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Abstract. The approximation of experimental data can be envisaged in the light of fractal in-
terpolation functions defined by iterated function systems. In the particular case of polynomial
fractal interpolation functions, the method can be considered as a generalization of the splines of
the same kind. That extension is verified under preservation of the smoothness of the function.
A bound of the interpolation error by odd degree polynomial fractal interpolation functions is
obtained here. The upper limit is also given for high-order derivatives, up to the (2m — 2)th
derivative if the polynomials are of degree 2m — 1. The result can be considered a fractal version
of Schultz’s theorem for odd degree polynomial splines.

1. Introduction

The approximation and quantification of experimental data can be envisaged in
the light of fractal interpolation functions defined by iterated function systems ([2]). In
the article of ML.F. Barnsley ([3]), the moments of an experimental signal are computed
by explicit formulae involving the coefficients of the iterated function systems defining
the function. A moment of any order can be used as an index of the signal, to perform
comparisons and quantified measures.

Another important fact is that the graphs of these functions can possess a non-
integer fractal dimension, and this parameter can be used as a measure of the complexity
of asignal ([8]). We have also proved that the method of fractal interpolation is so general
that contains any other approximation technique as a particular case ([9], [10]).

As explained in the paper of M.F. Barnsley & A.N. Harrington ([4]), the polyno-
mial fractal interpolation functions can be integrated indefinitely and smooth functions
generalizing splines can be obtained. The main difference with the classic procedures
resides in the definition by a functional relation assuming a self-similarity on small
scales. In this way, the interpolants are defined as fixed points of maps between spaces
of functions. The properties of these correspondences allow to deduce some inequalities
that express the sensitivity of the functions and their derivatives to those changes in the
parameters defining them ([9], [10]).

In the particular case of polynomial fractal interpolation functions, the method
can be considered as generalization of splines of the same kind. Some bounds of
the interpolation error by odd degree polynomial fractal functions are obtained here.
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If the polynomials have degree 2m — 1, the bounds range from the function up to
the (2m — 2)th derivative. The degree of regularity required for the function being
approximated is lightly superior to the chosen interpolant.

2. Differentiable Fractal Interpolation Functions

Let to < t; < ... < ty be real numbers, and I = [fo,7y] C R the closed interval
that contains them. Let a set of data points {(#,,x,) € I x R: n = 0,1,2,....N}
be given. Set I, = [t,—1,t,) and let L, : I — I,, n € {1,2,...,N} be contractive
homeomorphisms such that:

Ln(tO) =1Ih—1, Ln(tN) =1y (1)
|Ly(c1) — La(c2)| < llert —e2| Ver,e0 €1 (2)

forsome 0 </ < 1.
Let —1<o,<1l;n=12,..,N, F=1x[c,d] forsome —o0 < ¢ < d < 400
and N continuous mappings, F, : F — R be given satisfying:

Fn(t07-x0) = Xn—1; Fn(tN>xN) =X, h=12,..,N (3)
|Fu(t,x) = Fu(t,y)] < lawllx—y|, t€1, x,y€R (4)
Now define functions wy,(¢,x) = (L,(¢), Fu(t,x)), Vn=1,2,...,N.

THEOREM. (Barnsley [2]) The iterated function system (IFS)[6] {F, w,
n = 1,2,..,N} defined above admits a unique attractor G. G is the graph of a
continuous function f : I — R which obeys f (t,) = x, forn=0,1,2,...,N.

The previous function is called a fractal interpolation function (FIF) corres-
ponding to {(L,(), Fu(2,x))}Y_,. f : I — R is the unique function satisfying the
functional equation

f(Lﬂ(t)) :Fn(t7f(t))7 n= 172a"'aNa tel

or,

fO)=F L' (0),f oL (t), n=1,2,..,N, t €1, = [t,_1,t)] (5)

Let .# be the set of continuous functions f : [f, ty] — [c,d] suchthat f (7)) = xo;
f(ty) = xn . Define a metric on .% by

I = glloo = max {[f (1) —g(1)] = 1 € [to,tn]} Vf, g€ F

Then (%, || - ||o) is a complete metric space.
Define a mapping T : # — . by:

(TF)(2) = Fo(L (£),f oL (£)) Vt€E [taor,tn], n=1,2,..,N

Using (1)-(4), itcanbe provedthat (7f)(¢) is continuous on the interval [t,_, #,]
for n =1,2,...,N and at each of the points 71, #,, ...,fty—1. T is a contraction mapping
on the metric space (F, | - ||c0)

ITf = Tglloo < [etfoollf — glloo (6)
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where || = max {|ay|; n =1,2,...,N}. Since || < 1, T possesses a unique
fixed pointon .% , thatis to say, there is f € .% suchthat (Tf)(¢) =f(z) YVt € [to, t].
This function is the FIF corresponding to w, .

The most widely studied fractal interpolation functions so far are defined by the
IFS

Ln(t) =ayt + bn (7)
Fn(t>x) = Oyx + Qn(t) (8)

where ¢,(¢) is an affine map [2,7]. o, is called a vertical scaling factor of the
transformation w, and a, = (¢, — t,—1)/(tn — to) . If the data are evenly sampled:

1
n = 3 9
=y ©)
We deal here with the case where ¢, is a polynomial of odd-degree, that can be
considered a generalization of polynomial spline functions.

The following theorem assures the existence of differentiable FIF.

THEOREM. (Barnsley and Harrington [4]) Let 190 < 11 < f < ... < ty and

L,(t), n = 1,2,...,N, the affine function L,(t) = a,t + b, satisfying (1)-(2). Let
In—th— _ o pn

an = Ly(1) = 525 and Fu(t,x) = 0ux + qu(t), n = 1,2,...,N verifying (3)-(4).

Suppose for some integer p > 0, |a,| < ) and g, € CP[ty,ty]; n=1,2,....N. Let

ax+ g (1)

Fﬂk(t"x) = aﬁ k = 1’27 "'7p (10)
(k) (k)
11 7
X0k = qkl (t0) XNk = 7qu (i) k=1,2,....p
a; — o ay — oN
If
Fo_1x(tv, xn k) = Fue(to, Xox) (11)

with n = 2,3,...,N and k = 1,2,....p, then {(L,(t),F,(t,x))}\_, determines a
{

n=1
FIF f € C’lto,ty] and f® is the FIF determined by {(L,(t), Fu(t,x))}\_,, for
k=1,2,...p.

In the present paper, g, are polynomials of degree 2m — 1. Following the previous
theorem, consider p = 2m — 2, f € C¥"=2  The vertical scaling factor must satisfy
log| < a2, n=1,2,..,N.

Ifo, =0 VYn=12.,N,f{t)=fot) =qg.oL;'(t) Vtel, (5, fois
a piecewise odd degree polynomial and f € C*"~2, therefore is a polynomial spline
([1]). In this sense, we refer to this kind of functions as spline fractal interpolation
functions (SFIF).

We consider here the case of constant scale factors o, = o . If the condition (11) is
imposed, the coefficients of ¢, dependon a (see the reference [4] for the construction

of g, ). In this sense we denote ¢%(¢) = g,(a, ). The polynomial spline is:

fo=q oL ' Viel, (12)
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3. Error bounds for the interpolation by odd degree polynomial fractal functions

In the first place, the error committed in the substitution of the function x(z) by the
SFIF f(¢) with factor o will be bounded. A theorem concerning polynomial spline
functions due to M.H. Schultz [11] is used.

By %" (a, b) we mean the class of all functions f (x) defined on [a, b] which pos-
sess an absolutely continuous (m — 1) th derivative on [a, b] and whose m th derivative
isin L*(a,b).

From hereon m > 1, me N, N > 1; h =1, —t,_;. The following constants
will be used in the next theorem ([11]).

Ifm—-—1<z<2m—-2and 0 <j<m:

1 if m—1<z<2m—-2, j=m
(Lym=i if m—1=z 0<j<m—1
frnes = Gr2om! i 1< z2<2m—2, 0<j<2m—2—z
T ;
G2 i m—1<z<2m—2,2m-2-2<j<m—1

Ifm—-—1<z<2m—-2and 0 <j < m:

Km,Zm,z.j = Km,m,z.j Km,m,z,O

fm<p<2m,4m—-2p—1<z<2m—2and 0 <j < m:

s (2mep) Pl O\ AT
Kinpzj = Kppom—1j+ Kmomzj 22777 <W) <T)

with ||A| = og’zng%cq(ti“ —-t), A= o l]’\’]lil(l‘j+1 —1).
Ifm<p<2m,4m—2p—1<z<

i<
2m—2and m <j<p:

. 2 j—m
= ((2p +m)! Al
Km,p,z,/' = KP:P%/' + (Km,p,z’m + Kp,p.,p,m) 27 ( (2[7 7}-)! A

fm—-1<z<2m—-2and 0<j<m—1:

Kmzjr1 f m—1l=z 0<j<m—1

Knl,nl,z,i+l lfm_1<Z<2m_27 O<]<2m_2_z

o0
mmz,j

G—2m—+3+2)"2 Kypejr1 if m—1<z<2m—2,

2m—2—z<j<m—1
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fm—-1<z<2m—-2and 0<j<m—1:
Kin,Zm,z,jJrl lf m—1= 2, 0 <] < m—1

Km,2m,z,j+l lfm_l<Z<2m_27 0<]<2m_2_z

oo —
m2mzj+1 —

G—2m+3+2)"Y Kpomzjr1 if m—1<z<2m—2

if 2m—2—z<j<m—1
Ifm<p<2m, dm—2p—-1<z<2m—-2, 0<j<m—1:

00 _ oo
mp,zj _Kp,plm* Lj

- | 2 A 2m—p
;?102mz‘222’ pi U (13)
e (2p — 2m)! A

fm<p<2m, 4m—-2p—-1<z<2m -2, m<Lj<p—1:

00 I 7ge ]
Km,p,aj _Kp,p,p,/'

2 j—m+1
00 00 j—m+1 (2[7 - m)' HA”
+ (Km,p.,z,m—l + p,p,pJ)z ((Zp —j— 1)! A

We present here a simplified version of Schultz’s theorem.

THEOREM. ([11]). Let x(t) be in > (a,b) andlet A:a =1y <t < ... <
ty = b be a mesh of the interval. Let S(x,t) be a spline of degree (2m — 1) to x(t) on
A satisfying S (x, 1) = x0(1y), S®(x,1y) = x0(ty) for 0 < k < m — 1. Then we
have

IO@) =90 Dlloo < Kon-1am—a K"Vl AP35 (14)

for 0 < k< 2m—2, with

Hx(zm—1>H2 - (/ab(x(z’”_”(t))zdt)

COLLAGE THEOREM. ([5], [12]). Let (Y,dy) be a complete metric space and let
T be a contraction map with contractivity factor ¢ € [0,1). Then forany y € Y,

1/2

1
(I—=¢)

dy(y,5) < dy(y, Ty) (15)

where y is the fixed point of T .
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THEOREM 1. (Interpolation error bound.) Let x(¢) be a function verifying x(t) €
%2’"71(&), ty) and A apartition of the interval such that h = t, —t,_y is constant. Let
gn(0t,t) bedifferentiable and such that 3Dy > 0 with |%%(§, N <Dy V(& 1) eJxI,
Vn=1,2,..,N. Let |a| < —n=. Then

Non—2 -
N2mfZ 3 (LO + DO) i
e = falloo < S [Coh™" ™2 + =™

where LO = ||xHOO’ Tr= In —1o and CO = Kn?l?2i7171,2ﬂ]72,0 ‘|x(2m71>‘|2‘

Proof. In order to apply the Collage Theorem, consider Y=.% where .% is the
set of continuous functions f : [fo,ty] — [c,d] such that f (to) = xo; f(tn) = xn,
dy = ||.||so and T, defined on .# such that

(Tof )(t) = Fa(Ly ' (2).f o L' (1)) = of oL, (1) + g o L, (1)

Vi€ lthotytn), n=12,...,N
As previously explained, T, is a contraction with factor |a|. Let f, be the FIF
associated. According to the Collage Theorem, if x(7) is the original function providing
the data points then:

X = falloo < [1x = Tox]| oo (16)

_
(1= laf)
Forrel,:

(1) = Tox(t)| = [x(1) — ox o L (1) — g o L, ' (1)]

Let fo be the spline of degree 2m — 1, fo(t) = q2o L 1(¢) for t € I, = [ty_1,2,] (12).
The former equality continues as:

(1) = folt) — oo L' (1) — gy o L (1) + g 0 Ly ' (1)] <

[l = folloo + letlllxlloo + |y © Ly ' (1) — g5 o L' (1)]
(17)

The last term can be bounded using the mean-value theorem and the given hypothesis:

40 L) — a0 1 (0] < o (g o L YO <oty (18)
Furthermore, by the theorem of Schultz with k = 0 and & = ||A||:
lx = folloo < Coh®"~2 (19)
From (16), (17), (18) and (19):
I falloe < [Coh™ 3 + |et|(Lo + Do)]

= e
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By the hypotheses of the theorem of differentiability of fractal interpolation functions
. _ 1 h2m72 1 N2m72
[4} ‘O{| < aﬁm z = Nn— — T and, therefore, T—[a] < Nm—_7 >

inequality is transformed in:

and the former

N2n172

(Lo 4+ Do) o2
h m ]
N2m—2 —1 [

2m—32
C()h " + T2m—2

[x = falloo < (18)
According to the theorem of Barnsley & Harrington, the derivatives f ¥ of f are
FIF corresponding to the IFS {(L,(¢), Fo(t,x))}\_, with

Fu(t,x) = Nox + quff>(t)

Consequently, the results above can be generalized to the first derivatives of f . In order
to preserve the order of convergence, we impose an additional condition to the vertical
scale factor.

THEOREM 2. Derivatives interpolation error bounds. Let x(t) be a function veri-
fving x(t) € A" (ty,ty) and A a partition of the interval such that h = t, —t,_1 is
k k
constant. Let 605(" (a,t) be differentiable and 3 Dy > 0 such that \%;(;?,f (&,1)| < Dy

V(Et)eTxTandV¥n=1,2,...N. Let s >0 and o be such that |o| <

N2m—2+s *
Then:

2m—2+s—k
k (k) N om—i—k | Lkt Di) apmnisi
HX( ) 7f0( ||00 S N2m—2+s—k _ | [Ckh e T2m—2+s—kh " ' ]

for k = 0,1,....2m — 2, being Ly = ||x¥ oo, h = t, —t,_1, T = ty — 1o and

Ce = K1 om—2k 2=

Proof. The proof is analogous to the theorem 1.

4. Conclusions

The bounds of error in the approximation by polinomial splines are generalized to
differentiable polynomial Barnsley-Harrington functions. The error obtained is compa-
rable to other precision procedures, such as the interpolation by piecewise polynomials.
The property of good fit of the derivatives is also verified here. The possible loss of
precision is counteracted by the generality of the method, as the fractal interpolants
contain odd degree polynomial spline functions as a particular case. That extension is
verified under preservation of the smoothness of the function.
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