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Abstract. The approximation of experimental data can be envisaged in the light of fractal in-
terpolation functions defined by iterated function systems. In the particular case of polynomial
fractal interpolation functions, the method can be considered as a generalization of the splines of
the same kind. That extension is verified under preservation of the smoothness of the function.
A bound of the interpolation error by odd degree polynomial fractal interpolation functions is
obtained here. The upper limit is also given for high-order derivatives, up to the (2m − 2) th
derivative if the polynomials are of degree 2m−1 . The result can be considered a fractal version
of Schultz’s theorem for odd degree polynomial splines.

1. Introduction

The approximation and quantification of experimental data can be envisaged in
the light of fractal interpolation functions defined by iterated function systems ([2]). In
the article of M.F. Barnsley ([3]), the moments of an experimental signal are computed
by explicit formulae involving the coefficients of the iterated function systems defining
the function. A moment of any order can be used as an index of the signal, to perform
comparisons and quantified measures.

Another important fact is that the graphs of these functions can possess a non-
integer fractal dimension, and this parameter can be used as a measure of the complexity
of a signal ([8]). We have also proved that themethod of fractal interpolation is so general
that contains any other approximation technique as a particular case ([9], [10]).

As explained in the paper of M.F. Barnsley & A.N. Harrington ([4]), the polyno-
mial fractal interpolation functions can be integrated indefinitely and smooth functions
generalizing splines can be obtained. The main difference with the classic procedures
resides in the definition by a functional relation assuming a self-similarity on small
scales. In this way, the interpolants are defined as fixed points of maps between spaces
of functions. The properties of these correspondences allow to deduce some inequalities
that express the sensitivity of the functions and their derivatives to those changes in the
parameters defining them ([9], [10]).

In the particular case of polynomial fractal interpolation functions, the method
can be considered as generalization of splines of the same kind. Some bounds of
the interpolation error by odd degree polynomial fractal functions are obtained here.
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If the polynomials have degree 2m − 1 , the bounds range from the function up to
the (2m − 2) th derivative. The degree of regularity required for the function being
approximated is lightly superior to the chosen interpolant.

2. Differentiable Fractal Interpolation Functions

Let t0 < t1 < ... < tN be real numbers, and I = [t0, tN ] ⊂ R the closed interval
that contains them. Let a set of data points {(tn, xn) ∈ I × R : n = 0, 1, 2, ..., N}
be given. Set In = [tn−1, tn] and let Ln : I → In, n ∈ {1, 2, ..., N} be contractive
homeomorphisms such that:

Ln(t0) = tn−1, Ln(tN) = tn (1)

|Ln(c1) − Ln(c2)| � l |c1 − c2| ∀ c1, c2 ∈ I (2)

for some 0 � l < 1 .
Let −1 < αn < 1 ; n = 1, 2, ..., N , F = I × [c, d] for some −∞ < c < d < +∞

and N continuous mappings, Fn : F → R be given satisfying:

Fn(t0, x0) = xn−1, Fn(tN , xN) = xn, n = 1, 2, ..., N (3)

|Fn(t, x) − Fn(t, y)| � |αn||x − y|, t ∈ I, x, y ∈ R (4)

Now define functions wn(t, x) = (Ln(t), Fn(t, x)), ∀ n = 1, 2, ..., N .

THEOREM. (Barnsley [2]) The iterated function system (IFS)[6] {F, wn :
n = 1, 2, ..., N} defined above admits a unique attractor G . G is the graph of a
continuous function f : I → R which obeys f (tn) = xn for n = 0, 1, 2, ..., N .

The previous function is called a fractal interpolation function (FIF) corres-
ponding to {(Ln(t), Fn(t, x))}N

n=1 . f : I → R is the unique function satisfying the
functional equation

f (Ln(t)) = Fn(t, f (t)), n = 1, 2, ..., N, t ∈ I

or,
f (t) = Fn(L−1

n (t), f ◦ L−1
n (t)), n = 1, 2, ..., N, t ∈ In = [tn−1, tn] (5)

Let F be the set of continuous functions f : [t0, tN ] → [c, d] such that f (t0) = x0 ;
f (tN) = xN . Define a metric on F by

‖f − g‖∞ = max {|f (t) − g(t)| : t ∈ [t0, tN ]} ∀ f , g ∈ F

Then (F , ‖ · ‖∞) is a complete metric space.
Define a mapping T : F → F by:

(Tf )(t) = Fn(L−1
n (t), f ◦ L−1

n (t)) ∀ t ∈ [tn−1, tn], n = 1, 2, ..., N

Using (1)-(4), it can be proved that (Tf )(t) is continuouson the interval [tn−1, tn]
for n = 1, 2, ..., N and at each of the points t1, t2, ..., tN−1 . T is a contraction mapping
on the metric space (F , ‖ · ‖∞) ,

‖Tf − Tg‖∞ � |α|∞‖f − g‖∞ (6)
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where |α|∞ = max {|αn|; n = 1, 2, ..., N} . Since |α|∞ < 1 , T possesses a unique
fixed point on F , that is to say, there is f ∈ F such that (Tf )(t) = f (t) ∀ t ∈ [t0, tN ] .
This function is the FIF corresponding to wn .

The most widely studied fractal interpolation functions so far are defined by the
IFS

Ln(t) = ant + bn (7)

Fn(t, x) = αnx + qn(t) (8)

where qn(t) is an affine map [2,7]. αn is called a vertical scaling factor of the
transformation wn and an = (tn − tn−1)/(tN − t0) . If the data are evenly sampled:

an =
1
N

(9)

We deal here with the case where qn is a polynomial of odd-degree, that can be
considered a generalization of polynomial spline functions.

The following theorem assures the existence of differentiable FIF.

THEOREM. (Barnsley and Harrington [4]) Let t0 < t1 < t2 < ... < tN and
Ln(t) , n = 1, 2, ..., N , the affine function Ln(t) = ant + bn satisfying (1)-(2). Let
an = L′

n(t) = tn−tn−1

tN−t0
and Fn(t, x) = αnx + qn(t) , n = 1, 2, ..., N verifying (3)-(4).

Suppose for some integer p � 0 , |αn| < ap
n and qn ∈ Cp[t0, tN ] ; n = 1, 2, ..., N . Let

Fnk(t, x) =
αnx + q(k)

n (t)
ak

n
k = 1, 2, ..., p (10)

x0,k =
q(k)

1 (t0)
ak

1 − α1
xN,k =

q(k)
N (tN)

ak
N − αN

k = 1, 2, ..., p

If
Fn−1,k(tN , xN,k) = Fnk(t0, x0,k) (11)

with n = 2, 3, ..., N and k = 1, 2, ..., p , then {(Ln(t), Fn(t, x))}N
n=1 determines a

FIF f ∈ Cp[t0, tN ] and f (k) is the FIF determined by {(Ln(t), Fnk(t, x))}N
n=1 , for

k = 1, 2, ..., p .

In the present paper, qn are polynomials of degree 2m−1 . Following the previous
theorem, consider p = 2m − 2 , f ∈ C2m−2 . The vertical scaling factor must satisfy
|αn| < a2m−2

n , n = 1, 2, ..., N .
If αn = 0 ∀ n = 1, 2, ..., N , f (t) = f 0(t) = qn ◦ L−1

n (t) ∀ t ∈ In (5), f 0 is
a piecewise odd degree polynomial and f 0 ∈ C2m−2 , therefore is a polynomial spline
([1]). In this sense, we refer to this kind of functions as spline fractal interpolation
functions (SFIF).

We consider here the case of constant scale factors αn = α . If the condition (11) is
imposed, the coefficients of qn depend on α (see the reference [4] for the construction
of qn ). In this sense we denote qαn (t) = qn(α, t) . The polynomial spline is:

f 0 = q0
n ◦ L−1

n ∀t ∈ In (12)
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3. Error bounds for the interpolation by odd degree polynomial fractal functions

In the first place, the error committed in the substitution of the function x(t) by the
SFIF fα(t) with factor α will be bounded. A theorem concerning polynomial spline
functions due to M.H. Schultz [11] is used.

By H m(a, b) we mean the class of all functions f (x) defined on [a, b] which pos-
sess an absolutely continuous (m− 1) th derivative on [a, b] and whose m th derivative
is in L2(a, b) .

From here on m > 1 , m ∈ N , N � 1 ; h = tn − tn−1 . The following constants
will be used in the next theorem ([11]).

If m − 1 � z � 2m − 2 and 0 � j � m :

Km,m,z,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if m − 1 � z � 2m − 2, j = m

( 1
π )m−j if m − 1 = z, 0 � j � m − 1

(z+2−m)!
πm−j if m − 1 � z � 2m − 2, 0 � j � 2m − 2 − z

(z+2−m)!
j! πm−j if m − 1 � z � 2m − 2, 2m− 2 − z � j � m − 1

If m − 1 � z � 2m − 2 and 0 � j � m :

Km,2m,z,j = Km,m,z,j Km,m,z,0

If m < p < 2m , 4m − 2p − 1 � z � 2m − 2 and 0 � j � m :

Km,p,z,j = Kp,p,2m−1,j + Km,2m,z,j 2
1
2 (2m−p)

(
p!

(2p − 2m)!

)2 (‖Δ‖
Δ

)2m−p

with ‖Δ‖ = max
0�i�N−1

(ti+1 − ti) , Δ = min
0�i�N−1

(ti+1 − ti) .

If m < p � 2m , 4m − 2p − 1 � z � 2m − 2 and m < j � p :

Km,p,z,j = Kp,p,p,j + (Km,p,z,m + Kp,p,p,m) 2
j−m

2

(
(2p + m)!
(2p − j)!

)2 (‖Δ‖
Δ

)j−m

If m − 1 � z � 2m − 2 and 0 � j � m − 1 :

K∞
m,m,z,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Km,m,z,j+1 if m − 1 = z, 0 � j � m − 1

Km,m,z,j+1 if m − 1 < z � 2m − 2, 0 � j � 2m − 2 − z

(j − 2m + 3 + z)1/2 Km,m,z,j+1 if m − 1 < z � 2m − 2,

2m − 2 − z < j � m − 1
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If m − 1 � z � 2m − 2 and 0 � j � m − 1 :

K∞
m,2m,z,j+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Km,2m,z,j+1 if m − 1 = z, 0 < j � m − 1

Km,2m,z,j+1 if m − 1 < z � 2m − 2, 0 � j � 2m − 2 − z

(j − 2m + 3 + z)1/2 Km,2m,z,j+1 if m − 1 < z � 2m − 2

if 2m − 2 − z < j � m − 1

If m < p < 2m , 4m − 2p − 1 � z � 2m − 2 , 0 � j � m − 1 :

K∞
m,p,z,j =K∞

p,p,2m−1,j

+ K∞
m,2m,z,j 2

2m−p
2

(
p!

(2p − 2m)!

)2 (‖Δ‖
Δ

)2m−p

(13)

If m < p � 2m , 4m − 2p − 1 � z � 2m − 2 , m � j � p − 1 :

K∞
m,p,z,j =K∞

p,p,p,j

+ (K∞
m,p,z,m−1 + K∞

p,p,p,j)2
j−m+1

(
(2p − m)!

(2p − j − 1)!

)2(‖Δ‖
Δ

)j−m+1

We present here a simplified version of Schultz’s theorem.

THEOREM. ([11]). Let x(t) be in H 2m−1(a, b) and let Δ : a = t0 < t1 < ... <
tN = b be a mesh of the interval. Let S(x, t) be a spline of degree (2m− 1) to x(t) on
Δ satisfying S(k)(x, t0) = x(k)(t0) , S(k)(x, tN) = x(k)(tN) for 0 � k � m − 1 . Then we
have

‖x(k)(t) − S(k)(x, t)‖∞ � K∞
m,2m−1,2m−2,k ‖x(2m−1)‖2 ‖Δ‖2m− 3

2−k (14)

for 0 � k � 2m − 2 , with

‖x(2m−1)‖2 =
(∫ b

a
(x(2m−1)(t))2dt

)1/2

COLLAGE THEOREM. ([5], [12]). Let (Y, dY) be a complete metric space and let
T be a contraction map with contractivity factor c ∈ [0, 1) . Then for any y ∈ Y ,

dY(y, y) � 1
(1 − c)

dY(y, Ty) (15)

where y is the fixed point of T .
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THEOREM 1. (Interpolation error bound.) Let x(t) be a function verifying x(t) ∈
H 2m−1(t0, tN) and Δ a partition of the interval such that h = tn− tn−1 is constant. Let
qn(α, t) be differentiable and such that ∃D0 � 0 with | ∂qn

∂α (ξ , t)| � D0 ∀ (ξ , t) ∈ J×I ,
∀ n = 1, 2, ..., N . Let |α| < 1

N2m−2 . Then

‖x − fα‖∞ � N2m−2

N2m−2 − 1

[
C0h

2m− 3
2 +

(L0 + D0)
T2m−2

h2m−2
]

where L0 = ‖x‖∞ , T = tN − t0 and C0 = K∞
m,2m−1,2m−2,0 ‖x(2m−1)‖2 .

Proof. In order to apply the Collage Theorem, consider Y=F where F is the
set of continuous functions f : [t0, tN ] → [c, d] such that f (t0) = x0 ; f (tN) = xN ,
dY = ‖.‖∞ and Tα defined on F such that

(Tα f )(t) = Fn(L−1
n (t), f ◦ L−1

n (t)) = αf ◦ L−1
n (t) + qαn ◦ L−1

n (t)

∀ t ∈ [tn−1, tn], n = 1, 2, ..., N

As previously explained, Tα is a contraction with factor |α| . Let fα be the FIF
associated. According to the Collage Theorem, if x(t) is the original function providing
the data points then:

‖x − fα‖∞ � 1
(1 − |α|)‖x − Tαx‖∞ (16)

For t ∈ In :
|x(t) − Tαx(t)| = |x(t) − αx ◦ L−1

n (t) − qαn ◦ L−1
n (t)|

Let f 0 be the spline of degree 2m− 1 , f 0(t) = q0
n ◦L−1

n (t) for t ∈ In = [tn−1, tn] (12).
The former equality continues as:

|x(t) − f 0(t) − αx ◦ L−1
n (t) − qαn ◦ L−1

n (t) + q0
n ◦ L−1

n (t)| �
‖x − f 0‖∞ + |α|‖x‖∞ + |qαn ◦ L−1

n (t) − q0
n ◦ L−1

n (t)|
(17)

The last term can be bounded using the mean-value theorem and the given hypothesis:

|qαn ◦ L−1
n (t) − q0

n ◦ L−1
n (t)| � |α|| ∂

∂α
(qαn ◦ L−1

n )(t)| � |α|D0 (18)

Furthermore, by the theorem of Schultz with k = 0 and h = ‖Δ‖ :

‖x − f 0‖∞ � C0h
2m− 3

2 (19)

From (16), (17), (18) and (19):

‖x − fα‖∞ � 1
1 − |α|

[
C0h

2m− 3
2 + |α|(L0 + D0)

]
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By the hypotheses of the theorem of differentiability of fractal interpolation functions

[4]: |α| < a2m−2
n = 1

N2m−2 = h2m−2

T2m−2 and, therefore, 1
1−|α| � N2m−2

N2m−2−1 , and the former
inequality is transformed in:

‖x − fα‖∞ � N2m−2

N2m−2 − 1

[
C0h

2m− 3
2 +

(L0 + D0)
T2m−2

h2m−2
]

(18)

According to the theorem of Barnsley & Harrington, the derivatives f (k) of f are
FIF corresponding to the IFS {(Ln(t), Fnk(t, x))}N

n=1 with

Fnk(t, x) = Nkαx + Nkq(k)
n (t)

Consequently, the results above can be generalized to the first derivatives of f . In order
to preserve the order of convergence, we impose an additional condition to the vertical
scale factor.

THEOREM 2. Derivatives interpolation error bounds. Let x(t) be a function veri-
fying x(t) ∈ H 2m−1(t0, tN) and Δ a partition of the interval such that h = tn − tn−1 is

constant. Let ∂kqn
∂tk

(α, t) be differentiable and ∃ Dk � 0 such that | ∂k+1qn
∂α∂tk

(ξ , t)| � Dk

∀ (ξ , t) ∈ J × I and ∀ n = 1, 2, ..., N . Let s > 0 and α be such that |α| � 1
N2m−2+s .

Then:

‖x(k) − f (k)
α ‖∞ � N2m−2+s−k

N2m−2+s−k − 1

[
Ckh

2m− 3
2−k +

(Lk + Dk)
T2m−2+s−k

h2m−2+s−k
]

for k = 0, 1, ..., 2m − 2 , being Lk = ‖x(k)‖∞ , h = tn − tn−1 , T = tN − t0 and
Ck = K∞

m,2m−1,2m−2,k ‖x(2m−1)‖2 .

Proof. The proof is analogous to the theorem 1.

4. Conclusions

The bounds of error in the approximation by polinomial splines are generalized to
differentiable polynomial Barnsley-Harrington functions. The error obtained is compa-
rable to other precision procedures, such as the interpolation by piecewise polynomials.
The property of good fit of the derivatives is also verified here. The possible loss of
precision is counteracted by the generality of the method, as the fractal interpolants
contain odd degree polynomial spline functions as a particular case. That extension is
verified under preservation of the smoothness of the function.
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