1 n
Z;aibi— Z;a,w ;Zlb,

<(B-b)-
n

|
]
/N
2
|
S|
M
2
~__—

Now chose a; = #and b; = p; (i = 1,...,n) we obtain

PN W I o (S |
i=1 i=1 i=1 o Xn:”’ i
i=1

We observe that

ln
iP>—§ P

n'l

-

1 < ’
(I
i n;z

Using above results we have:

n

n n
1
Elpi——glp-gp,-
n < -
i=1 i=1

i=1

< (Py — Py) > (i” — % ip> .
i=1

Together with:

1
n P
1N w <ign
i=1

We have now:

and the inequality in Theorem 3.1. is obtained. [J
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REMARK 3.1. If we choose p = 1, we get:
n+1 (Py—Py) [n+1 n+1
_ < —_
EGw) - < PP [ (- |2

If we choose p = 2, we get:

. <(n+1)(2n+1)_ (l(n(n+l)6(2n+l)>%] +1>
.<2 (n(n+1)(2n+1))% +1>>

6
If we choose p = 3, we get:
CPu— P (P12
= 4 4

E (G (X)3) - ("I D’

1 2

n(n+1)2_ (”2 (n:— 1)2>3 (”2 (”: 1)_2> +1

wl—

COROLLARY 3.1. If we assume that for a given € > 0 and natural number n, we

have
1

PMngg/{C(%.SP(n)E-Sp(d)}v

then
< e

1
E(G0) - 15,
THEOREM 3.2. With the assumptions of Theorem 3.1, we have the inequality:

(e 03 etr )

+ (=1t (p; I)E(G(X)) + (=1 =

p np+1
T .
P+ Dp+1)7

<(PM_Pm)
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Proof. From Corollary 2.1 we have:

b b b
1 1
x—a) xdx—i/x—apdx/ x) dx
i | ars@an ot [earas oo
p p
<@ —L  _poay.
(p+17 (p+1)7
If we chose a =0, b =n, g(x) = piy1, x € [i,i+1),i=0,..,n—1 and ® =

Py, @ = P,, we have:

ey (1) en - 03 o)

+1 2 1 !
1y (PTEGX) + (—1)?) - =
et (T EGE) + (1r?) - 2
< (Py — Pn) - %n‘”
P+ (p+1)7
wherefrom we get our result. [
REMARK 3.2. If we choose p = 1, we get:
1 1
’E(G(X))—";r ‘ég-nz (Py — Pn)
If we choose p = 2, we get:
21 2v3
‘E(G(X)z)—E(G(X))—n : ‘\%# (Py — Pn)

COROLLARY 3.2. If we assume that for a given € > 0 and natural number n,
we have

Py —Pu<e(p+ 12+ )7 /(pnth),
then

TIH) ((ler 1) E(G(XY) - (p; 1)E(G(x)’”) ..

REMARK 3.3. The above results are improvements of related results from [5].
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