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ERGODICITY COEFFICIENT AND PERTURBATION

BOUNDS FOR CONTINUOUS–TIME MARKOV CHAINS

A. YU. MITROPHANOV

Abstract. For the distribution of a finite, homogeneous, continuous-time Markov chain, we derive
perturbation bounds in terms of the ergodicity coefficient of the transition probability matrix.
Our perturbation bounds improve upon the known results. We give sensitivity bounds for the
coefficient of ergodicity, providing a sufficient condition for the uniqueness of the stationary
distribution of the perturbed Markov chain. These results are used to obtain estimates of the
speed of convergence for singularly perturbed Markov chains.
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