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A FUNCTIONAL DIFFERENTIAL EQUATION IN BANACH ALGEBRAS

B. C. DHAGE, S. N. SALUNKHE, RAVI P. AGARWAL AND W. ZHANG

(communicated by V. Lakshmikantham)

Abstract. In this paper an existence theorem for the first order functional differential equations in
Banach algebras is proved under the mixed generalized Lipschitz and Carathéodory conditions.
The existence of extremal solutions is also proved under certain monotonicity conditions.

1. Statement of The Problem

Let R denote the real line and let I0 = [−r, 0] and I = [0, a] be two closed and
bounded intervals in R . Let J = I0 ∪ I , then J is a closed and bounded interval in R .
Let C denote the Banach space of all continuous real-valued functions φ on I0 with
the supremum norm ‖ · ‖C defined by

‖φ‖C = sup
t∈I0

|φ(t)|.

Clearly C is a Banach algebra with respect to this norm and the multiplication “ · "‘
defined by

(xy)(t) = x(t)y(t), t ∈ I0.

Consider the first order functional differential equation (in short FDE)(
x(t)

f (t, x(t))

)′
= g(t, xt) a.e. t ∈ I

x(t) = φ(t), t ∈ I0,

⎫⎪⎬
⎪⎭ (1.1)

where f : I × R → R − {0} is continuous, g : I × C → R and the function
xt(θ) : I0 → C is defined by xt(θ) := x(t + θ) for all θ ∈ I0 .

By a solution of FDE (1.1) we mean a function x ∈ C(J, R)∩AC(I, R)∩C(I0, R)
that satisfies the equations in (1.1), where AC(I, R) is the space of all absolutely
continuous real-valued functions on J .

The functional differential equations have been the most active area of research
since long time. See Hale [13], Henderson [14] and the references therein. But the study
of functional differential equations in Banach algebra is very rare in the literature. Very
recently the study along this line has been initiated via fixed point theorems. See Dhage
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and Regan [9] and Dhage [6] and the references therein. The FDE (1.1) is new to the
literature and the study of this problem will definitely contribute immensely to the area
of functional differential equations. The fixed point theorems of Dhage [4, 5] we will
be using are given in the following section.

2. Auxiliary Results

Let X be a Banach algebra with norm ‖ · ‖ . A mapping A : X → X is called
D -Lipschitzian if there exists a continuous nondecreasing function ψ : R

+ → R
+

satisfying
‖Ax− Ay‖ � ψ(‖x − y‖) (2.1)

for all x, y ∈ X with ψ(0) = 0 . In the special case when ψ(r) = αr (α > 0 ),
A is called a Lipchitzian with a Lipschitz constant α . In particular, if α < 1 , A is
called a contraction with a contraction constant α . Further, if ψ(r) < r for all r > 0 ,
then A is called a nonlinear contraction on X . Sometimes we call the function ψ a
D -function for convenience.

An operator T : X → X is called compact if T(S) is a compact for any subset
S of X . Similarly T : X → X is called totally bounded if T maps a bounded subset
of X into the totally bounded subset of X . Finally T : X → X is called completely
continuous operator if it is continuous and totally bounded operator on X . It is clear
that every compact operator is totally bounded, but the converse may not be true. The
nonlinear alternative of Schaefer type recently proved by Dhage [7] is embodied in th
following theorem.

THEOREM 2.1. (Dhage[7]). Let X be a Banach algebra and let A, B : X → X
be two operators satisfying

(a) A is a D -Lipschitzian with a D -function ψ ,
(b) B is compact and continuous, and
(c) Mψ(r) < r whenever r > 0 , where M = ‖B(X)‖ = sup{‖Bx‖ : x ∈ X} .

Then either
(i) the equation λA( x

λ )Bx = x has a solution for λ = 1 , or
(ii) the set E = {u ∈ X | λA( u

λ )Bu = u, 0 < λ < 1} is unbounded.

It is known that Theorem 2.1 is useful for proving the existence theorems for
the integral equations of mixed type. See [5] and the references therein. The method
is commonly known as priori bound method for the nonlinear equations. See, for
example, Dugundji and Granas [10], Zeidler [16] and the references therein.

An interesting corollary to Theorem 2.1 in its applicable form is

COROLLARY 2.1. Let X be a Banach algebra and let A, B : X → X be two
operators satisfying

(a) A is Lipschitzian with a Lipschitz constant α ,
(b) B is compact and continuous, and
(c) αM < 1 , where M = ‖B(X)‖ := sup{‖Bx‖ : x ∈ X} . Then either
(i) the equation λA( x

λ )Bx = x has a solution for λ = 1 , or
(ii) the set E = {u ∈ X | λA( u

λ )Bu = u, 0 < λ < 1} is unbounded.
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3. Existence Theory

Let M(J, R) and B(J, R) respectively denote the spaces ofmeasurable and bounded
real-valued functions on J. We shall seek the existence of a solution of FDE (1.1) in the
space C(J, R), of all absolutely continuous real-valued functions on J. Define a norm
‖ · ‖ in C(J, R) by

‖x‖ = sup
t∈J

|x(t)|.

Clearly C(J, R) becomes a Banach algebra with respect to this norm and the multipli-
cation “ · "‘ defined by

(x · y)(t) = x(t)y(t), t ∈ J.

Note that C(J, R) ⊂ AC(J, R) . We need the following definition in the sequel.

DEFINITION 3.1. A mapping β : I × C → R is said to satisfy a condition of
L1

X -Carathéodory or simply, is said to be L1
X -Carathéodory if

(i) t → β(t, x) is measurable for each x ∈ C .
(ii) x → β(t, x) is continuous almost everywhere for t ∈ I, and
(iii) there exists a function h ∈ L1(I, R) such that

|β(t, x)| � h(t), a.e. t ∈ I

for all x ∈ C . For convenience, the function h is referred to as a bound function of β .

We will need the following hypotheses in the sequel.
(H1 ) The function f : I × R → R − {0} is continuous and there exists a function

k ∈ B(I, R) such that k(t) > 0, a.e. t ∈ I and

|f (t, x) − f (t, y)| � k(t)|x − y|, a.e. t ∈ I

for all x, y ∈ R.
(H2 ) f (0, φ(0)) = 1.
(H3 ) The function g is L1

X -Carathéodory with bound function h .
(H4 ) There exists a continuous and nondecreasing function Ω : [0,∞) → (0,∞)

and a function γ ∈ L1(I, R) such that γ (t) > 0, a.e. t ∈ J and

|g(t, x)| � γ (t)Ω
(
‖x‖C

)
, a.e. t ∈ I,

for all x ∈ C .

THEOREM 3.1. Assume that the hypotheses (H1 )-(H4 ) hold. Suppose that∫ ∞

C1

ds
Ω(s)

> C2‖γ ‖L1 , (3.1)

where

C1 =
F‖φ‖C

1 − ‖k‖(‖φ‖C + ‖h‖L1)
, C2 =

1
1 − ‖k‖[‖φ‖C + ‖h‖L1 ]

, ‖k‖(‖φ‖C+‖h‖L1) < 1,

F = maxt∈J |f (t, 0)| , and ‖k‖ = maxt∈J |k(t)| . Then the FDE (1.1) has a solution on
J.
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Proof. Now the FDE (1.1) is equivalent to the functional integral equation (in
short FIE)

x(t) = [f (t, x(t))]
(
φ(0) +

∫ t

0
g(s, xs) ds

)
, if t ∈ I (3.2)

and
x(t) = φ(t), if t ∈ I0. (3.3)

Define the two mappings A and B on C(J, R) by

Ax(t) =

{
f (t, x(t)), if t ∈ I,

1, if t ∈ I0.
(3.4)

and

Bx(t) =

⎧⎪⎨
⎪⎩

φ(0) +
∫ t

0
g(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0.

(3.5)

Obviously A and B define the operators A, B : C(J, R) → C(J, R). Then the FDE
(1.1) is equivalent to the operator equation

x(t) = Ax(t) Bx(t), t ∈ J. (3.6)

We shall show that the operators A and B satisfy all the hypotheses of Corollary 2.1.
We first show that A is a Lipschitzian on C(J, R). Let x, y ∈ C(J, R). Then by

(H1 ),

|Ax(t) − Ay(t)| � |f (t, x(t)) − f (t, y(t))|
� k(t)|x(t) − y(t)|
� k(t)‖x − y‖

for all t ∈ J . Taking the supremum over t we obtain

‖Ax − Ay‖ � ‖k‖‖x− y‖.
for all x, y ∈ C(J, R). So A is a Lipschitzian on C(J, R) with a Lipschitz constant
‖k‖. Next we show that B is completely continuous on C(J, R). Using the standard
arguments as in Granas et al. [11], it is shown that B is a continuous operator on
C(J, R). Let S be any subset of C(J, R) . We shall show that B(C(J, R)) is a uniformly
bounded and equicontinuous set in C(J, R) . Since g(t, xt) is L1

X -Carathéodory, we
have

|Bx(t)| � ‖φ‖C +
∫ t

0
|g(s, xs)| ds

� ‖φ‖C +
∫ t

0
h(s) ds

� ‖φ‖C + ‖h‖L1 .
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Taking the supremum over t , we obtain ‖Bx‖ � M for all x ∈ S , where M =
‖φ‖C + ‖h‖L1 . This shows that B(C(J, R)) is a uniformly bounded set in C(J, R).
Now we show that B(C(J, R)) is an equicontinuous set. Let t, τ ∈ I. Then for any
x ∈ C(J, R) we have by (3.4),

|Bx(t) − Bx(τ)| �
∣∣∣∣
∫ t

0
g(s, xs) ds −

∫ τ

0
g(s, xs) ds

∣∣∣∣
�
∣∣∣∣
∫ t

τ
|g(s, xs)| ds

∣∣∣∣
�
∣∣∣∣
∫ t

τ
h(s) ds

∣∣∣∣
� |p(t) − p(τ)|

where p(t) =
∫ t

0
h(s) ds.

Therefore

|Bx(t) − Bx(τ)| → 0 as t → τ.

Again let τ ∈ I0, t ∈ I . Then we obtain

|Bx(t) − Bx(τ)| � |φ(τ) − φ(0)| +
∣∣∣∣
∫ t

0
g(s, xs) ds

∣∣∣∣
� |φ(τ) − φ(0)| + |p(t) − p(τ)|

where the function p is defined above. Similarly if τ, t ∈ I0 , then we get

|Bx(t) − Bx(τ)| � |φ(t) − φ(τ)|.

Therefore in all above three cases

|Bx(t) − Bx(τ)| → 0 as τ → t, ∀ t, τ ∈ J.

Hence B(C(J, R)) is an equicontinuous set and consequently B(C(J, R)) is relatively
compact by Arzela-Ascoli theorem. As a result B is a compact and continuous operator
on C(J, R) . Thus all the conditions of Theorem 2.1 are satisfied and a direct application
of it yields that either the conclusion (i) or the conclusion (ii) holds. We show that
the conclusion (ii) is not possible. Let x ∈ X be any solution to FDE (1.1). Then we
have, for any λ ∈ (0, 1),

x(t) = λA
( x
λ

)
(t)Bx(t)

=

⎧⎪⎨
⎪⎩

λ
[
f

(
t,

x(t)
λ

)](
φ(0) +

∫ t

0
g(s, xs) ds

)
, t ∈ I

λφ(t), t ∈ I0
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for t ∈ J . Then we have

|x(t)| � λ
∣∣∣∣f
(

s,
x(t)
λ

)∣∣∣∣
(
‖φ‖C +

∣∣∣∣
∫ t

0
g(s, xs) ds

∣∣∣∣
)

� λ
(∣∣∣f (s, x(t)

λ

)
− f (t, 0)

∣∣∣+ |f (t, 0)|
)(

‖φ‖C +
∫ t

0
|g(s, xs)| ds

)

� [k(t)|x(t)| + F]
(
‖φ‖C +

∫ t

0
|g(s, xs)| ds

)

� k(t)‖x‖
(
‖φ‖C +

∫ t

0
|g(s, xs)| ds

)
+ F

(
‖φ‖C +

∫ t

0
|g(s, xs)| ds

)

� ‖k‖‖x‖(‖φ‖C + ‖h‖L1) + F‖φ‖C + F
∫ t

0
γ (s)Ω(‖xs‖C) ds. (3.7)

Put u(t) = sups∈[−r,t] |x(s)|, for t ∈ J . Then we have

|x(t)| � u(t) ∀t ∈ J and ‖xt‖C � u(t) ∀ t ∈ I,

and so, there is a point t∗ ∈ [−r, t] such that u(t) = |x(t∗)| . From (3.7) it follows that

u(t) = |x(t∗)|

� ‖k‖|x(t∗)|(‖φ‖C + ‖h‖L1) + F

(
‖φ‖C +

∫ t∗

0
γ (s)Ω(‖xs‖C) ds

)

� ‖k‖u(t)(‖φ‖C + ‖h‖L1) + F

(
‖φ‖C +

∫ t

0
γ (s)Ω(u(s)) ds

)

= C1 + C2

∫ t

0
γ (s)Ω(u(s))) ds (3.8)

where

C1 =
F‖φ‖C

1 − ‖k‖[‖φ‖C + ‖h‖1
L]

and C2 =
1

1 − ‖k‖[‖φ‖C + ‖h‖1
L]

.

Let

w(t) = C1 + C2

∫ t

0
γ (s)Ω(u(s)) ds.

Then u(t) � w(t) and a direct differentiation of w(t) yields

w′(t) � C2γ (t)Ω(w(t))
w(0) = C1,

}
(3.9)

that is, ∫ t

0

w′(s)
Ω(w(s))

ds � C2

∫ t

0
γ (s) ds � C2‖γ ‖L1

A change of variables in the above integral gives that∫ w(t)

C1

ds
Ω(s)

� C2‖γ ‖L1 <

∫ ∞

C1

ds
Ω(s)

.
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Now an application of mean value theorem yields that there is a constant M > 0 such
that w(t) � M for all t ∈ J . This further implies that

|x(t)| � u(t) � w(t) � M.

for all t ∈ J . Thus the conclusion (ii) of Corollary 2.1 does not hold. Therefore the
operator equation AxBx = x and consequently the FDE (1.1) has a solution on J . This
completes the proof. �

4. Existence of Extremal Solutions

A non-empty closed set K in a Banach algebra X is called a cone if (i) K+K ⊆ K,
(ii) λK ⊆ K for λ ∈ R, λ � 0 and (iii) {−K} ∩ K = {0}, where 0 is the zero
element of X. A cone K is called to be positive if (iv) K ◦ K ⊆ K, where “◦ ” is a
multiplication composition in X. We introduce an order relation � in K as follows.
Let x, y ∈ X. Then x � y if and only if y− x ∈ K. A cone K is called to be normal if
the norm ‖ · ‖ is monotone increasing on K. It is known that if the cone K is normal in
X, then every order-bounded set in X is norm-bounded. The details of cones and their
properties appear in Guo and Lakshmikantham [12].

We equip the space C(J, R) with the order relation � with the help of the cone
defined by

K = {x ∈ C(J, R) : x(t) � 0, ∀ t ∈ J}. (4.1)

It is well known that the cone K is positive and normal in C(J, R). As a result of
positivity of the cone K in C(J, R) we have:

LEMMA 4.1. (Dhage [6]). Let u1, u2, v1, v2 ∈ K be such that u1 � v1 and u2 � v2.
Then u1u2 � v1v2.

For any a, b ∈ X = C(J, R), a � b, the order interval [a, b] is a set in X given by

[a, b] = {x ∈ X : a � x � b}.

We use the following fixed point theorem of Dhage [6] for proving the existence of
extremal solutions of the FDE (1.1) under certain monotonicity conditions.

THEOREM 4.1. (Dhage [6], Corollary 3.1). Let K be a cone in a Banach algebra
X and let a, b ∈ X. Suppose that A, B : [a, b] → K are two operators such that

(a) A is Lipschitzian with a Lipschitz constant α ,
(b) B is completely continuous,
(c) Ax Bx ∈ [a, b] for each x ∈ [a, b], and
(d) A and B are nondecreasing. Further if the cone K is positive and normal,

then the operator equation AxBx = x has a maximal and a minimal positive
solution in [a, b], whenever αM < 1, where M = ‖B([a, b])‖ := sup{‖Bx‖ :
x ∈ [a, b]} .
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We need the following definitions in the sequel.

DEFINITION 4.1. A function u ∈ C(J, R) is called a lower solution of the FDE
(1.1) on J if (

u(t)
f (t, u(t))

)′
� g(t, ut), a.e t ∈ I

and
u(t) � φ(t) for all t ∈ I0.

Again a function v ∈ C(J, R) is called an upper solution of the BVP (1.1) on J if(
v(t)

f (t, v(t))

)′
� g(t, vt), a.e t ∈ J

and
v(t) � φ(t) for all t ∈ I0.

DEFINITION 4.2. A solution xM of the FDE (1.1) is said to be maximal if for any
other solution x to FDE (1.1) one has x(t) � xM(t), ∀t ∈ J. Again a solution xm of the
FDE (1.1) is said to be minimal if xm(t) � x(t), ∀t ∈ J, where x is any solution of the
FDE (1.1) on J.

We consider the following set of assumptions:
(B 0 ) f : J × R

+ → R
+ − {0} , g : J × C → R

+ and φ(t) � 0 on I0 .
(B 1 ) g(t, x) is L1

X -Carathéodory.
(B 2 ) The functions f (t, x) and g(t, y) are nondecreasing in x and y almost ev-

erywhere for t ∈ J.
(B 3 ) The FDE (1.1) has a lower solution u and an upper solution v on J with

u � v.

REMARK 4.1. Assume that (B 1 )–(B 3 ) hold. Define a function h : J → R
+ by

h(t) = |g(t, ut)| + |g(t, vt)| = g(t, ut) + g(t, vt), for all t ∈ I.

Then h is Lebesgue integrable and

|g(t, xt)| = g(t, xt) � h(t), a.e. t ∈ I,

for all x ∈ [u, v] .

THEOREM 4.2. Suppose that the assumptions (H 1 )–(H 3 ) and (B 0 )–(B 3 ) hold.
Further if ‖k‖(‖φ‖C + ‖h‖L1) < 1 , and h is given in Remark 4.1, then FDE (1.1) has
a minimal and a maximal positive solution on J.

Proof. Now FDE (1.1) is equivalent to FIE (3.2)–(3.3) on J. Let X = C(J, R).
Define two operators A and B on X by (3.4) and (3.5) respectively. Then FIE (1.1)
is transformed into an operator equation Ax(t) Bx(t) = x(t) in a Banach algebra X.
Notice that (B 1 ) implies A, B : [u, v] → K. Since the cone K in X is normal, [u, v] is
a norm bounded set in X. Now it is shown, as in the proof of Theorem 3.1, that A is a
Lipschitzian with a Lipschitz constant ‖α‖ and B is completely continuous operator
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on [u, v]. Again the hypothesis (B 2 ) implies that A and B are nondecreasing on [u, v].
To see this, let x, y ∈ [u, v] be such that x � y. Then by (B 2 ),

Ax(t) = f (t, x(t)) � f (t, y(t)) = Ay(t), ∀t ∈ I,

and
Ax(t) = 1 = Ay(t), for all t ∈ I0.

Similarly

Bx(t) = φ(0) +
∫ t

0
g(s, xs) ds

� φ(0) +
∫ t

0
g(s, ys)ds

= Ay(t), ∀t ∈ I,

and
Bx(t) = φ(t) = By(t) for all t ∈ I0.

So A and B are nondecreasing operators on [u, v]. Again Lemma 4.1 and hypothesis
(B 3 ) implies that

u(t) � [f (t, u(t))]
(
φ(0) +

∫ t

0
g(s, us)) ds

)

� [f (t, x(t))]
(
φ(0) +

∫ t

0
g(s, xs) ds

)

� [f (t, v(t))]
(
φ(0) +

∫ t

0
g(s, vs)) ds

)
� v(t),

for all t ∈ I and x ∈ [u, v]. As a result u(t) � Ax(t) Bx(t) � v(t), ∀t ∈ J , and so,
x ∈ [u, v]. Hence Ax Bx ∈ [u, v], ∀ x ∈ [u, v].

Again

M = ‖B([u, v])‖
= sup{‖Bx‖ : x ∈ [u, v]}

� sup

{
‖φ‖C + sup

t∈J

∫ t

0
|g(s, xs)| ds | x ∈ [u, v]

}

� ‖φ‖C +
∫ a

0
h(s)ds

= ‖φ‖C + ‖h‖L1 .

Since αM � ‖k‖(‖φ‖C + ‖h‖L1) < 1, we apply Theorem 4.1 to the operator equation
Ax(t) Bx(t) = x(t) to yield that the FDE (1.1) has a minimal and a maximal positive
solution on J. This completes the proof. �
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5. An Example

Given the closed and bounded intervals I0 = [−π/2, 0] and I = [0, π/2] in R,
consider the nonlinear FDE(

x(t)
f (t, x(t))

)′
=

p(t)
1 + ‖xt‖C

, a.e. t ∈ I

x(t) = sin t, t ∈ I0.

⎫⎪⎬
⎪⎭ (5.1)

where p ∈ L1(I, R) and f : I × R → R is defined by

f (t, x(t)) = 1 + α|x(t)|, α > 0

for all t ∈ I. Obviously f : I × R → R
+ − {0}. Define a function g : I × C → R

by g(t, xt) =
p(t)

1 + ‖xt‖C
. It is easy to verify that f is continuous and Lipschitzian on

J×R with a Lipschitz constant α. Further g(t, x) is L1
X -Carathéodory with the bound

function h(t) = p(t) on I . Therefore if α(1 + ‖p‖L1) < 1, then by Theorem 3.1, the
FDE (5.1) has a solution on J , because the function Ω satisfies condition (3.1) with
γ (t) = p(t) for all t ∈ I and Ω(r) = 1, for all r ∈ R

+.
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