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ERGODICITY COEFFICIENT AND PERTURBATION

BOUNDS FOR CONTINUOUS–TIME MARKOV CHAINS

A. YU. MITROPHANOV

(communicated by I. Pinelis)

Abstract. For the distribution of a finite, homogeneous, continuous-time Markov chain, we derive
perturbation bounds in terms of the ergodicity coefficient of the transition probability matrix.
Our perturbation bounds improve upon the known results. We give sensitivity bounds for the
coefficient of ergodicity, providing a sufficient condition for the uniqueness of the stationary
distribution of the perturbed Markov chain. These results are used to obtain estimates of the
speed of convergence for singularly perturbed Markov chains.

1. Introduction

In many areas of application of Markov chains, such as physics and chemistry, the
numerical values of some parameters of a model chain must be taken from experiment.
The experimental data surely are not absolutely accurate, and we are interested in
knowing how the uncertainties in the parameter values affect the distribution of the
chain under study. We may also want to solve the inverse problem: how accurate
should our experimental data be to guarantee a given accuracy of determination of the
distribution vector? This can be accomplished if we have computable estimates of
sensitivity of the distribution vector to changes in the parameters.

We shall investigate the question of sensitivity to perturbations in the following
setting. Consider two homogeneous, continuous-time Markov chains, X = {X(t), t �
0} and X̃ = {X̃(t), t � 0} , with finite state space S = {1, . . . , m} (m � 2 ) and
generators Q = (qij) and Q̃ = (q̃ij) , respectively (Q �= Q̃ ). Let p(t) = (pi(t))
and p̃(t) = (p̃i(t)) be the respective state probability vectors of X and X̃ (we regard
vectors as row vectors). Our goal is to estimate the change in the distribution, z(t) :=
p̃(t) − p(t) , at a time t > 0 , given the change in the generator, E := Q̃ − Q , and the
change in the initial distribution.

For arbitrary X and X̃ , the following inequality holds:

‖p̃(t) − p(t)‖ � ‖p̃(0) − p(0)‖ + T‖E‖, 0 � t � T < ∞, (1.1)

where ‖ ·‖ denotes the l1 -norm (absolute entry sum) for vectors and the corresponding
induced norm (maximum absolute row sum) for matrices; see [8, 10, 15]. It was shown
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in [9] that if X has a unique stationary distribution, then the inequality in (1.1) is strict.
The uniqueness of the stationary distribution also makes it possible to obtain bounds
that are uniform over infinite time intervals. We study such bounds in this paper, and
from now on we assume that X does have a unique stationary distribution, π .

The two main approaches to bounding sensitivity to perturbations on infinite time
intervals are:

(a) to obtain sensitivity boundsusing exponential boundson the speed of convergence
to stationarity [1, 5, 9, 15, 16];

(b) to obtain sensitivity bounds in terms of the l1 ergodicity coefficient of the tran-
sition probability matrix, P(t) [2, 3, 4].

When used as a modeling tool, a Markov chain is often solved numerically by applying
standard methods. In such cases, it may be desirable to analyze the sensitivity to
perturbations using the knowledge of P(t) for some t > 0 (exponential convergence
bounds often are not easy to obtain). This justifies the development of the approach (b),
which is the main purpose of our paper. In Section 2 we obtain new perturbation bounds
improving upon the results of Anisimov [3]. In Section 3 we study perturbations of the
ergodicity coefficient of P(t) , which allows us to analyze the sensitivity of the perturbed
chain. Section 4 is devoted to applications of our results to singularly perturbed Markov
chains; for a background on such chains, see [6, 7, 13, 14].

2. The ergodicity coefficient and sensitivity
with respect to perturbations

In this section we obtain upper bounds on the l1 -distance between the distributions
of X and X̃ . Before proceeding, we note that l1 -distance has a clear probabilistic
interpretation: for all randomvariables V and Ṽ taking values in S with the respective
distribution vectors p and p̃ , the quantity ‖p − p̃‖ is twice the variation distance
between the distributions of V and Ṽ :

‖p − p̃‖ = 2 max
A⊆S

|P{V ∈ A } − P{Ṽ ∈ A }| (2.1)

(some authors define the variation distance as being equal to the right-hand side of
(2.1)).

For a square real matrix A = (aij) of order m , define the l1 coefficient of
ergodicity by

τ(A) = sup
‖v‖=1
ve′=0

‖vA‖ = 1
2 max

i,j∈S

∑
k∈S

|aik − ajk|,

where e = (1, 1, . . . , 1) and ′ denotes transpose. For a background on ergodicity
coefficients, see [11, 12]. Set βt = τ(P(t)) , t � 0 . The uniqueness of the stationary
distribution of X implies that βs < 1 for all s > 0 ; this property will be used in the
sequel. The magnitude of βs also allows us to judge whether or not X has a unique
stationary distribution, as is shown by Proposition 2.1.

PROPOSITION 2.1. The following three statements are equivalent:
(a) βs < 1 for all s > 0 ;
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(b) there exists s > 0 such that βs < 1 ;
(c) the chain X has a unique stationary distribution.

The next theorem gives perturbation bounds for the distribution of X in terms of
βs .

THEOREM 2.1. If 0 < s < t , then

‖z(t)‖ < β�t/s�
s ‖z(0)‖ +

⎛
⎝ s

(
1 − β�t/s�

s

)
1 − βs

+ β�t/s�
s (t − s�t/s�)

⎞
⎠ ‖E‖. (2.2)

For all s > 0 ,

sup
t�0

‖z(t)‖ < ‖z(0)‖ +
s‖E‖
1 − βs

; (2.3)

if π̃ is a stationary distribution of X̃ , then

‖ π̃ − π ‖ <
s‖E‖
1 − βs

. (2.4)

Proof. The vectors p̃(t) and p(t) satisfy the equations

dp̃(t)/dt = p̃(t)Q̃, dp(t)/dt = p(t)Q, t � 0,

which implies that

dz(t)/dt = z(t)Q + p̃(t)E, z(0) = p̃(0) − p(0).

The solution to this initial-value problem has the form

z(t) = z(0)P(t) +
∫ t

0
p̃(u)EP(t − u)du,

which yields

‖z(t)‖ � ‖z(0)P(t)‖ +
∫ t

0
‖p̃(t − u)EP(u)‖du. (2.5)

Since the matrices Q and Q̃ have zero row sums, the same holds for E , which implies
that p̃(t)Ee′ ≡ 0 . We have

‖p̃(t − u)EP(u)‖ �
∥∥∥∥ p̃(t − u)E
‖p̃(t − u)E‖P(u)

∥∥∥∥ ‖E‖ for p̃(t − u)E �= 0;

from the above inequality and the definition of τ(·) we obtain that ‖p̃(t− u)EP(u)‖ �
βu‖E‖ . Similarly, ‖z(0)P(t)‖ � βt‖z(0)‖ . This, together with (2.5), gives

‖z(t)‖ � βt‖z(0)‖ + ‖E‖
∫ t

0
βudu, t � 0 (2.6)

(this inequality was first proved in [9]).
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For all stochastic matrices P1 and P2 , τ(P1P2) � τ(P1)τ(P2) and τ(P1) � 1 .

This gives βt � β�t/s�
s for all s > 0 , t � 0 . If t > s and t/s is not an integer, then

βs < 1 implies that βt < β�t/s�
s . Thus, for t > s , we have∫ t

0
βudu <

∫ t

0
β�u/s�

s du = s
(
1 + βs + β2

s + · · · + β�t/s�−1
s

)
+ β�t/s�

s (t − s�t/s�)

=
s
(
1 − β�t/s�

s

)
1 − βs

+ β�t/s�
s (t − s�t/s�).

This, together with (2.6), gives (2.2). We also have

sup
t�0

‖z(t)‖ � ‖z(0)‖ + ‖E‖
∫ ∞

0
βudu,

∫ ∞

0
βudu <

∫ ∞

0
β�u/s�

s du = s
(
1 + βs + β2

s + · · · ) =
s

1 − βs
, (2.7)

hence (2.3) follows.
Setting p̃(0) = π̃ and passing to the limit as t → ∞ in (2.6), we obtain that

‖ π̃ − π ‖ � ‖E‖
∫ ∞

0
βudu.

This inequality and (2.7) prove (2.4). �
Now we compare our results with those of Anisimov [3]. It follows from Theo-

rem A.1, Lemma A.1 and (2.1) that if there exists such s > 0 that

βs < 1 and s max
i∈S

∑
j∈S \{i}

|qij − q̃ij| � ε,

then
1
2‖P̃(t) − P(t)‖ � ε

1 − βs

(
1 − β�t/s�+1

s

)
,

where P̃(t) = exp(tQ̃) . Using this inequality, together with Proposition 2.1 and the
triangle inequality, we obtain the following bound: for arbitrary s > 0 ,

‖z(t)‖ � ‖z(0)P(t)‖ + ‖P̃(t) − P(t)‖
� ‖z(0)‖β�t/s�

s +
2s‖E0‖
1 − βs

(
1 − β�t/s�+1

s

)
, s < t, (2.8)

where E0 is the matrix obtained from E by replacing its diagonal entries with zeros.
It is easy to see that

s
(
1 − β�t/s�

s

)
1 − βs

+ β�t/s�
s (t − s�t/s�) <

s
(
1 − β�t/s�+1

s

)
1 − βs

, 0 < s < t.

This inequality and Proposition 2.2 below show that our bound (2.2) is sharper than
(2.8).
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PROPOSITION 2.2. The following inequality holds:

‖E‖ � 2‖E0‖;
in this inequality an equality is attained if and only if in every row of E all off-diagonal
non-zero entries are of the same sign. In this case, ‖E‖ = 2 maxi∈S |eii| , where eij

are the entries of E .

Proof. Since
∑

j∈S qij =
∑

j∈S q̃ij = 0 ,
∑

j∈S eij = 0 and |eii| �
∑

j∈S \{i} |eij|
for all i ∈ S . This implies that ‖E‖ � 2‖E0‖ . The equalities |eii| =

∑
j∈S \{i} |eij| ,

i ∈ S , hold if and only if in every row of E all off-diagonal non-zero entries are of the
same sign. When this is the case, ‖E‖ = 2‖E0‖ = 2 maxi∈S |eii| . �

3. The ergodicity coefficient of the perturbed chain

Sometimes it is clear from the structure of the perturbation that X̃ does have a
unique stationary distribution (e.g. when Q̃ is irreducible). In the general case, it
can be shown that if X has a unique stationary distribution and Q̃ is sufficiently close
to Q , then X̃ also has a unique stationary distribution. The question arises what is
“sufficiently close”; we shall give one condition for this in terms of βs . We need the
following theorem.

THEOREM 3.1. For all t > 0 ,

|β̃t − βt|
{

< tτ(E), τ(E) > 0,
= 0, τ(E) = 0,

(3.1)

where β̃t = τ(P̃(t)) . If τ(E) > 0 , then, for all s > 0 ,

sup
t�0

|β̃t − βt| <
sτ(E)
1 − βs

.

Proof. For all square real matrices A and B , τ(A + B) � τ(A) + τ(B) . This
implies that

|β̃t − βt| � τ(Z(t)),

where Z(t) = P̃(t)−P(t) . In a similar way to the proof of Theorem 2.1, we obtain that

Z(t) =
∫ t

0
P̃(u)EP(t − u)du, t > 0,

which yields

τ(Z(t)) �
∫ t

0
τ(P̃(t − u)EP(u))du. (3.2)

It follows from the definition of τ(·) that if A and B are square real matrices, and A
has equal row sums, then τ(AB) � τ(A)τ(B) . The matrix P̃(t)E has zero row sums.
Thus, for all t, u > 0 , we obtain that

τ(P̃(t − u)EP(u)) � τ(P̃(t − u)E)τ(P(u)) � βuτ(E). (3.3)
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This, together with (3.2) and the fact that βs < 1 for all s > 0 , proves (3.1).
If τ(E) �= 0 , then (2.7), (3.2) and (3.3) imply that

sup
t�0

τ(Z(t)) � τ(E)
∫ ∞

0
βudu <

sτ(E)
1 − βs

, s > 0. �

COROLLARY 3.1. If βs + sτ(E) < 1 holds for some s > 0 , then X̃ has a unique
stationary distribution.

Proof. If the condition of the corollary is satisfied, then the relations (3.1) imply
that β̃s < 1 . Applying Proposition 2.1 to X̃ , we obtain the result. �

COROLLARY 3.2. If β̃s < 1 , then

s

1 − β̃s
� s

1 − βs + sτ(E)
.

If βs + sτ(E) < 1 , then
s

1 − β̃s
� s

1 − βs − sτ(E)
.

Proof. Follows directly from (3.1). �
In the bounds (2.3) and (2.4), the quantity s/(1 − βs) is in fact a ‘condition

number’ with respect to perturbations in the generator. If we know βs , we can assess
the sensitivity of X̃ to perturbationsby using boundson the respective condition number,
s/(1 − β̃s) , as is shown below.

In s/(1 − βs) , we can put s = p , where p = 1/ maxi,j∈S |qij| . This choice of s
shows that if we multiply Q by a positive number greater than 1, then the sensitivity
of the chain X to perturbations in the entries of Q will decrease. Using this approach,
we can compare the sensitivity of X and X̃ ; all we need is to compare p/(1− βp) and
p̃/(1 − β̃p̃) , where p̃ = 1/ maxi,j∈S |q̃ij| . This can be done using Corollary 3.2. If
the quantity τ(p̃Q̃− pQ) is sufficiently small, then Corollary 3.2, applied to the chains
with generators pQ and p̃Q̃ , gives

1

1 − β̃p̃
� 1

1 − βp − τ(p̃Q̃ − pQ)
. (3.4)

Now if p̃ < p so that

p̃

1 − βp − τ(p̃Q̃ − pQ)
<

p
1 − βp

,

then (3.4) gives
p̃

1 − β̃p̃
<

p
1 − βp

,

which implies that, in the case being considered, the chain X̃ is less sensitive to
perturbations in the generator than the chain X .
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To conclude this section, we briefly compare our sufficient condition in Corol-
lary 3.1 with similar conditions which follow from the results of Anisimov [2, 3].
Proposition A.1, Lemma A.1 and Proposition 2.1 imply that if βs + 2s‖E0‖ < 1 for
some s > 0 , then X̃ has a unique stationary distribution. If we use the inequality
‖P̃(t) − P(t)‖ � t‖E‖ (implied by (1.1)) instead of Lemma A.1, we obtain the suf-
ficient condition βs + s‖E‖ < 1 . These results are weaker than Corollary 3.1, since
τ(A) � ‖A‖ for every square real matrix A .

4. Applications to singularly perturbed Markov chains

Let ε be a small positive number. Consider two singularly perturbed continuous-
time Markov chains, X1(ε) = {X1(ε, t), t � 0} and X2(ε) = {X2(ε, t), t � 0} , with
state space S , generators ε−1Q and ε−1Q + Q̃ , and distribution vectors p1(ε, t)
and p2(ε, t) , respectively. We assume that X1(ε) and X2(ε) have unique stationary
distributions π 1 and π 2(ε) . Note that uniqueness of the stationary distribution in the
time-homogeneous case is equivalent to weak irreducibility, an important condition in
the theory of singular perturbations for Markov chains [6]. Markov chains of the same
structure as X1(ε) can represent fast-changing processes in real-life problems, while
chains having the same structure as X2(ε) can be used for modeling systems that have
slow and fast components.

For singularly perturbed Markov chains, it is of interest to investigate their as-
ymptotic behavior when ε → 0 . For chains with sufficiently smooth generators, the
usual way of doing this is to obtain asymptotic expansions in terms of ε for the state
probability vectors [6, 7]. Here we apply the results of Section 2. to obtain bounds on
the quantity ‖p1(ε, t) − p2(ε, t)‖ , as well as estimates of the rate of convergence of
p2(ε, t) to π 1 as ε → 0 ; these bounds are uniform over infinite time intervals.

Let X̂1(ε) = {X̂1(ε, τ), τ � 0} and X̂2(ε) = {X̂2(ε, τ), τ � 0} be continuous-
time Markov chains with state space S , generators Q and Q + εQ̃ , and initial
distributions p1(ε, 0) and p2(ε, 0) , respectively. For the vectors p̂1(ε, τ) := p1(ε, ετ)
and p̂2(ε, τ) := p2(ε, ετ) , the following equalities hold:

dp̂1(ε, τ)/dτ = p̂1(ε, τ)Q, p̂1(ε, 0) = p1(ε, 0),

dp̂2(ε, τ)/dτ = p̂2(ε, τ)(Q + εQ̃), p̂2(ε, 0) = p2(ε, 0),

therefore, p̂1(ε, τ) and p̂2(ε, τ) are the distributions of X̂1(ε) and X̂2(ε) .
Denote by P̂1(τ) and P̂2(ε, τ) the respective transition probability matrices of the

chains X̂1(ε) and X̂2(ε) .

PROPOSITION 4.1. For all s > 0 , we have β̂s := τ(P̂1(s)) < 1 and

sup
t�0

‖p2(ε, t) − p1(ε, t)‖ < ‖p2(ε, 0) − p1(ε, 0)‖ +
sε‖Q̃‖
1 − β̂s

.

Proof. Applying Theorem 2.1 to X̂1(ε) and X̂2(ε) , for all s > 0 we obtain that

sup
τ�0

‖p̂2(ε, τ) − p̂1(ε, τ)‖ < ‖p2(ε, 0) − p1(ε, 0)‖ +
sε‖Q̃‖
1 − β̂s

.
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Since supτ�0 ‖p̂2(ε, τ) − p̂1(ε, τ)‖ = supt�0 ‖p2(ε, t) − p1(ε, t)‖ , from the above
inequality we obtain the result. �

THEOREM 4.1. For all a > 0 and s > 0 , the following inequalities hold:

sup
t�a

‖p1(ε, t) − π 1‖ � β̂�a/(sε)�
s ‖p1(ε, 0) − π 1‖, (4.1)

sup
t�a

‖p2(ε, t) − π 1‖ < γ̂ �a/(sε)�
ε,s ‖p2(ε, 0) − π 2(ε)‖ +

2sε‖Q̃‖
1 − β̂s

, (4.2)

where γ̂ε,s = τ(P̂2(ε, s)) .

Proof. It follows that ‖p̂1(ε, τ)− π 1‖ � β̂�τ/s�
s ‖p̂1(ε, 0)− π 1‖ . Setting τ = t/ε ,

from this we obtain that

‖p1(ε, t) − π 1‖ � β̂�t/(sε)�
s ‖p1(ε, 0) − π 1‖. (4.3)

The bound (4.1) follows from (4.3) and the fact that the variation distance between
distributions of a Markov chain is a decreasing function of the time variable.

Let Wa(ε) = {Wa(ε, t), t � 0} and Y(ε) = {Y(ε, t), t � 0} be continuous-time
Markov chainswith state space S , generators ε−1Q+Q̃ and ε−1Q , and the respective
initial distributions p2(ε, a) and π 1 . At any time t > 0 the distribution of Wa(ε, t) is
p2(ε, t + a) , and the distribution of Y(ε, t) is π 1 . Applying Proposition 4.1 to Wa(ε)
and Y(ε) , for all s > 0 we obtain that

sup
t�0

‖p2(ε, a + t) − π 1‖ < ‖p2(ε, a) − π 1‖ +
sε‖Q̃‖
1 − β̂s

. (4.4)

We have
‖p2(ε, a) − π 1‖ � ‖p2(ε, a) − π 2(ε)‖ + ‖π 2(ε) − π 1‖. (4.5)

Applying Theorem 2.1 to X̂1(ε) and X̂2(ε) , we get

‖π 2(ε) − π 1‖ <
sε‖Q̃‖
1 − β̂s

, s > 0. (4.6)

It is easily seen that ‖p2(ε, t) − π 2(ε)‖ � γ̂ �t/(sε)�
ε,s ‖p2(ε, 0)− π 2(ε)‖ . This, together

with (4.4)–(4.6), gives (4.2). �
In Theorem 4.1, the quantity γ̂ε,s , which gauges the speed of convergence when

ε → 0 , itself depends on ε in a complicated way; from the definition of τ(·) it follows
that γ̂ε,s → β̂s as ε → 0 . The next corollary provides a bound which is somewhat
easier to use.

COROLLARY 4.1. For all a > 0 and s > 0 ,

sup
t�a

‖p2(ε, t) − π 1‖ < θ̂�a/(sε)�
ε,s ‖p2(ε, 0) − π 2(ε)‖ +

2sε‖Q̃‖
1 − β̂s

, (4.7)

where θ̂ε,s = β̂s + sετ(Q̃) .

Proof. Applying (3.1) to X̂1(ε) and X̂2(ε) , and using (4.2), we obtain the re-
sult. �
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REMARK 4.1. The right-hand sides of (4.2) and (4.7) can be modified by using the
inequality

‖p2(ε, 0) − π 2(ε)‖ � ‖p2(ε, 0) − π 1‖ + ‖π 2(ε) − π 1‖

together with (4.6). We can also simplify the right-hand sides of (4.1), (4.2), and (4.7)
by using the fact that ‖p − p̃‖ � 2 for all probability vectors p , p̃ .

A. Appendix

In this appendix, for the reader’s convenience, we give some important results of
Anisimov [2, 3] that are used in the paper.

Let X(i) = {X(i)(t), t � 0} , i = 1, 2 , be two Markov processes taking values
in a measurable space (X , B) and having initial distributions ρ(i)(A ) and transition
probabilities p(i)(t1, x, t2, A ) , x ∈ X , A ∈ B , 0 � t1 � t2 (the time variable, t ,
can be either discrete or continuous). Define

ϕ(i)(t1, t2) = sup
x1,x2∈X ,A∈B

|p(i)(t1, x1, t2, A ) − p(i)(t1, x2, t2, A )|,

ψ(t1, t2) = sup
x∈X ,A ∈B

|p(1)(t1, x, t2, A ) − p(2)(t1, x, t2, A )|, t1 � t2.

PROPOSITION A.1. (Corollary 1 of [2]) If there exist s > 0 and q ∈ (0, 1) such
that

sup
t�0

ϕ(1)(t, t + s) � q (A.1)

and
sup
t�0

ψ(t, t + s) � α,

where α is such that q̃ := q + 2α < 1 , then ϕ(2)(t1, t2) � q̃�(t2−t1)/s� for all t1 < t2 .

THEOREM A.1. (Theorem 2 of [2]; Theorem 1.2 of [3, Chapter 3]) Let (A.1) hold
and supt�0 supu�s ψ(t, t + u) � α . Then, for all t1 < t2 ,

ψ(t1, t2) � α
1 − q

(
1 − q�(t2−t1)/s�+1

)
.

Suppose now that X(i) , i = 1, 2 , are continuous-time jump Markov processes
with transition rates q(i)(x, t, A ) , that is, p(i)(t, x, t + Δ, A ) = q(i)(x, t, A )Δ + o(Δ) ,
x ∈ X \ A , A ∈ B . We assume that:

(a) the processes X(i) are uniquely defined by their transition rates;
(b) q(i)(x, t, A ) are bounded functions of t on every finite interval;
(c) q(i)(x, t, A ) are countably additive measure functions of A ;
(d) q(i)(x, t, A ) = q(i)(x, t, A \ {x}) .
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LEMMA A.1. (Lemma 1.3 of [3, Chapter 3]) If there exist t > 0 and s > 0 such
that ∫ t+s

t
sup

x∈X ,A ∈B
|q(1)(x, u, A ) − q(2)(x, u, A )|du � α,

then ψ(t, t + s) � 2α .
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