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A FRACTAL VERSION OF SCHULTZ’S THEOREM

M. A. NAVASCUÉS AND M. V. SEBASTIÁN

Abstract. The approximation of experimental data can be envisaged in the light of fractal in-
terpolation functions defined by iterated function systems. In the particular case of polynomial
fractal interpolation functions, the method can be considered as a generalization of the splines of
the same kind. That extension is verified under preservation of the smoothness of the function.
A bound of the interpolation error by odd degree polynomial fractal interpolation functions is
obtained here. The upper limit is also given for high-order derivatives, up to the (2m − 2) th
derivative if the polynomials are of degree 2m−1 . The result can be considered a fractal version
of Schultz’s theorem for odd degree polynomial splines.
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