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MULTIPLE POSITIVE SOLUTIONS OF

FOURTH–ORDER BOUNDARY VALUE PROBLEMS

XIAOJIE XU, DAQING JIANG, DONAL O’REGAN AND R. P. AGARWAL

(communicated by V. Lakshmikantham)

Abstract. In this paper, we discuss the existence of multiple positive solutions for the fourth-order
boundary value problem (BVP)

u(4)(t) + βu′′(t) = f (t, u(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where f : [0, 1] × [0,∞) → [0,∞) is continuous and β < π2. Existence is established via the
theory of fixed point index in cones.

1. Introduction

The deformations of an elastic beam in equilibrium state, whose two ends are
simply supported, can be described by the fourth-order boundary value problem

u(4)(t) = g(t, u(t), u′′(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where g : [0, 1] × R × R → R is continuous [3, 4] . Owing to its importance in
physics, the existence of solutions to this problem has been studied by many authors,
see for example [1–15]. However in practice only its positive solution are significant.
In this paper, we discuss the existence of multiple positive solutions for the fourth-order
boundary value problem (BVP)

u(4)(t) + βu′′(t) = f (t, u(t)), 0 < t < 1, (1)

u(0) = u(1) = u′′(0) = u′′(1) = 0. (2)

We assume the following conditions throughout:
(P1) f : [0, 1] × [0,∞) → [0,∞) is continuous

and
(P2) β ∈ R with β < π2.
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If β = 0 , the existence of positive solutions of the BVP (1)–(2) has been studied
by Ma and Wang [14]. They show the existence of one positive solution when f (t, u)
is either superlinear or sublinear in u by employing a cone extension or compression
theorem. The purpose of this paper is to extend this result. Our argument is based on
fixed point index theory in cones [16].

For convenience, we introduce the following notations

f 0 = lim inf
v→0+

min
x∈[0,1]

f (x, v)
v

, f 0 = lim sup
v→0+

max
x∈[0,1]

f (x, v)
v

,

f∞ = lim inf
v→+∞ min

x∈[0,1]

f (x, v)
v

, f ∞ = lim sup
v→+∞

max
x∈[0,1]

f (x, v)
v

.

Let λ1 be the first eigenvalue of the problem u(4) + βu′′ = λu, u(0) = u(1) =
u′′(0) = u′′(1) = 0 . We know [6, 7] that

λ1

π4
+

β
π2

= 1,

and φ1(t) = sin πt is the first eigenfunction.
In this paper, some of the following hypotheses are satisfied:
(H1) f 0 > λ1, f∞ > λ1;
(H2) f 0 < λ1, f ∞ < λ1;
(H3) There is a p > 0 such that 0 � v � p and 0 � t � 1 implies

f (t, v) < ηp,

where η = [
∫ 1

0

∫ 1
0 G1(τ, τ)G2(τ, s)dsdτ]−1 , and G1(t, s) is the Green’s function to

−u′′ = 0, u(0) = u(1) = 0, and G2(t, s) is the Green’s function to −u′′ − βu =
0, u(0) = u(1) = 0 (see Section 2);

(H4) There is a p > 0 such that p
4 � v � p implies

f (t, v) > λp,

where λ = [
∫ 1

0

∫ 3
4

1
4

G1(σ, τ)G2(τ, s)dsdτ]−1, and σ ∈ [0, 1] be defined by

∫ 1

0

∫ 3
4

1
4

G1(σ, τ)G2(τ, s)dsdτ = max
t∈[0,1]

∫ 1

0

∫ 3
4

1
4

G1(t, τ)G2(τ, s)dsdτ.

The following theorems are our main results.

THEOREM 1. Assume that (P1), (P2), (H1) and (H3) are satisfied. Then the BVP
(1)-(2) has at least two positive solutions u1 and u2 with

0 < ||u1|| < p < ||u2||;
here ||u|| = supt∈[0,1] |u(t)|.

COROLLARY 1. The conclusion of Theorem 1 is valid if (H1) is replaced by:
(H∗

1 ) f 0 = ∞, f∞ = ∞.
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THEOREM 2. Assume that (P1), (P2), (H2) and (H4) are satisfied. Then the BVP
(1)-(2) has at least two positive solutions u1 and u2 with

0 < ||u1|| < p < ||u2||.

COROLLARY 2. The conclusion of Theorem 2 is valid if (H2) , is replaced by:
(H∗

2 ) f 0 = 0, f ∞ = 0.

THEOREM 3. Assume that (P1), (P2) are satisfied. Also suppose the following
condition is satisfied:

f 0 > λ1, f ∞ < λ1.

Then the BVP (1)-(2) has at least one positive solution.

COROLLARY 3. Assume that (P1), (P2) are satisfied. Also suppose the following
condition is satisfied:

f 0 = ∞, f ∞ = 0 (sublinear).

Then the BVP (1)-(2) has at least one positive solution.

THEOREM 4. Assume that (P1), (P2) are satisfied. Also suppose the following
condition is satisfied:

f 0 < λ1, f∞ > λ1.

Then the BVP (1)-(2) has at least one positive solution.

COROLLARY 4. Assume that (P1), (P2) are satisfied. Also suppose the following
condition is satisfied:

f 0 = 0, f∞ = ∞ (superlinear).

Then the BVP (1)-(2) has at least one positive solution.

Obviously, Theorems 3 and 4 extend the results in [14].

REMARK 1.1. Since λ1 is an eigenvalue of the linear boundary value problem
corresponding to the BVP (1)-(2), the conditions in Theorems 3 and 4 are optimal.

2. Preliminaries

Suppose that u is a solution of the BVP (1)-(2). Then

u(t) =
∫ 1

0

∫ 1

0
G1(t, τ)G2(τ, s)f (s, u(s))dsdτ, 0 � t � 1, (3)

where G1(t, s) is the Green’s function to −u′′ = 0, u(0) = u(1) = 0, and G2(t, s) is
the Green’s function to −u′′ − βu = 0, u(0) = u(1) = 0 . In particular

G1(t, s) =
{

t(1 − s), 0 � t � s � 1,
s(1 − t), 0 � s � t � 1,

and one can show that

min{t, 1 − t}G1(s, s) � G1(t, s) � G1(s, s) = s(1 − s), (t, s) ∈ [0, 1]× [0, 1]. (4)
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Set ω =
√|β |. If β < 0, then G2(t, s) is explicitly given by

G2(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sinhω t sinhω(1 − s)
ω sinhω

, 0 � t � s � 1,

sinhω t sinhω(1 − s)
ω sinhω

, 0 � s � t � 1.

If β = 0, then G2(t, s) = G1(t, s) . If 0 < β < π2, then G2(t, s) is explicitly given by

G2(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sinω t sinω(1 − s)
ω sinω

, 0 � t � s � 1,

sinω t sinω(1 − s)
ω sinω

, 0 � s � t � 1.

Clearly G2(t, s) > 0 for (t, s) ∈ (0, 1) × (0, 1).
By using (3) and (4), we see that for every solution u of the BVP (1)-(2), one has

||u|| �
∫ 1

0

∫ 1

0
G1(τ, τ)G2(τ, s)f (s, u(s))dsdτ,

u(t) � min{t, 1 − t} ∫ 1
0

∫ 1
0 G1(τ, τ)G2(τ, s)f (s, u(s))dsdτ,

� min{t, 1 − t}||u||, (5)

where ||u|| = sup{|u(t)|; 0 � t � 1}.
Let E be a Banach space and K ⊂ E be a closed convex cone in E . Assume

Ω is a bounded open subset of E with boundary ∂Ω, and let A : K ∩ Ω̄ → K be a
continuous and completely continuous mapping. If Au �= u for every u ∈ K ∩ ∂Ω,
then the fixed point index i(A, K ∩Ω, K) is defined. If i(A, K ∩Ω, K) �= 0, then A has
a fixed point in K ∩Ω.

For r > 0, let Kr = {u ∈ K : ||u|| < r} and ∂Kr = {u ∈ K : ||u|| = r}, which
is the relative boundary of Kr in K . The following three Lemmas are needed in our
argument.

LEMMA 2.1. ([16]) Let A : K → K be a continuous and completely continuous
mapping and Au �= u for u ∈ ∂Kr . Thus one has the following conclusions:

(i) If ||u|| � ‖Au‖ for u ∈ ∂Kr , then i(A, Kr, K) = 0 ;
(ii) If ‖u‖ � ‖Au‖ for u ∈ ∂Kr , then i(A, Kr, K) = 1 .

LEMMA 2.2. ([16]) Let A : K → K be a continuous and completely continuous
mapping with μAu �= u for every u ∈ ∂Kr and 0 < μ � 1 . Then i(A, Kr, K) = 1 .

LEMMA 2.3. ([16]) Let A : K → K be a continuous and completely continuous
mapping. Suppose that the following two conditions are satisfied:

(i) infu∈∂Kr ||Au|| > 0 ;
(ii) μAu �= u for every u ∈ ∂Kr and μ � 1.

Then, i(A, Kr, K) = 0.
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3. Proof of Main Results

Let K be a cone in E = C[0, 1] defined by

K = {u ∈ E; u(t) � min{t, 1 − t}‖u‖, t ∈ [0, 1]}.
Define an operator A : K → K as follows

(Au)(t) =
∫ 1

0

∫ 1

0
G1(t, τ)G2(τ, s)f (s, u(s))dsdτ. (6)

It is clear that A : K → K is continuous and completely continuous.
Then we have the following lemmas.

LEMMA 3.1. Assume that (P1) and (P2) hold. Then A(K) ⊂ K .

Proof. We have from (4) and (6) that

(Au)(t) � min{t, 1 − t} ∫ 1
0

∫ 1
0 G1(τ, τ)G2(τ, s)f (s, u(s))dsdτ

� min{t, 1 − t}||Au||, t ∈ [0, 1].

Thus we have A(K) ⊂ K .

LEMMA 3.2. If (P1) , (P2) and (H3) are satisfied, then i(A, Kp, K) = 1.

Proof. For any u ∈ ∂Kp, we have

f (t, u(t)) < ηp, ∀t ∈ [0, 1],

so we have
||Au|| �

∫ 1
0

∫ 1
0 G1(τ, τ)G2(τ, s)f (s, u(s))dsdτ

< ηp
∫ 1

0

∫ 1
0 G1(τ, τ)G2(τ, s)dsdτ

= p = ||u||.
Also clearly Au �= u for u ∈ ∂Kp. Therefore, from the second part of Lemma 2.1, we
conclude that i(A, Kp, K) = 1.

LEMMA 3.3. If (P1) , (P2) and (H4) are satisfied, then i(A, Kp, K) = 0.

Proof. Let u ∈ ∂Kp . Then we have

u(t) � min{t, 1 − t}||u|| � 1
4
p,

1
4

� t � 3
4
,

and it follows from (H4) that

(Au)(σ) =
∫ 1

0 G1(σ, τ)G2(τ, s)f (s, u(s))dsdτ
�

∫ 1
0

∫ 3
4

1
4

G1(σ, τ)G2(τ, s)f (s, u(s))dsdτ

> λp
∫ 1

0

∫ 3
4

1
4

G1(σ, τ)G2(τ, s)dsdτ
= p = ||u||.
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This shows that
||Au|| > ||u||, ∀u ∈ ∂Kp.

Also clearly Au �= u for u ∈ ∂Kp . Therefore, from the first part of Lemma 2.1, we
conclude that i(A, Kp, K)0.

Proof of Theorem 1. According to Lemma 3.2, we have that

i(A, Kp, K) = 1. (7)

Suppose that (H1) holds. Since f 0 > λ1, one can find ε > 0 and 0 < r0 < p so that

f (t, u) � (λ1 + ε)u, ∀t ∈ [0, 1], 0 � u � r0. (8)

Let r ∈ (0, r0) . Then for u ∈ ∂Kr we have u(t) � 1
4 r for t ∈ [ 1

4 ,
3
4 ], and so

(Au)(σ) =
∫ 1

0 G1(σ, τ)G2(τ, s)f (s, u(s))dsdτ
�

∫ 1
0

∫ 3
4

1
4

G1(σ, τ)G2(τ, s)f (s, u(s))dsdτ

� (λ1 + ε)
∫ 1

0

∫ 3
4

1
4

G1(σ, τ)G2(τ, s)u(s)dsdτ

� (λ1+ε)r
4

∫ 1
0

∫ 3
4

1
4

G1(σ, τ)G2(τ, s)dsdτ,

from which we see that infu∈∂Kr ||Au|| > 0, namely, hypothesis (i) of Lemma 2.3 holds.
Next we show that μAu �= u for any u ∈ ∂Kr and μ � 1. If this is not true, then there
exist u0 ∈ ∂Kr and μ0 � 1 such that μ0Au0 = u0. Note that u0(t) satisfies

u(4)
0 (t) + βu′′0 (t) = μ0f (t, u0(t)), 0 � t � 1, (9)

and the boundary condition (2). Multiply equation (9) by φ1(t) and integrate from 0
to 1, using integration by parts in the left side, to obtain

(π4 − βπ2)
∫ 1

0
u0(t)φ1(t)dt = μ0

∫ 1

0
φ1(t)f (t, u0(t))dt,

i.e.,
λ1

∫ 1
0 u0(t)φ1(t)dt = μ0

∫ 1
0 φ1(t)f (t, u0(t))dt

�
∫ 1

0 φ1(t)f (t, u0(t))dt

� (λ1 + ε)
∫ 1

0 φ1(t)u0(t)dt.

Since u0(t) � min{t, 1− t}||u0||, we have
∫ 1

0 φ1(t)u0(t)dt > 0 , and so from the above
inequality we see that λ1 � λ1 + ε, which is a contradiction. Hence A satisfies the
hypotheses of Lemma 2.3 in Kr . By Lemma 2.3, we have

i(A, Kr, K) = 0. (10)

On the other hand, since f∞ > λ1, there exist ε > 0 and H > 0 such that

f (t, u) � (λ1 + ε)u, ∀t ∈ [0, 1], u � H. (11)
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Let C = max0�u�H max0�t�1 |f (t, u) − (λ1 + ε)u| + 1, and it is clear that

f (t, u) � (λ1 + ε)u − C, ∀t ∈ [0, 1], u � 0. (12)

Choose R > R0 := max{4H, p} . Let u ∈ ∂KR . Since u(t) � 1
4 ||u|| > H for

t ∈ [ 1
4 ,

3
4 ] , from (11) we see that

f (t, u(t)) � (λ1 + ε)u(t) � 1
4
(λ1 + ε)||u||, ∀t ∈

[
1
4
,
3
4

]
.

Essentially the same reasoning as above yields infu∈∂KR ||Au|| > 0. Next we show that
if R is large enough, then μAu �= u for any u ∈ ∂KR and μ � 1. In fact, if there
exist u0 ∈ ∂KR and μ0 � 1 such that μ0Au0 = u0, then u0(t) satisfies equation (9)
and boundary condition (2). Multiply equation (9) by φ1(t) and integrate (use (12))
to obtain

λ1
∫ 1

0 u0(t)φ1(t)dt = μ0
∫ 1

0 f (t, u0(t))φ1(t)dt

� (λ1 + ε)
∫ 1

0 u0(t)φ1(t)dt − C
∫ 1

0 φ1(t)dt.

Consequently, we obtain that

∫ 1

0
u0(t)φ1(t)dt � C

ε

∫ 1

0
φ1(t)dt. (13)

We also have
∫ 1

0 u0(t)φ1(t)dt � ||u0||
∫ 1

0 min{t, 1 − t}φ1(t)dt

� ||u0||
∫ 1

0 t(1 − t)φ1(t)dt,

and this together with (13) yields

||u0|| � C

ε
∫ 1

0 t(1 − t)φ1(t)dt
=: R̄. (14)

Let R > max{R̄, R0} . Then for any u ∈ ∂KR and μ � 1 we have μAu �= u. Hence
hypothesis (ii) of Lemma 2.3 also holds. By Lemma 2.3,

i(A, KR, K) = 0. (15)

In view of (7), (10) and (15), we obtain

i(A, KR \ K̄p, K) = −1,

i(A, Kp \ K̄r, K) = 1.

Thus, A has fixed points u1 and u2 in Kp \ K̄r and KR \ K̄p, respectively, which means
u1(t) and u2(t) are positive solution of BVP (1)-(2) and 0 < ||u1|| < p < ||u2||.
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REMARK 3.1. Note to deduce the existence of u1 in Theorem 1 we need only
assume (P1) , (P2) , (H3) and f 0 > λ1 . A similar remark applies for u2 .

Proof of Theorem 2. According to Lemma 2.3, we have that

i(A, Kp, K) = 0. (16)

Suppose that (H2) holds. Since f 0 < λ1, one can find ε > 0 and 0 < r0 < p so that

f (t, u) � (λ1 − ε)u, ∀t ∈ [0, 1], 0 � u � r0. (17)

Let r ∈ (0, r0) . We now prove that μAu �= u for any u ∈ ∂Kr and 0 < μ � 1. If this
is not true, then there exist u0 ∈ ∂Kr and 0 < μ0 � 1 such that μ0Au0 = u0 . Then
u0(t) satisfies equation (9) and boundary condition (2). Multiply equation (9) by φ1(t)
and integrate (use (17)) to obtain

λ1
∫ 1

0 u0(t)φ1(t)dt = μ0
∫ 1

0 φ1(t)f (t, u0(t))dt

� (λ1 − ε)
∫ 1

0 φ1(t)u0(t)dt.

Since u0(t) � min{t, 1− t}||u0||, we have
∫ 1

0 φ1(t)u0(t)dt > 0 , and so from the above
inequality we see that λ1 � λ1 − ε, which is a contradiction. By Lemma 2.2, we have

i(A, Kr, K) = 1. (18)

On the other hand, since f ∞ < λ1, there exist ε > 0 and H > p such that

f (t, u) � (λ1 − ε)u, ∀t ∈ [0, 1], u � H.

Let C = max0�u�H max0�t�1 |f (t, u) − (λ1 − ε)u| + 1, and it is clear that

f (t, u) � (λ1 − ε)u + C, ∀t ∈ [0, 1], u � 0. (19)

We can show that there exists R > H > p such that μAu �= u for any u ∈ ∂KR and
0 < μ � 1 ; we omit the details since they are similar to those in the proof of Theorem
1. Thus, we obtain

i(A, KR, K) = 1. (20)

In view of (16), (18) and (20), we obtain

i(A, KR \ K̄p, K) = 1,

i(A, Kp \ K̄r, K) = −1.

Thus, A has fixed points u1 and u2 in Kp \ K̄r and KR \ K̄p, respectively, which means
u1(t) and u2(t) are positive solution of BVP (1)-(2) and 0 < ||u1|| < p < ||u2||.

Proof of Theorems 3 and 4. The proof follows the ideas in the proof of Theorems
1 and 2.

EXAMPLE. Consider the boundary value problem

u(4)(t)ua(t) + ub(t), 0 < a < 1 < b (21)
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with the boundary condition (2). Then the BVP (21)-(2) has at least two positive
solutions u1 and u2 with

0 < ||u1|| < 1 < ||u2||.
To see this we will apply Theorem 1 (or Corollary 1). Set

f (t, u) = ua + ub and β = 0.

Note

lim
u↓0

f (t, u)
u

= ∞ and lim
u↑∞

f (t, u)
u

= ∞,

so (H1) (or (H∗
1 ) ) holds. Clearly, (P1) and (P2) hold. Also note G1(t, s) = G2(t, s) ,

and
η = [

∫ 1
0

∫ 1
0 G1(τ, τ)G1(τ, s)dsdτ]−1

� [
∫ 1

0

∫ 1
0 G1(τ, τ)G1(s, s)dsdτ]−1

= [
∫ 1

0 s(1 − s)ds]−2

= 36.

Since there exists p = 1 such that 0 � u � p implies

f (t, u) � pa + pb = 2 < η = ηp,

we have that (H3) holds. The result now from Theorem 1 (or Corollary 1).
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