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RATE OF CONVERGENCE OF A KANTOROVICH VARIANT
OF THE MEYER-KONIG AND ZELLER OPERATORS

ULRICH ABEL, VIJAY GUPTA AND MIRCEA IVAN

(communicated by Ram N. Mohapatra)

Abstract. This paper is concerned with a Kantorovich variant of the Meyer-Konig and Zeller
operators which was defined by Maier, Miiller and Swetits. We derive sharp bounds for the
first and second central moments yielding estimates for the rate of convergence in terms of the
modulus of continuity. Finally, we study the asymptotic behaviour of these operators.

1. Introduction

The Kantorovich variant M, of the Meyer-Kénig and Zeller operators, as defined
by Miiller [11] and studied by Maier, Miiller and Swetits [10], is given by

M (f3x) = (n4+ 1) (12" S (’”i* 1>xk () a (1)

k=0

where I, = [A, 2], The operators (1) were treated by several authors. Guo

[7, Lemma 5] and Love e.a. [8] studied the convergence for functions f of bounded
variation. To this end they gave estimates for the second central moment of the operators
M, . Throughout the paper, for each real x, put v, (f) = t — x. Guo [7, Lemma 5]
showed, that for each fixed x € [0, 1], there holds the asymptotic relation

x(1—x)?

— +o(n") (n — o).

W, (v:2) =
However, the latter result does not imply his Eq. (2.10)

1-x)? . 2x (1 — x)?
x{1—x)° 5 <, (i) < 20
n n

uniformly in [0, 1] which is crucial for his main result. This was pointed out in [§].
Love e.a. [8, Lemma 7] proved the estimate
4x(1—x) (1—x)7

M, (yi;x) <
(Vi) n—1 3(n—1)>%

0<x<1).
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In this note we derive estimates for the first and second central moments of the
operators M, , where the main order terms are optimal. As a consequence we obtain
estimates for the rate of convergence by the modulus of continuity. Finally, we treat the
asymptotic behaviour of the operators M, . In particular we give a Voronovskaja type
result. Analogous results for the ordinary Meyer-Konig and Zeller operators [9] in the
slight modification of Cheney and Sharma [5]

M, (f3x) = (1 X)”Hli (nzk)xkf <n—I|<—k>

(see also [6]) are contained in [1] and [2].

2. A sharp estimate of the first and second central moment

In this section we focus on the first and second central moment of the operators
M, .
PROPOSITION 2.1. For the first central moment Mn (W; x), we have the estimate
(1-x)(1—-3x) (1—x)"(4x—1)
2(n—1) 1)

M, (yi;x) = +nl)  (>5), (2

1]

where the remainder r," (x) can be estimated by

R -x _ 3(1—x)* 20
(n—1)=3 S < (n—1)>2 (1+n—4) (e 0, 1]).

Since —1 < (1 —x)* (4x — 1) < 1/4 on [0, 1], we have the
COROLLARY 2.2. For each choice of constants C; < —1 and C, > 1/4, there
exists an integer ng € N, such that the estimate
(I —x) (1 —3x) < (0}
2(n—1) T (n—1)(n—2)

C
(n—1)(n-2)

is valid, for all n > ny. In particular, for each constant C > 0, there holds

< Mn (u/x;x) -

(I1-x)(1-3x)—-C
2(n—1)

(1-x)(1-3x)+C
2(n—1)

<M, (Y3 x) <
for all sufficiently large integers n.

PROPOSITION 2.3.  For the second central moment M, (qlf;x), we have the
estimate

x(1—x)? L@ (x)

) 2. —
M (Wx’x) - on—1 (n—l);
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where the remainder 1, (x) can be estimated by

Pl el

n3

with a constant K independent of n. More precisely, there holds

“”<ww<iaﬁg

(n—1)7> " Z (n—1

I~
=
N
=
N
=

where the polynomials a, (x) are given by

a(x) = =(1—x)7° (1—20x+31x2),

a(x) = = (1—x)° (367 —547x+72%),

00 W| = W =

as(x) = 3(1- x)* (227 — 72x),
as(x) = 480(1—x)
and a (x) is a certain polynomial independent of n.

COROLLARY 2.4. For each choice of constants C; < —0.4 and C, > 1/3, there
exists an integer ng € N, such that the estimate

x(1—x)? C

Ci <
n—1 "~ (n—1)(n-2)

- 2.
TR R

0<x<1)

is valid, for all n > ny. In particular, for each constant C > 0, there holds

x(1-x?-cC

n—1

2
< M, (ix) < FUL=H HC
n—1
for all sufficiently large integers n.

The corollary is an immediate consequence of Proposition 2.3, since, for all x €
[0,1],

_ 2
0387877~ 2 V993 (63 T \/993)

3813248
1

— _ _ < < .

a (124 (61 \/993)> < ar (x) < a2 (0)

The next two lemmas follow by direct computation.

LEMMA 2.5. For r=0,1,2,..., and n > r, there holds

nnm (n+k—1 xk (1-x)
(I_X)Z( k )(n+k1)ﬁ_(n1)ﬁ'

k=0
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LEMMA 2.6. The identities

1 1 1! 2!
woow—l (w_12 Wi
B 1 1! 2! 3! 4!
Tl w1 i W
1 1 2! 31 41

T B N P s S T

are valid, for all w, for which the denominators do not vanish.

Proof of Proposition 2.1. After a short calculation we have

. (n+k+ 1) (k1) n o p 2tk
D e /atdt n (n+k+1) 2[(n+k+1)ﬂ2

_ n 1 +1
o 2\n+k+1 n+k)’

By definition (1), we obtain

. n 2 /n+k—1 1 1
M,(y:x)=1—x—=(1—x)" X .
(i) ¥=5 (= Z( k ) <n+k+1+n+k)

k=0

Application of Lemma 2.6 yields
1 1 2 3 8 24 6 24
+

wHlwo w1 7(w—1)g+(w—1)3 (w+1)(w—1)37(w_1)1+ﬁ

and we obtain, for w > 4,

~30(w-3) 11y (2 3 8 -6
<w+1><w1)i<(w+1+w) (w—l (w1)2+(WI)3><Wi'

Putting w = n 4 k we conclude that

N > k—
Mn(lllx;)—l—x—— l—x” (n+ )

k=0

2 3 8 308
o 3+ 3 4
nt+k—1 (m+k—-17> m+k—17 @m+k-1)
with 0 < & <1 (k=0,1,2,...). Using Lemma 2.5 we obtain with a certain number

§=¢(nx)e(01)

S . nf20-x 3(01-x° 8(1-x 30&(1-x"
M) = 1= 2( A A )
_ (=039 (1-x (-1

V[l]x
2(1’1*1) + (nfl); +n()>
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where
.4upﬁf<ﬂww:—uu—ﬂﬁ4xu—ﬂ4 60& (1 —x)*
(-1 (n—1)* (n— 1)
(1—x)°(3—15x) + 60 (1 —x)*/ (n—4)
< (=1 |

which implies the inclusion of r,[ll] (x). O
Proof of Proposition 2.3. Using the obvious equation

3 3
1 k+1 1 k
2 )2 - _ — —
/I,Wx(t)dt_/lk(t x) dt—3(n | x) 3<n k x>

some easy calculations yield

. (n+k+ 1) 5
<+1>7/Ikwx<r>dr

(n+1)?%
1+2(n+k)
2
— )
g +(”<n+k><n+k+1> )
1 k+1 2+ K+l k(K 2
3 n+k+1 n+k+1n+k n—+k '

By definition (1), this implies

M;@ém)zu-mVE:(”+k1)phmjyﬁ+bmm@x+bumkﬂﬁ,

k
k=0
(4)
where the coefficients can be written in the form
b2 (l’l,k) - 1a
n n
b k) = -2
L (k) (n—s—kJrn—&—k—&—l) ,
2 2 1 2
bo(n,k)zl n+n +n n 1 n

— + X
ntk+1  n+k  3(n+k+1)7>n+k)’
By application of Lemma 2.6 with w = n + k, we obtain

2n 3n 8n

b n>k < _2+ - + ’
t(n.8) ntk—1 (n+k—17% (n+k—1)7>
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bo (I’l, k)

gl—(n2+n)

2! 3! 4!
— + J—
ntk—1  (n4k—1)%  (n+k—1)2  (n+k—1)*
1 1! 2! 3! 4!

- + +
ntk=1  (n4k=1%  (n+k—12  (ntk=1)*  (n+k—1)>

4 )

P S
3 (ntk—1)*
- —2n n4+3n  —4n®> —8n  (55/3)n*+30n 24 (n*—n) .
ntk—1  (n4k—1)%  (ntk—1)> (n+k—1)% (n4k—1)

By Lemma 2.5, we conclude

= k—1
-0y (n+k )b2 (n, k) ¥H2 = 2,

k=0

(1 fx)"i (””; 1)1;1 (n, k) 4!

k=0
2nx (1 —x) 3nx(1—x)°  8nx(1—x)°
n—1 (n—1)? " (n—172
e -0 -1y (1)’

n—1 (n—1)> (n—172 "~

< —2x+

and

oo

xS (””; 1)b0(n,k)xk

k=0

—X 1-x* (1-x°
n—lJr(n +3n) (n—l)g (4n +8n) (n—l)i

55 1—x)* 1—x)°
+ (?n2 + 30n) En — 1; +24 (n2 — n) En — 1;2
2
2 2x (1 —x) (11 — 2x) N (1—x)"(1 —26x2+55x2)
n— 3(n—1)=
(1 —x)* (367 — 619x + 72x7)
3(n—1)>
L8a —x)* (227 — 72x) L 4800 —x)°
3(n—1)* (n—172
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Collecting these estimates yields, by Eq. (4),

~ —x)? 2430 (1 —x)) (1 —x)*
Wy (vix) < x2—2x+1—2n(1 x) +(n +3n( x)z)( x)

n—1 (n—1)
3 4
B (4n* + 8n((1_1);)§) (1 —x) N (?nz N 30n) (1 :)lc;i
2_, (1 *x)s
+24 (n ) = l)i.

and after a short calculation it results representation (3) with the estimate

2] > ar (x)
r§ (x)<Z_;(n_l)

The estimate of r, (x) from below follows by a refinement of the identities gathered in
Lemma 2.6. The very technical proof is omitted here. [

1~

3. The rate of convergence

The estimates of the first and second central moment enable us to obtain estimations
for the rate of convergence by the first modulus of continuity. The corollaries of the
preceding section imply that for each € > 0, there exists an integer ny € N, such that,
for all n > ng there holds

(1—x)|1—3x| +¢

M, (yiix)| < Y1) (0<x<1),
2
|Mn(uf.3;X)|<% O<x<1).

By standard arguments (see, e.g., [3, Theorem 5.1.2]) we obtain the following results.

THEOREM 3.1. Let f € C[0,1] and § > 0. For each € > 0O, there exists an
integer ny € N, such that

2
e R

o (f;0) (xe€[0,1], n>no).

Moreover, if f is differentiable on [0, 1] with ' bounded on [0, 1], we also have

(1—x)|1—3x| +¢

S )

M (f3x) = f ()] <

x(1—x)P?+e¢ 1 [x(1—x)7+

€ /.
+ 7’1_1 1+g 7’1_1 (J)(f,(S)
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Theorem 3.1 applied to & = \/ (x(l —x)’+ 5) / (n — 1) implies the following
corollary.

COROLLARY 3.2. Let f € C[0,1]. For each € > 0, there exists an integer
no € N, such that

x(1—x)7>+¢

— (x€]0,1], n> ng).

M (f3x) = f ()] <20 | f:

Moreover, if f is differentiable on [0, 1] with ' bounded on [0, 1], we also have
|Mn(f;x) -f (x)|

(1—x)|1—3x| +¢

< T Wl

4. The asymptotic behaviour

Fix x € (0,1). Put g, (f) = (1 —#)". Then we have, for r =0,1,2,...,

nr+1 1 1
(1) dr = O k1) k=0,1,2,...).
e ar= g (o ey ( )

Application of the formula

r! >
- = / e ¥ dt (z>0)
< 0

leads to
n ! < —(n+k)t —(n+k+1)t
o) = | t[e " }dt (k=0,1,2,..))
) !

and we obtain

N r+1 1 0 k 1 oo
M, (gr50) = —2 2~ (n +, ) (1—x)" (n + L + )x"/o ek [e_"’ — e_(”“)’} dt
k=0

(r+1)!
Lt

B r+1 1—x n+let_1 .
_( l—x o —x* dr.

A change of variable replacing ¢’ — x by (1 —x) e’ yields the Laplace integral

r+1
M, (gr:x) = / log" (1+ (1 —x) (' —1)) e~ (' — 1) dr1.
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Thus, Mn (gr;x) can be written as the Laplace transform of the function
wex (1) = (e —1) log" (1 + (1 —x) (e —1)).

Note that w,, is holomorphic in a neighborhood of the origin # = 0 and satisfies the
growth condition w,, (f) = O (¢"¢') as t — +o00. Thus, we can apply Watson’s Lemma
(see, e.g., [4, C.3, p. 614]), obtaining the complete asymptotic expansion of the latter
integral

o0

e’} [r]
k!
/ log" (1+ (1 —x) (¢ — 1)) e~ (¢ — 1) dr~ 3 —2 %
0

— n— 00),
pord (l’l+ 1)/<+1 ( )

where the coefficients a,[:] are determined by the power series expansion

wea (1) = > it
k=0

It remains to calculate the coefficients a,[:] , which depend on r and x. We make use of

the well-known formulas
LS
(e —1) :r!ZSkH (teR)
and
log" ( =r! Zo-kk! (1] < 1),

where the quantities S; and oj denote the Stirling numbers of the first and second
kinds, respectively. We obtain

— 1
wey (1) = r!Z(;&m(l—x)“(et—1)’Hl
u=r

= r u - #‘Htv
r!ZGM(lfx) (w+1) s vl

v=u+1

vvl

rl Z ,Z w+1)shon (1—x)"

v=r+1

and, therefore, ak =0 (0<k<r),and
s
:Fz u+1Son (1-x)* (k=r+1).

Combining the latter results yields

=~

r+1 1 —1

N n
Mn 8rsX) ~
(6729 r+1k§1 (n+1)*

(,u—&-l)SfHO';(l—x)“ (n — o0).

r

=
Il
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For the first central moments, we obtain

Mn (W)?JC) = 1a
(I=x)(1=3x) 2x(I—x)(1—2x)

M, (yi;x) = T i) + i1y +0(n),
W, (v2ix) = x(nl;f)zﬂl")23(2“1;‘)’;*31’“2) o),
M, (ylix) = x(lzzzsl)z 19x)+0(n*3),

i) = 206 e,

We mention that M, (y$;x) = O (n™3) (s=35,6) and M, (y5;x) = O (n™*) (s =
7,8).

In order to derive an asymptotic expansion of the operators M, we use the fol-
lowing general approximation theorem for positive linear operators due to Sikkema [12,
Theorem 3] (cf. [13, Theorems 1 and 2)).

LEMMA 4.1. Let I be an interval. For q € N and fixed x € I, let A, : Loo(I) —
C(I) be a sequence of positive linear operators with the property

Ay(wlix) = O(n~ L2y (n — x0) (s=0,1,...,2g+2).

Then, we have, foreach f € Lo (I) whichis 2q times differentiable at x, the asymptotic
relation

SR
Anlfsx) =D PSP A ) + o) (n— o0). (5)
—~ !
If, in addition, f 21+ (x) exists, the term o(n~9) in(5) can be replaced by O(n=(4+V)),

THEOREM 4.2. Let f € Ly [0, 1] and assume that ™ (x) exists at a point x €
(0,1). Then, we have the asymptotic relation

ci(fix) o (fix) _
L—— +(n+1)2+0(n %)

(n —00),

where the coefficients ¢ (f;x) (k= 1,2) are given by
1
e1 (F3) = 3 [(1=x) (1= 30" () +x(1=21" ()]
e (fix) =2x(1—x) (1 —2x)f" (x) + é (1—x)* (1 - 14x +313) f7 (x)

(=0 (5= 1907 () + 22 (1= 0 ().
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COROLLARY 4.3. (Voronovskaja-type theorem) Let f € Lo [0, 1] be twice dif-

ferentiable in x € (0,1). Then, we have

!

lim 1 (¥, (F13) —f (1)) = = (x(l —x)zf’(x)> .

n—o0 2

REMARK. For the first and second central moment, we obtain after a short calcu-

lation the asymptotic relations

(1-x)(1-3x) (1—x)7x—1)

W) =0y T e w00
iy = SO (0 (22008 300)

n—1 3(n—1)(n—2)

which is a consequence of Propositions 2.1 and 2.3.

(11]

[12)
[13]
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