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ON AN ESTIMATE RELATED TO THE HESSIAN AND
APPLICATION TO AN OBLIQUE DERIVATIVE PROBLEM

SOFIA GIUFFRE

(communicated by R. P. Agarwal)

Abstract. We prove an estimate on the L?(Q) -norm of the Hessian of a function u € W>9(Q),
satisfying an oblique derivative type condition on the boundary, allowing the oblique axis to be
tangential at a finite number of points of JQ . Using this inequality, the solvability in Sobolev

spaces W24(Q), with ¢ close to 2, follows for a class of nonlinear differential equations in the
plane with quadratic growth.

1. Introduction and main results

In the previous papers [4], [6] we concerned with the oblique derivative problem

o (x,u,Du,Dzu) =f(x,u,Du) ae.in Q (L.1)
%+O'u:0 on 0Q (1.2)

assuming o to be a positive constant and the elliptic operator < (x,z,p,&) to be
discontinuous with respect to x.

It seems to be interesting to study the same problem assuming o to be a positive
function, allowing the operator to remain discontinuous, taking into account that until
now no result is present in this case (for a survey on tangential oblique derivative
problem in the plane see [6], [7]). In the sequel we solve this problem assuming the
function o to be of class C?-piecewise and satisfying a differential condition. To be
analytically precise, let us introduce the problem in details.

Let us consider the oblique derivative problem (1.1)-(1.2) with boundary condition

(1.2) replaced by

% +o(x)u=0 on 0Q. (1.2%)

Here Q C R? is a bounded, convex and open set with C?-smooth boundary 9Q.
We assume that 0Q is a closed curve and let x; = x1(¢), x2 = x2(¢) be the normal
parameterization of 9Q, with ¢ being a curvilinear parameter, ¢ € [0,L]. On 0Q
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is defined a unit vector field [ = (Y1(@), Y2(@)), such that Y,(L) = Y¥;(0); Y»(L) =
Y2(0). Setting n = (X;(@), X2(¢)) for the unit outward normal to 0, and denoting
by O the angle between the normal n and the vector [/, we assume that

cos 0(¢) = ZXi((P)Yi(q)) >0  Voelol] (1.3)

., n, with @ <

with cos 6(¢) = 0 at a finite number of points ¢; €]0,L[, j =1
) > 0 Vo €lgi1, 0.

@ < ... < @, and setting @o = 0, @,1 = L, cosO(
j=1,....,n+ 1, cos8(@y) >0, cos 0(p,+1) > 0.
Furthermore, denoting by k the mean curvature of 9Q, we suppose

Yi(@) € C' (o1, @i, i=1,2 j=1,...,n+1

there exists lim Y;(¢) = — lim Yi(¢) =Y/ (¢) €R,i=1,2,j=1,...,n

there exists limy_, g+ Yi(¢) = ¥:(0) = lim_ - Yi(p) =Yi(L) e R, i=1,2
n+1

there exists lim Y/(@) € R, i=1,2, j=0,...,n
there exists lim Y!(¢@) € R, i=1,2, j=1,...,n+1, (1.4)
o9

Yi(p)+ Yi(p) =1 Vo €]loi—1, ¢l j=1,...,n+1
(Vi (e)) + (Y5(g))* =1, j=1,....n
(Y1(0))> + (r2(0))* = 1

and

0eC (o-1,9), Jj=1,.,n+1

do .

K((p) < % <07 V(p e]q)jfla(pj[a J= 1aan+1

lim 6(¢) = 0(¢; ), j=1,...,n
P—9;

lim 6(p) =0(¢"), Jj=1,...,n

lim 6(p) =6(0)= lim 6(¢)+2nw = 6(L)+ 2nn (L.5)
o—0; =0, :

do (o
there exists lim d6(9) = ((pJ ) <0, j=0,....n
o—o7  d@ do
do(p) _ d6(e;)

there exists lim <0, j=1...,n+1.

9= do do

As it concerns o(x), we suppose that it is a positive function of class C?(Q) and such
that, setting o(¢) = o(x1(9),x2(@)), it results that o(¢) is C?([0, L])-piecewise,
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namely
G((p)ecz(](pj—h(pj[)’ jzl?"'7n+17
lim o(¢p) =o(g; ) #0, j=1....n
0=
lim o(p) =o(p")#0, j=1,...,n
P—9f
lim o'(p) =0'(¢;) €eR, j=1,....n
lim o'(¢p)=0'(p;) R, j=1,....n
0=
lim o”(p) = o"(¢) €R, j=1,....,n+1
o9
lim o”(p) =0"(¢") €R, j=0,...,n
lim o(¢@) =0(0)= lim o(p)=o(L)
o) 0=y,
lim o'(¢) =0'(0) = lim o'(¢p) =0'(L)
(p_)(pgr (P‘)(P,;l

and

do .
6”(qo)+6’((p)tan9(qo)% <0 Vo € (9-1,9), j=1,...n+1. (L6)

We define W/(Q) the closure in W>9(Q) of the class W = {u € C?(Q) N C3(Q) :
g—'; + o(¢)u =0 on JQ} with respect to the norm (see Lemma 2.2)

1
q

[S1ESY

2

— - 2
gy = | [ | 3 0|

ij=1
We are aimed at the investigation of solvability of the oblique derivative problem

o (x,u, Du,D*u) = f (x,u,Du) ae.in Q C R
(1.7)
ue Wl (Q).

Throughout the paper we will suppose that the functions <7 (x,z,p, &), f(x,z,p) are
real valued functions which satisfy Carathéodory’s condition and a suitable ellipticity
condition due to S.Campanato (see [2]):

there exist o, v, & >0, with ¥ + & < 1, such that, for almost all x € Q, for all
z€R, peR? & 1€ R*?, one has

2 2

2
Z Gii

i=1

2
Zéii—a[%(x,z,p,é—kr)—d(x,z,p,f)] <’}/H5H2+8 (A)
i=1
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1

2

2
where & = {&;}ij=12 and [|E]| = | D &7 | sand

ij=1
o (x,2,p,0) = 0.
As it concerns the function f (x, z,p) we assume
F (2 )| < S1(l2l) [f2(x) + [pF ] (1.8)

foralmostall x € Q, forall (z,p) € RxR?, where f; € C°(R") is positive, monotone
nondecreasing function and f, € L"(Q), r > 2, is a positive one; and

g(x)det |a;|

h(p)

fora.a. x € Q, |z = M = const > 0, p € R?, where

(signz)f (x,z,p) <2 (1.9)

1

of

aixzp &) = [ G2 (napsEids € L¥(@ x Rx B X B2),
0 i

g(x) € L'(Q) and h € L (R?) are positive functions such that [, g(x)dx <

Jg2 h(p)dp . Let us note that Campanato’s (A) condition ensures that the derivatives

% (x,z,p, &) existalmost everywhere and they are essentially bounded (for comments
,
about condition (A) we refer to [8]).

We are in position to formulate our existence result.

THEOREM 1.1. Let conditions (A), (1.3), (1.4), (1.5), (1.6), (1.8), (1.9) be fulfilled.
Then there exists a number G > 2, such that, for each q €)2,q|, problem (1.7) is
solvable.

REMARK 1. We note that the values of solution u at the points of tangency are
known from the boundary condition. In fact if u € W, from condition (1.4) we get

o
“ lim

_ u i—1
ol o (p~>(p]fr 8l’ J=

lim
P—9;

R 1}

and hence from boundary condition

) ou ) ou _ .
lim (E + o(@)u) = lim ol +o(g Ju(g) =0, j=1,...,n

o9 —0;
0 0
lim (S +o(@u) = — lim 2o+ o(@Hu(g) =0, j=1,....n.
o—@ ol o—p ol J
J J

Then 9 P
u u .
u(@) =0, E((pj):%((pj)zo, j=1,...,n (1.10)
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The same conditions hold in W/(Q) in the trace sense.

REMARK 2. As it concerns the condition

do

o”(¢p)+0'(p) tan Q(qo)% =r(6(p)) <0 Vo€ (¢i_1,9), j=1,...,n+1, (1.6)

for example, it is possible to obtain an expression of the function o(¢) that satisfy (1.6)
in terms of r(6(9)) € CO**(J@i—1, @), j = 1,...,n+ 1, with lim r(6(p)) = 0,
P—g;

j=1,...,n.

2. Preliminary results
A crucial step in order to obtain the existence theorem is the following Miranda-
Talenti type estimate.

LEMMA 2.1. Under assumptions (1.3), (1.4), (1.5), (1.6), for every u € W, it

results ,
/Z(D,-ju)zdxg/mu\zdx. (2.11)
Q Q

ij=1

Proof. We will prove the lemma supposing cos 6(¢) = O in the unique point
¢ = ¢, . By the identity

2 2

> (D) + > (DiuDyat — (Dign)?) = (Au)? (2.12)

ik=1 ik=1

in order to obtain estimate (2.11), we have to prove
/(DlluDzzu - (Dlzu)z)dx > 0.
Q
Taking into account the identity

Dy juDyu — (Dyau)*
10
o 2 8x1

by means of Gauss formula, we get

1 0
(D1uDyu — DyuD1ou) — 3 E(DluDzlu — DyuDyyu)
2

/(D“ungu — (Dlzu)z)dx
Q

L (2.13)
=1 / [(DyuDyu — DyuDyu)Xy — (DyuDaju — DyuDyyu)Xz) do.
0
Let us consider the system
DiuYy + DY, = —o(@)u _ N
[ Pphr i oo vocooni=12 @4)
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It results

{ Diu = —o(@)uY; — c(p)Y>
Dzu = C((p)Yl — G((,D)MYQ,

v(p € ((pjfla(pj)7 J: 1a2 (215)
Moreover

(D1u)* + (Dau)* = (@) + o> (@)u* Yo € (9-1,9), j=1,2
and

C(O) = lim [—Dll/th +D2MY1] = lim [—DUAYz “!‘Dquﬂ = C(L)
p—0y 0=,

If we substitute in (2.13)

/[D“ungu — (Dlzu)z]dx
Q

1 (%]
=3 / c(@) [-DnuX,Y> — DpuX Yy + DyjuXaYs + DyjuXoY | do
0
1 L
+3 c(@) [=DauX1Y2 — DiouX1Yy + DyjuXoYs + DyuXoYi] do (2.16)

S

1 (%]
+§ / o(Q)u[—DpuX1Y1 + DpuX1Ys + DyuXoY) — DyjuXaYs] do
0

1 L
+§ / G(qo)u [—DzzMXl Y1 + DpuX Y, + DyjuX, Y, — D11MX2Y2] do.
P1

Differentiating the equations of system (2.14), we have
/ du !/ /
—DuXoY1+DpuX Y1 —DojuXo Yo +DypuX Yo=—0 ((p)ufO'((p) % — [D]MYl +D2MY2]

and
D uX,Y, — DppuX Yy, — DyyuXo Y1 + DypuX Y, = C/((p) + DﬂtYé — Dqu{.

Bearing in mind (2.16), replacing the above identities and taking into account that
V1Y, - Y{Y) = % — k() in (0,¢1) and (¢, L), we get

/[DnuDzzu — (Dlzu)z}dx
Q

1 du

3 | o @mao -5 [ otoncoro+ 5 [ ctorolo)ndo

+% / c(@)o’ (@)udp — % / o(@)uc' (p)do + % / c(fp)o(fp)j—:dw
[} ¢1 [0
(]

3 [N @+ 0209 52— (e

2
#3 [ (@ + 0PN G — (oo @)

1
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Integrating by parts and bearing in mind that u(¢;) = 0, u(0) = u(L), ¢(0) = ¢(L),
0(0) = o(L)

/[DlluDzzu - (Dlzu)z}dx
Q

[
= %/0 ((D1u)* + (Dzu)z)(w — k(9))do

i du L du
+ c(p)o(p)—do + c(p)o(p)—do. 2.8
| et Gado [ ctoroto) (28)
Let us observe that
o1 ¢1—€
/ u(@)c(@)a’(9) do = lim u(@)c(e)o’(9) do,
—0Jo
L L
/ (¢) do = lim u(@)c(p)a’(9) do,
?1 £—0 ¢+
o1 ¢r1—€ du
/0 Gado=lm |7 cgo(e) G0 d
L L
du
c — d(p = lim c(p)o(e (0}
/(Pl £-0 Q1+¢€ ( ) ( )d(p

In the intervals [0, @, — €], [@1+¢€,L], 0 < & < min{¢;,L— @, }, we have cos 0(¢) >
0, then from the system

{ DiuY, + DyuY, = )

—o(e
—DuX, + DyuX, = d_u (219)

it results

and

2
)00 e = oo (o) o0)+ Ploulo) G wan o).
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P —E P —¢€
[ oo ao= [7 ct@luto) G 5 +e()ote) un oidp,

/w u(@)c(9)0 (9) do = / (@) u(0) 2~ L 1 2(g)0(9) tan 01do,

o=e du\’ L ("7, du
= — (0= = —t
/0 <05 0(9) (d(p) o(p)de + 2/0 o () o an 6(¢)de

L du
/(p c(0)olp) 50 d
L 2

L 2
1 du 1 du
- — (=) o(@)de + —/ 62 (@) — tan O()do.
/(W c0s 0(9) (d(p) (p)do 2 ) (o) 0 (p)do

Taking into account that, integrating by parts, we get

¢1—€ M2 .

% /0 62(@)% tan O8(@)dp = %[Uz((P)O'Z((p) tan 9(@}3,1
P1—¢€ o uz

_ /0 G(@)O”((p)uz((p) tan 9((p)d(p — % /0 GZ(w)ﬁg)()(p) %d(p

and

1 /E du? 1
! / (@)% 1an 0(¢)do = 112 (0)0% (9) tan B(@)]E, .
2 Jorse do 2

t / Lt w(p) do
- /(p1+£ o(9)o’ (@)u* () tan 6()dg — 2 /(p1+5 Uz(@)m%d%

the last two lines in (2.8) become

L

! 1 U L W
/0 ' uc(9)o’(@)do+ /(p | uc(9)o’(@)do+ /O ' c(w)ff((p)j—(pdw /,, lc(m)c(w)j—(pdqo

| du\’ 1 (e W3 (@) do
=1 - (= _ = 2(0) — 277 7
el—r>rtl)[ 0 cos O(p) <d(p) o(@)de 2/0 o ((p)cosz 0(o) dqod(p
e du 1 L 1 du\’
! — d li — | — d
+/0 G((p)u(w)d(p etld +g§r(1)[/wl+8 cos0(0) (d(p) o(p)de

Lt o (@) do L du 1
_ ==d / aun d
2 /¢1+s o) cos? 0(¢) do o /(pl+g o (¢)ul9) dg cos 0 9]

+ S 1im {(12(0)0% () tan ()] + [12(9) 0> () tan B(@)]E, .}
20 (2.10)
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Repeating the same arguments as in [5] we obtain that

€ 1 du\? n 1 du\?
li - (£ -/ — (&£
613(1)/0 cos 0(¢) (dw) o(e)de /o cos 0(¢) <d<p> o(0)dg,

L 1 du\? L du\?
li — (= dp= [ ——— = d
ggr})/(pﬁg cos 0(9) (d(p) o(¢)de /wl cos 0(9) (d(p) a(¢)de,

n w(g) do ’ w(g) do
li 2 Zdo = 2 " 74
end 0 o (9) cos2 0(p) do ¢ /0 (@ cos20(p)de "’
L 2 L 2
, do u”(p) do
1 2 u ((p) ——d :/ 2 - 7 -
£m0 orte ) Cos? 0(p)do ¢ o o (9) cos? 0(¢p) do @
2
. 2 - 2 _ _ < 20—\ 1; 57 =
gg’% u“ (@1 — €)o™ (g1 — €)tan O(p1 — €) < ko™ (¢, )glg(l) cos 0(g, — €) 0
and
2 2 2 + 82
Jlim u(gr + )0 (g1 + &) tan 01 + &) < ko™ (o) lim - g s =0

It remains to consider in (2.10) the terms

e du 1 L du 1
/ — d / — .
/0 o (@)u(@) 7, osgd® /(pl+66(<p)u(<p)d(p il

Taking into account Remark 1., we have for all ¢ € [0, ¢;] and for suitable points
P <lp, o, o+ €], 0

du(p) _ du(e) du(e) _ (0—0 )dzu(w*)
dp — dp  do Voder
2
If we set M = max du(9) , N = max du(9) , bearing in mind condition (1.5)
oz de o do?
. u((p) / du . ((P B (pl)2 /
lim o(p)—| <NM lim —~—|o'(¢
o Jcos0(e) 7 Vg <M I costlp) 1)
oo | c0s0(9) ‘ 0(9)—0(g1) ‘
=01
and then
Pt du 1 4 du 1
li / o - / o .
fim | O (m)u(fp)d(p et /0 o (w)u(w)d(p cosp®
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Similarly we get

L L
du 1 du 1
. / haded _ / haded
lim /¢ o' (@)u(p) de /w o ((p)u(q))d(p o 6d(p

£-0 1+€ 1

Then (2.8) becomes

/(DuuDzzu — (Dyu)*)dx = " (D1u)* + (Dou)?] (% - K(q’)) de

1
5|
1" do(o) "
#3 | [0+ 0] (G2 = xle) ) do+ [ to) G oo

du , 1
2 Jg, do
1 ¢1 N M2 do L du 1
B 5/0 g ((p)coszed(pd(p+/ G(QD)(%) cosqu)
1t u? o 1 L du 1
2 /(p1 el Qwery cos26dq0 / dqo cos 09" /q,1 "o ((p)d(p c0s6?
(2.12)

—|—%u2(L) (L) tan O(L) — Eu 2(0)6%(0) tan 6(0).

Taking into account that u#(¢;) = 0 and the vanishing limit obtained in (2.11),

integrating by parts, the last two integrals in (2.12) become

i du 1
/
— d
/0 “o ((p)dqocosﬂ ¢

and

1 WA (L 1 [F P sin O d6
oD L [ i 0+ o' () 2 S,
2 2 Jo cos0do (2.14)
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Finally, since (1.5) implies tan O(L) = tan 6(0), from (2.12), (2.13), (2.14), we get

/Q(DuuDzzu — (D1ou)?)dx = %/O% [(D1u)* + (Dau)?] (%((p(p) - K(q’)) do
+ % /(pl [(Dlu Dgu <dZ—(;p — ) do
+fﬁmm$>§;whiz P0) g oo

% / cos 6 ) +0'(0) 2:;(; %]d(p + /(: o-((p)(:ll_;)zcols 0
AL coﬁeﬁzd@’ 5 | sagle )+ 001005 Sl

Then by conditions (1.3), (1.5), (1.6), we obtain estimate (2.11).
Letus observe thatestimate (2.11) holds true also for u € W?(Q). In factlet {u,} C W,
such that u, — u in W?(Q), we have

HMHHWIZ(Q) < HA”nHL2(Q)7
and hence, as n — oo, we get
ullwa o) < llAull2(q)

As in [6] we get the following result.
LEMMA 2.2. Let u € W/(Q), g > 2. Then ||u||Wq(Q> is an equivalent norm to
i
HMHWZJI(Q)'

In some stage of the proof we will use the following existence and uniqueness result for
the Laplacian.

LEMMA 2.3. Under assumptions (1.3), (1.4), (1.5), (1.6), for each f € L1(Q),
q = 2, the oblique derivative problem for the Laplacian

Au=f(x) ae. inQCR?

(2.25)
ue Wwl(Q)
is uniquely solvable.Moreover it results
lellws ey < @) 180l (2.26)

where c(q) : [2,+00) — [1,+00) is a continuous functionat ¢ =2 and ¢(2) = 1.

Proof. As it is known from the classical theory (cf. [11] page 16), the linear
oblique derivative problem in two dimensions is always a non-degenerate one if the
field [ is nowhere zero. That is, the problem has a finite index. On the other hand in our
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situation, since the vector field / is tangential to 0Q at a finite number of points, the
kernel of the linear problem is nontrivial. This difficulty is avoidable by prescribing the
values of the solution u at the points of tangency (cf. [11] page 14). This way a new
problem arises having a trivial kernel and therefore solvable for any data. Concerning
our problem, in virtue of (1.10), the values of u at the points of tangency are known
from the boundary condition and, hence, it follows the uniquely solvability of problem
(2.25), that is A is an isomorphism from W/(Q) in L1(Q), Vg € [2,4+oc[. Asa
consequence the linear inverse isomorphism Aq_l 0 L1(Q) — W/ (Q) is a continuous
one and the following estimate holds:

_ —1

In virtue of Lemma 2.1, ¢(2) = 1 and then ||A;'|| < 1. If we fix r € (2, +00), by
means of convexity lemma, we get, Vg € [2, 7]

A< A e A= < Azt

with é: ¢+ 1=¢ Va €]0,1[. Then

rig=2)
A7l < A7 far=

rg=2)
If we substitute c(q) with the function ||A;!| a2 , we obtain that ¢(g) is a continuous
function at ¢ = 2, with ¢(2) = 1.

Repeating the same arguments as in [3], bearing in mind Lemma 2.3, we may easily
derive the following result related to a Carathéodory operator <7 (x, £).

THEOREM 2.1. Under assumptions (1.3), (1.4), (1.5), (1.6), (A), there exists a
number qo > 2, such that ¥q € [2,qo[, Vf € L1(Q), the problem

{ o (x,D’u) =f(x) ae inQ
ue Wl (Q)

admits a unique solution and it results:

))vunmm

oc(g
< 2\

—2
where k(q) =27 (y*[c(q))? + 8%)1.
We note that ¢ is such that, for each g € [2, qo[, it results 1 — k(g) > 0.

3. Proof of the theorems

Theorem 1.1 will be proved by the aid of the Leray-Shauder fixed point theorem.
For this let us fix v € W'24(Q), g < G§ = min{qo,r}. Then f (x,v,Dv) belongs to
L1(Q). In fact, f, € L1(Q) for all ¢ < r and by condition (1.8)

If (v, Dv)| < fr(WD[F2(x) + [DVIP] < f1 (max [v])[f2(x) + [Dv[?].



ON AN ESTIMATE RELATED TO THE HESSIAN . . . 123

If we consider for fixed 7 € [0, 1] the problem
o (x,v,Dv,D*u) = 1f (x,v,Dv) a.e. in Q (3.1)
ue w(Q) .

by means of Theorem 2.1, for each g € (2, §) problem (3.1) admits a unique solution.
So we have defined an operator

T: Wh(Q) x [0,1] — W/(Q) — W'(Q)

where the image u = T(v, 7) is the unique solution of (3.1). It is easily seen that each
fixed point of the mapping 7'(+, 1) is a solution of (1.7). The condition <7 (x, z,p,0) =0
as required above and uniqueness of the solution of problem (3.1) show that T(v,0) = 0
for all v € W'24(Q). Taking into account Theorem 2.1, the continuity and the
compactness of the mapping T follows as in [10], [12]. To assert the existence of
a fixed point of 7'(-, 1) it remains to prove the a priori estimate

llullwiza@) < C (3.28)

with a constant C independent of u and 7 for each solution u of the problem

o (x,u, Du, D*u) = tf (x,u,Du) a.e.in Q (33)
u e Wl (Q). '
In a first step we prove a priori bound for |u||,o(q) -
LEMMA 3.1. Suppose that conditions (A) and (1.9) are fulfilled. Then
1
l[ul| Lo (@) < G = M + R{diamQ + sup,o ——} (3.30)

o(x)

for each solution u of problem (3.3), where R is such that IBR(()) h(p)dp = [, g(x)dx
and Bg(0) is a ball with center at the origin and radius R.

Proof. If we set
1
a’(x) = / 8—()c,u,Du,sDzu) ds € L*(Q),
o 0%

since &/ (x,z,p,0) = 0, the function #, solution of problem (3.3), solves the problem
a’(x)Dju = tf (x,u,Du) ae.inQ
{ ue Wl (Q).
Hence the estimate will follow from condition (1.9) and Theorem 2.6.1 in [14].

In the second step of the proof of the existence theorem we obtain a priori estimate
for the L?9(Q) norm of the gradient Du . For this goal an approach due to Amann and
Crandall [1] will be used.
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THEOREM 3.1. Suppose conditions (A), (1.3), (1.4), (1.5), (1.6), (1.8), (1.9) be ful-
1
filled. Then there exists a constant C = C(a., Y, 8, q, 8Q,f1,f2,M,R,diamQ,supag$)
x
such that, for each q € (2,q),
| Dut|| 1290y < C (3.31)
for each solution u of problem (3.3).
Proof. Let u be a solution of problem (3.3). The equation in (3.3) is equivalent
to the one
o (x,u, Du, D*u) + b(x)|Du|* — f2(x)u(x) = F(x)
where
S (x,u, Du) Tf(x, u, Du)f>(x)
b(x) = —1—""—; F(x) =1———F"—" — fa(x)u(x).
O T e T T e 20
From condition (1.8) it follows that b € L>(Q) and F € L?(Q) (g < r). In fact,

()| <fr(llull oo ()

and

[F)| < tf1([ul)f2(0)+2(0)|ulx)] < f2(x) [f1(ulleeei@) + ullee@] . (3.32)
For the fixed solution u of problem (3.3), we consider the problem with p € [0, 1]
{ A (x,u, Du, D*v) + b(x)|Dv|* — f2(x)v(x) = pF(x) ae.inQ (37)
v e WH(Q).

Let us note that the function v = 0 solves (3.7) if p = 0, and u solvesitif p = 1.
Consider solutions v; and v, of problem (3.7) corresponding to the respective values
p1 < p2 of the parameter p. In order to prove estimate (3.31), the first step is to
obtain an uniqueness result for problem (3.7). Then, in the second step, we estimate
|Dv2|124() in terms of ||Dvy]|24(q) , assuming p2 — p; > 0 small enough.

LEMMA 3.2. Let vi,v, € W/(Q) be solutions to problem (3.7) with p; < ps.
Then

[vi = vallzee (@) < (02 — P1) [f1 (llull oo ()) + llutll oo @)]- (3.34)

Proof. The functions vy, v, satisfy the problem
o (x,u, Du, D*vy) — o (x,u, Du, D*v;) + b(x)[|Dvi|* — | Dv,|*]

—f2(x)[vi(x) =v2(x)] = F(x)(p1 — p2) ae. inQ (3.9)
Vi — WV € qu(g)
It is possible to verify that

2
o (x,u, Du, D*v\) — o (x,u, Du, D*v;) = ZAU(X)DU(W — 1)
ij=1
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where Aj(x) fl 2 (x u, Du, s(D*v; — D*v;) + D*v;)ds and similarly

b(x) UD\/1|2 — |sz\2] = Zbi(x)D,-(vl —)

where b;(x) = 2b(x fo [sD vi—w)+D; vz]ds If we set w = v; — v, , problem (3.9)
is equivalent to

zw_ZA,, D,,w+Zb )Diw — fo(x)w(x) = F(x)(p1 — p2) ace. inQ

ij=1
w e W (Q).

By (3.32), since p; — p, is negative, we get
Lw = (p1 = p2)f2(x) [f1 (|l o)) + [lullzoo )] -

Setting W = (02 — p1) [f1([lullzoo(@)) + llullioo(e)] it results LW = —f,(x)W and
ZLw > ZW. Then the function w € W/(Q) satisfies the problem
ZLw—-—W)=0 ae. inQ

olw—W)

3l +ox)(w—W)<0 onoQ.

By means of Lemma 2.1.3 and Remark to the end of Chapter 2 in [14], we obtain w < W
a.e. in Q. If we replace w with —w and consider the same problem, we derive an
estimate for w from below w > —W a.e. in Q. Then

[Wllzoe @) < W = (02 — p1) [f1 (lull oo (@) + lJull oo ()] -

Thus the statement is proved.

COROLLARY 3.1. If problem (3.7) has a solution v for some p € [0, 1], then it is
a unique solution.

Proof. 1t follows from (3.34) putting p; = ps .
Now we are in position to prove a gradient estimate.
Let us consider the equation

Aw=Aw—«a [sz(x, u, Du, D*vy) — o (x, u,Du,Dzvz)} + oH (x)

where
H(x) = F(x)(p1 — p2) — b(x) [[Dvi|* = [Dv2[*] + f2(x)w(x).



126 SOFIA GIUFFRE

By means of condition (A), the Minkowsky inequality and Lemma 2.3 we have
1 2 ‘71 1
(/ \Aw|‘1dx)q < (/ (‘AW*O({JZ%(X,u,Du,Dzvl)*JZ{(x,u,Du,D2V2)}‘ ) dx)q
Q Q
é q=2 q l
+a( / H(x)qu) <27 (r¥e(q) ,,( / Aw|qu)
+a</|H |‘1dx> = (/ Aw|‘1dx) +O£(/ |H(x qu)

Bearing in mind Theorem 2.1, k(g) < 1 forall g € (2, ), then it results

(o) < =i [morar)

and therefore, from Lemma 2.3,

ac(q)
Iwllwae) < T k(q) |1H ()] 2a(c2)

From this, taking into account estimate (3.30), it follows

wllwae) < € {(p2_Pl)|F(x)||Lq(Q)+Hb(x) [IDv1 =D, ] “Lq(g)+|lfzwlm(9):|

N

G [Z(Pz—m)ﬂfz|L4<Q)V1(G)+G}+||b( Moo @[[[Dvi P=1Dv2 | ]

Co (2l 1600 22, G) [1+ 1DV |20 ) + 1D 200 5.10)
3.10

We can estimate the 1?7 -norm of Dw by the help of the Gagliardo-Nirenberg inequality
[9] and by estimates (3.30) and (3.34) it follows

Wllwao) < Klwllyao) (02 = POIA(G) + G (3.37)

1DW| 7200y < KlIWllzos (o)
Bearing in mind bound (3.10),
Iwlsay < C2[1+ 1D ) + ko2 — Pl 1(G) + G

and hence
”WHqu(Q) <G+ HDVIH%ZII(Q)]

assuming (0, — p1) < 7 to be so small that Cok(p, — p1)[f1(G) + G] < 1.
If we consider (3.37), by the last inequality we derive

1DW|720(0) < k(02 — 1) [f1(G) + GIC3 [1 + [|DV1|24gy)]
whence

HDVZH%M(Q) < C||DV1||i2q(g) + C||DWH%24(9) S Gt CSHDVIH%M@)
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Setting p; = 0, p, = 1 and bearing in mind uniqueness result (Corollary 3.1), we get
||DVn||i24(g) <Gy (3.38)

whenever there exists the solution v, of problem (3.7) with p = 7.
Thus if we put p; = kn and p, = (k+ 1)n with k = 1,...,m — | and repeat the
above procedure m times, we derive the desired estimate

1Dul|Z24(0 < Ce-

Applying once again Leray-Shauder fixed point theorem, bearing in mind estimates
(3.34), (3.38), we derive solvability of problem (3.7) with p = n. This completes the
proof of Theorem 3.1.

Finally, from bounds (3.30) and (3.31) we derive estimate (3.28) and therefore the
existence result, i.e. Theorem 1.1.
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