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DARKO ŽUBRINIĆ
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Abstract. We describe a class of potentials v = G ∗ f , such that if x0 is from extended singular
set of v , that is, r−N ∫

Br(x0) v(x) dx → +∞ for some sequence r → 0 , then necessarily

v(x0) = ∞ . This class includes Bessel potentials and Riesz potentials. The result was exploited
in our previous paper in order to show that singular dimension of the Bessel potential space
Lα,p(RN) (that is, the supremum of Hausdorff’s dimension of extended singular sets, taken over
all functions from the space) is equal to N − αp , provided αp � N .

Assume that u : RN → R is a Lebesgue measurable function. In [5] we have
introduced extended singular set of u defined by

e-Sing u = {x0 ∈ RN : lim sup
r→0

1
rN

∫
Br(x0)

u(x) dx = +∞}. (1)

As we see, e-Singu is contained in the complement of the set of Lebesgue points of u .
Furthermore, it is easy to verify that e-Singu contains the singular set Sing u (that is,
the set of points x0 ∈ RN such that there exist positive numbers C , γ and r satisfying
u(x) � C|x − x0|−γ a.e. in the open ball Br(x0) ), and also all iterated logarithmic
singularities of u (i.e. points x0 such that u(x) � C log . . . log |x− x0|−γ a.e. in a ball
around x0 ).

Themain result of this paper is formulated in Theorem1,which has been announced
without proof in [5, Theorem 4]. It was important in proving that singular dimension
s-dimLα,p(RN) of the Bessel potential space Lα,p(RN) (see [1] or [4]), where 1 < p <
∞ and 0 < α � N/p , is equal to N − αp , that is,

s-dimLα,p(RN) := sup{dimH(e-Sing u) : u ∈ Lα,p(RN)} = N − αp.

Here dimH denotes Hausdorff’s dimension. In particular, singular dimension of the
Sobolev space Wk,p(RN) , where 1 < p < ∞ and kp � N , is equal to N − kp .

See [5] for the proof of these results and more general definition of upper and lower
singular dimensions of spaces and sets of functions from RN to R . In our forthcoming
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paper it will be shown that the supremum is actually achieved, and moreover, that there
exists a constructive Sobolev function u in Wk,p(RN) , kp � N (or more generally, in
Lα,p(RN) , αp � N ) such that dimH(Sing u) = N− kp (or N−αp respectively). This
result seems to be new even for k = 0 , that is, for the Lebesgue space Lp(RN) , see [6].

Among early results related to the question of size of singular sets of Sobolev
functions we cite Reshetnyak [3, Theorem 1.8]: if f ∈ Lp(RN) , f � 0 , and Gα
is the Bessel potential kernel (see [1] or [4]), then the set of x ∈ RN for which
(Gα ∗ f )(x) = ∞ , has (α, p) -Bessel capacity equal to zero (and hence its Hausdorff’s
dimension is � N − αp ). It is therefore of interest to know for what points x the
condition (Gα ∗ f )(x) = ∞ can be fulfilled. The answer is given by Theorem 1.

Furthermore, for any given compact (fractal) set A in RN having its upper
Minkowski-Bouligand dimension (also known as the upper box dimension, see [2])
arbitrarily close and less than N−αp , it is possible to construct a function f ∈ Lp(RN)
such that (Gα ∗ f )(x) = ∞ on A , and moreover, A ⊆ Sing (Gα ∗ f ) , see [5, Theorem
2].

Theorem 1 implies seemingly obvious inclusion Sing v ⊆ {v = +∞} for a class
of Bessel potentials v (and also for Riesz potentials, provided αp < N ).

THEOREM 1. Assume that 1 < p < ∞ , 0 < α < N , and let G : RN × RN → R
be a nonnegative potential kernel, such that G(x, y) is lower semicontinuous in x for
a.e. y , and measurable in y for all x . We assume that there exist positive numbers C1 ,
C2 , and R such that for any x ,

C1

|x − y|N−α � G(x, y) � C2

|x − y|N−α , for a.e. y ∈ BR(x) , (2)

and there exists a bounded, nonnegative, nonincreasing function g : (R,∞) → R ,
contained in the weighted Lebesgue space Lp′((R,∞); rN−1) , such that for all x we
have G(x, y) � g(|x − y|) for a.e. y ∈ RN \ BR(x) . Let v = G ∗ f , where

(G ∗ f )(x) :=
∫

RN
G(x, y) f (y) dy,

and f ∈ Lp(RN) , f � 0 . Then e-Sing v ⊆ {v = ∞} .

Proof. We argue by contradiction: assume that there exists x0 ∈ e-Sing v such
that v(x0) < ∞ . With fixed x0 , for any r > 0 we denote Br = Br(x0) , and for
ρ ∈ (r,∞] , we define Br,ρ = Bρ \ Br .

(a) Using v(x0) < ∞ and the left-hand side inequality in (2) we obtain that

MR :=
∫

BR

f (y)
|x0 − y|N−α dy < ∞. (3)

Since |x0 − y| � r when y ∈ Br , we have∫
Br

f (y) dy � rN−αMr, lim
r→0

Mr = 0. (4)
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In the sequel we fix r > 0 small enough.

(b) Since v(x) =
∫

Br
G(x, y) f (y) +

∫
Br,∞ G(x, y) f (y) dy , using the right-hand

side inequality in (2) we have

C2

∫
Br

f (y)
|x − y|N−α dy +

∫
Br,∞

G(x, y) f (y) dy � v(x), ∀x ∈ Br.

Integrating over Br/2 , we obtain

I1 + I2 �
∫

Br/2

v(x) dx, (5)

where

I1 = C2

∫
Br/2

dx
∫

Br

f (y)
|x − y|N−α dy,

I2 =
∫

Br/2

dx
∫

Br,∞
G(x, y) f (y) dy.

(6)

It is easy to see that Br/2 = Br/2(x0) ⊆ B3r/2(y) . Hence, using Fubini’s theorem we
have

I1 � C2

∫
Br

f (y) dy �
∫

Br/2

dx
|x − y|N−α

� C2

∫
Br

f (y) dy �
∫

B3r/2(y)

dx
|x − y|N−α (7)

� C · rα
∫

Br

f (y) dy.

In order to estimate I2 , let us fix x ∈ Br/2 . First we extend g(r) from (R,∞) to
(0,∞) by defining

g(r) =
{

C2

rN−α , 0 < r < R ,
g(r), r � R .

Since g(r) is bounded, we can achieve that g(r) is nonincreasing for all r > 0 , by
taking C2 large enough. Now we have that G(x, y) � g(|x − y|) for a.e. y ∈ RN .
Taking any y ∈ Br,∞ and x ∈ Br/2 , we have |x − y| � |y − x0| − r/2 , and from this
|x−y|
|y−x0| � 1 − r

2|y−x0| � 1/2 . Thus,∫
Br,∞

G(x, y) f (y) dy �
∫

Br,∞
g(|x − y|) f (y) dy

�
∫

Br,∞
g(

1
2
|x0 − y|) f (y) dy

�
∫

RN
g(

1
2
|x0 − y|) f (y) dy

� J1 + J2 + J3,
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where J1 , J2 and J3 are the corresponding integrals of y �→ g( 1
2 |x0 − y|) f (y) over

BR , BR,2R and B2R,∞ respectively. We have

J1 �
∫

BR

C2f (y)
1
2 |x0 − y|)N−α

dy � C · MR,

J2 � C2

(R/2)N−α

∫
BR,2R

f (y) dy � CR‖f ‖Lp(RN),

J3 � ‖f ‖Lp(RN) ·
(∫

B2R,∞
g(

1
2
|y − x0|)p′dy

)1/p′

,

where p′ = p/(p − 1) is the conjugate exponent of p . Since∫
B2R,∞

g(
1
2
|y − x0|)p′dy = 2N

∫
BR,∞(0)

g(|z|)p′dz = 2N
∫ ∞

R
g(ρ)p′ρN−1dρ,

we have ∫
Br,∞

G(x, y) f (y) dy � C · MR + CR · ‖f ‖Lp(RN) +

+DR · ‖f ‖Lp(RN) · ‖g‖Lp′ (R,∞;ρN−1)

Hence,
I2 � D · rN , (8)

where D is a constant depending on R , ‖f ‖Lp(RN) and ‖g‖Lp′(R,∞;ρN−1) , but not on r .
Using (7) and (8), from (5) we obtain∫

Br

f (y) dy � r−α
∫

Br/2

v(x) dx − DrN−α . (9)

(c) Combining (9) and (4) we arrive to

Mr � r−N
∫

Br/2

v(x) dx − D. (10)

Now we take the limit over the sequence r = 2rk , with rk chosen so that

lim
k→∞

1
rN
k

∫
Brk (x0)

v(x) dx = ∞,

which is possible due to x0 ∈ e-Sing v , see (1). From (10) we obtain the desired
contradiction: 0 � ∞ . �

COROLLARY 1. Assume that 1 < p < ∞ and f ∈ Lp(RN) , f � 0 a.e.
(a) If 0 < α < N , and v = Gα ∗ f , where Gα is the Bessel potential kernel (see

[1] or [4]), then e-Sing v ⊆ {v = ∞} .
(b) If 0 < α < N/p , and v = Iα ∗ f , where Iα = 1/|x|N−α is the Riesz potential

kernel, then e-Sing v ⊆ {v = ∞} .
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Proof.
(a) UseTheorem1with G(x, y) = Gα(x−y) and g(r) = C·e−r/2 for r ∈ (R,∞) ,

with R > 0 fixed.
(b) Use Theorem 1 with G(x, y) = Iα(x− y) and g(r) = 1/rN−α for r ∈ (R,∞)

with R > 0 fixed. Note that the condition g ∈ Lp′((R,∞); ρN−1) is equivalent with
αp < N . �
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