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CONTINUOUS SHARPENING OF HÖLDER’S
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(communicated by N. Elezović)

Abstract. Some properties of functions which in special cases lead to sharpening of Hölder’s
and other interesting inequalities are proved. Results analogue to theorems leading to reverse
Hölder’s inequality are presented.

1. Introduction

For numbers xij ∈ R+ (i = 1, . . . , m; j = 1, . . . , n) and real numbers 0 < pj < 1
with

∑n
j=1 pj = 1 denote yi =

∏n
j=1 x

pj
ij (i = 1, . . . , m) and define the function h by

h(t) =
n∏

j=1

[ m∑
i=1

yi

(xij

yi

)t
]pj

(0 � t � 1). (1)

In [4] Yang proved that h is increasing on [0, 1] . As

h(0) =
m∑

i=1

n∏
j=1

x
pj
ij and h(1) =

n∏
j=1

( m∑
i=1

xij

)pj

,

this result may be regarded as a generalization of Hölder’s inequality

m∑
i=1

n∏
j=1

x
pj
ij �

n∏
j=1

( m∑
i=1

xij

)pj

.

But this result is a special case of an older result by J. Pečarić and P. Beesack [2] which
we give here in somewhat more generalized and therefore abbreviated form:
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THEOREM A. Let A be an isotonic linear functional on a linear class L of real-
valued functions defined on E . For fixed r ∈ R , f i ∈ L and 0 < qi ∈ R (i = 1, . . . , n)
with

∑n
i=1

1
qi

= 1 define the function g by

g(x) =
n∏

j=1

A

(
f

qjx
j

n∏
k=1

f r−x
k

) 1
qj

(x ∈ R).

Then

g(x) � g(y) (2)

for all x, y ∈ R with |x| � |y| and xy > 0 .

Proof. The proof of inequality (2) is based on using Hölder’s inequality and a
suitable substitutions as follows: Let sj

i ∈ [0, 1] with
∑n

i=1 sj
i = 1 (j = 1, . . . , n) .

Using Hölder’s inequality n -times we get

n∏
j=1

A
(
a

sj1
1 · · · asjn

n
) 1

qj �
n∏

j=1

(
A(a1)sj1 · · ·A(an)sjn

) 1
qj =

n∏
i=1

A(ai)
∑n

j=1

s
j
i

qj .

By the substitutions

ai(y) = f qiy
i · (f 1 · · · f n)r−y, sj

i =
1
qi

(
1 − x

y

)
(i �= j), si

i =
1
qi

(
1 − x

y

)
+

x
y

we get (2).

If A is a functional defined as

A(f ) =
m∑

i=1

f (i) (f : E = {1, 2, . . . , m} → R),

we obtain Yang’s result. Another functional A often used is defined as A(f ) =∫ b
a f (x) dx for all integrable functions f : E = [a, b] → R . For some other examples

of isotonic linear functionals see [3].
We will discuss here instead of h as defined in [4] a more general function, and as

a special case we get again Hölder’s inequality.
In the sequel we need the following notations:
DEFINITION 1. Let f j (j = 1, . . . , n − 1) be positive real-valued functions on R+

and let a = (a1, . . . , an) ∈ Rn with aj > 0 (j = 1, . . . , n) . For r, s ∈ {1, 2, . . . , n−1} ,
r � s we denote

gr,s(ar, ar+1, . . . , as+1) = arf r

(ar+1

ar
f r+1

(ar+2

ar+1
. . . f s

(as+1

as

)))
,

gs+1,s(as+1) = as+1

and
g(a) = g1,n−1(a) = a1f 1

(a2

a1
f 2

(a3

a2
. . . f n−1

( an

an−1

)))
.
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Similarly, for positive real-valued functions r, Fj (j = 1, . . . , n − 1) on R+ denote

R(a, b) = ar
(b

a

) (
(a, b) ∈ R2

)
,

Gr,s(ar, ar+1, . . . , as+1) = arFr

(ar+1

ar
Fr+1

(ar+2

ar+1
. . . Fs

(as+1

as

)))
,

Gs+1,s(as+1) = as+1

and

G(a) = G1,n−1(a) = a1F1

(a2

a1
F2

(a3

a2
, . . . , Fn−1

( an

an−1

)))
.

This definition leads to the following lemma which can be easily proved (see also [1:
Theorem 1] where this lemma is included).

LEMMA 1. Let f j (j = 1, . . . , n − 1) be positive increasing concave functions
defined on R+ , let gr,s be as defined above and xi = (xi1, xi2, . . . , xin) ∈ Rn (i =
1, . . . , m) with xij > 0 (j = 1, . . . , n) . Then the inequalities

m∑
i=1

g1,n−1(xi)

� g1,1

( m∑
i=1

xi1,

m∑
i=1

g2,n−1(xi2, . . . , xin)
)

... (3)

� g1,j

( m∑
i=1

xi1,
m∑

i=1

xi2, . . . ,
m∑

i=1

xij,
m∑

i=1

gj+1,n−1(xi,j+1, . . . , xin)
)

� g1,n−1

( m∑
i=1

xi1,

m∑
i=1

xi2, . . . ,

m∑
i=1

xin

)

hold. Moreover, if all f j are nonlinear on any subinterval of R+ , then equality holds in

m∑
i=1

g1,n−1(xi) � g1,n−1

( m∑
i=1

xi1,
m∑

i=1

xi2, . . . ,
m∑

i=1

xin

)
(4)

if and only if all xi (i = 1, . . . , m) are proportional.

In other words, (4) shows that g1,n−1 is a superadditive function which means that

m∑
i=1

g1,n−1(xi) � g1,n−1

( m∑
i=1

xi

)

for xi = (xi1, xi2, . . . , xin) ∈ Rn with xij > 0 (i = 1, . . . , m, j = 1, . . . , n) or, more
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explicitly,

m∑
i=1

xi1f 1

(xi2

xi1
f 2

(xi3

xi
. . . f n−1

( xin

xi,n−1

)))

�
( m∑

i=1

xi1

)
f 1

(∑m
i=1 xi2∑m
i=1 xi1

f 2

(∑m
i=1 xi3∑m
i=1 xi2

. . . f n−1

( ∑m
i=1 xin∑m

i=1 xi,n−1

)))
.

Using Lemma 1 we prove the following

THEOREM 1. Let r, f j, Fj (j = 1, . . . , n − 1) be positive concave functions on
R+ and for x = (x1, . . . , xn) ∈ Rn with xi > 0 (i = 1, . . . , n) denote by g, G, R
the functions accordingly to Definition 1 . Then the function A = A(x) defined for
x = (x1, . . . , xn) ∈ Rn with xi > 0 (i = 1, . . . , n) by

A(x) = G
(
R(g(x), x1), R(g(x), x2), . . . , R(g(x), xn)

)

is superadditive.

Proof. As f j(x) > 0 and therefore xf j
(

1
x

)
(j = 1, . . . , n − 1) are increasing

for x > 0 , it follows that the function g is increasing, too. The same holds for the
function G and R . According to Lemma 1, g, G and R are superadditive functions as
r, f j, Fj are concave on R+ . Hence, for xi = (xi1, . . . , xin) ∈ Rn with xij > 0 (i =
1, . . . , m, j = 1, . . . , n) ,

m∑
i=1

A(xi) =
m∑

i=1

G
(
R(g(xi), xi1), . . . , R(g(xi), xin)

)

� G

( m∑
i=1

R(g(xi), xi1), . . . ,
m∑

i=1

R(g(xi), xin)
)

� G

(
R

( m∑
i=1

g(xi),
m∑

i=1

xi1

)
, . . . , R

( m∑
i=1

g(xi),
m∑

i=1

xin

))

� G

(
R

(
g

( m∑
i=1

xi

)
,

m∑
i=1

xi1

)
, . . . , R

(
g

( m∑
i=1

xi

)
,

m∑
i=1

xin

))

= A

( m∑
i=1

xi

)
.

In this sequence of inequalities, the first is a result of the superadditivity of G , the
second is a consequence of the superadditivity of R and the monotonicity of G , and
the third follows from the superadditivity of g and the monotonicity of R and G .
Moreover, if additionally r, f j, Fj (j = 1, . . . , n − 1) are nonlinear on any subinterval
of R+ , equality holds in

∑m
i=1 A(xi) � A

( ∑m
i=1 xi

)
only if all xi are proportional.
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EXAMPLE 1. Let the conditions of Theorem 1 be fulfilled. Then if r(x) = 1 (x >
0) , we get the inequality

m∑
i=1

A(xi) =
m∑

i=1

G
(
g(xi), . . . , g(xi)

)

=
m∑

i=1

g(xi)G(1, . . . , 1)

� g

( m∑
i=1

xi

)
G(1, . . . , 1)

= A

( m∑
i=1

xi

)

which in the case of f j(x) = xqj with 0 < qj < 1 (j = 1, . . . , n − 1) is Hölder’s
inequality. If r(x) = x (x > 0) , then we get the inequality

m∑
i=1

A(xi) =
m∑

i=1

G(xi) � G

( m∑
i=1

xi1, . . . ,

m∑
i=1

xin

)
= A

( m∑
i=1

xi

)

which in the case of Fj(x) = xqj (x > 0) with 0 < qj < 1 (j = 1, . . . , n) is Hölder’s
inequality, too.

2. Main results

In the following, the functions g = g(a) and G = G(a) are defined by functions
f j and Fj as in Definition 1, for elements a = (a1, . . . , an) ∈ Rn with ai > 0 (i =
1, . . . , n) . However, the function r is now dependent on two variables r = r(x, t) and
the function R generated by it is now in analogy given by

R(a, b, t) = ar
(b

a
, t

) (
(a, b) ∈ R2, t0 � t � t1

)
.

We will discuss conditions on r, f j, Fj (j = 1, . . . , n − 1) for which the function
H = H(t) defined by

H(t) = G(z(t)) = G

( m∑
i=1

R(g(xi), xi1,t), . . . ,
m∑

i=1

R(g(xi), xin,t)
)

(5)

is monotone on [t0, t1] , where z = (z1, . . . , zn) with zj (j = 1, . . . , n) given by

zj(t) =
m∑

i=1

R(g(xi), xij, t) (t0 � t � t1) (6)

and as before xi = (xi1, . . . , xin) ∈ Rn with xij > 0 .
We need the following lemmas.

LEMMA 2. Let F � 0 be a concave function on R+ . Then F is increasing. If F

is also differentiable, then 0 � xF′(x)
F(x) � 1 on R+ .
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LEMMA 3. Let the functions Fj generating by Definition 1 the function G and
the functions zj in (6) be differentiable and denote

F′
j (Dj) =

d
dDj

Fj(Dj)

and

Dj =
1

zj(t)
Gj+1,n−1

(
zj+1(t), . . . , zn(t)

)

=
zj+1(t)
zj(t)

Fj+1

(zj+2(t)
zj+1(t)

Fj+2

( zj+3(t)
zj+2(t)

. . . Fn−1

( zn(t)
zn−1(t)

)))
.

for j = 1, . . . , n . Then

G′
t(z(t))

G(z(t))
=

n−1∑
j=1

z′j(t)
zj(t)

(
1 − F′

j (Dj)
Fj(Dj)

Dj

) j−1∏
k=1

F′
k(Dk)

Fk(Dk)
Dk +

z′n(t)
zn(t)

n−1∏
k=1

F′
k(Dk)

Fk(Dk)
Dk

=
n∑

j=1

z′j(t)
zj(t)

Pj

where

Pj =
(
1 − F′

j (Dj)
Fj(Dj)

Dj

) j−1∏
k=1

F′
k(Dk)

Fk(Dk)
Dk (1 � j � n − 1) (7)

Pn =
n−1∏
k=1

F′
k(Dk)

Fk(Dk)
Dk and

n∑
j=1

Pj = 1.

LEMMA 4. Let the functions Fj = Fj(x) generating by Definition 1 the function

G and the function r = r(x, t) be differentiable in x and t , respectively, set V = r′t
r ,

let Pj given by (7) and denote wij = xij
g(xi)

. Then the function H given by (5) is
differentiable,

H′
t (t)

H(t)
=

n∑
j=1

Pj

∑m
i=1 g(xi)r(wij, t)V(wij, t)∑m

i=1 g(xi)r(wij, t)

=
n∑

j=1

Pj

[∑m
i=1 g(xi)r(wij, t)V(wij, t)∑m

i=1 g(xi)r(wij, t)
−

∑m
i=1 g(xi)V(wij, t)∑m

i=1 g(xi)

]

+
n∑

j=1

(∑m
i=1 g(xi)V(wij, t)∑m

i=1 g(xi)

)
Pj.

A simple calculation shows also that

H′
t (t)

H(t)
=

n∑
j=1

Pj

∑
1�i�k�m g(xi)g(xk)

(
r(wij, t) − r(wkj, t)

)(
V(wij, t) − V(wkj, t)

)
∑m

i=1 g(xi)r(wij, t)
∑m

k=1 g(xk)

+
1∑m

i=1 g(xi)

m∑
i=1

g(xi)
n∑

j=1

V(wij, t)Pj.
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LEMMA 5. Let Fj (j = 1, . . . , n − 1) with Fj(x) > 0 be differentiable concave
functions on [0,∞) . Then Pj (j = 1, . . . , n − 1) defined by (7) satisfy 0 � Pj � 1
and

∑n
j=1 Pj = 1 .

LEMMA 6. Let V = V(x, t) be a function given on R+ × [t0, t1] such that V(x, t)
increases in x , V(ex, t) is convex in x and V(1, t) � 0 for all t . Further, let 0 < Pj <
1 (j = 1, . . . , n) be such that

∑n
i=1 Pj = 1 . At least, let g = g(x) be the function from

Definition 1 defined for x = (x1, . . . , xn) ∈ Rn with xj > 0 (j = 1, . . . , n) . Then
∏n

j=1 x
Pj
j

g(x)
� 1

implies
n∑

j=1

PjV
( xj

g(x)
, t

)
� V

(∏n
j=1 x

Pj
j

g(x)
, t

)
� 0

for all t0 � t � t1 .

DEFINITION 2. Functions r(x, t) and V(x, t) with common domain are said to be
similarly ordered in x if, for every fixed t ,(

r(x1, t) − r(x2, t)
) · (V(x1, t) − V(x2, t)

)
� 0

for all x .

THEOREM 2. Let the functions Fj (j = 1, . . . , n−1) in Definition 1 generating G
be differentiable and concave, and let the function r = r(x, t) generating R = R(a, b, t)
be differentiable in t for every x > 0 . Further, let Pj be defined by (7), denote V = r′t

r
and suppose V(x, t) � 0 for x � 1 , V(ex, t) to be convex in x , and V(x, t) and
r(x, t) to be similarly ordered in x , for every t . At least, let g = g(x) be the function
from Definition 1 .Then, for xi = (xi1, . . . , xin) ∈ Rn with xij > 0 (i = 1, . . . , m, j =
1, . . . , n) , ∏n

j=1 x
Pj
ij

g(xi)
� 1 (i = 1, . . . , m)

implies that the function H given by (5) is increasing on [t0, t1] .

Proof. From Lemma 4 and also from the discrete Chebyshev inequality [3: p. 198]
we get that if r(x, t) and V(x, t) are similarly ordered in x for each t0 � t � t1 and if

n∑
j=1

V(wij, t)Pj � 0 (i = 1, . . . , m),

then H′
t (t)

H(t) > 0 for any t . From Lemma 5 we get 0 � Pj � 1 (j = 1, . . . , n) and∑n
j=1 Pj = 1 , and as the conditions of Lemma 6 are satisfied and wij = xij

g(xi)
, we get

n∑
j=1

PjV(wij, t) � V

(∏n
j=1 x

Pj
ij

g(xi)
, t

)
� 0 (i = 1, . . . , m).
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This completes the proof of Theorem 2.

EXAMPLE 2. If, for x = (x1, . . . , xn) ∈ Rn with xi > 0 (i = 1, . . . , n) ,

G(x) = g(x) =
n∏

j=1

x
αj
j

(
x = (x1, . . . , xn) ∈ Rn)

with 0 � αj � 1 and
∑n

j=1 αj = 1 , and if r(x, t) = xt (0 � t � 1) and wij = xij
yi

, then
all conditions of Theorem2 are satisfied,and for xi = (xi1, . . . , xin) ∈ Rn (i = 1, . . . , m)
with xij > 0 (j = 1, . . . , n) the function H given by

H(t) =
n∏

j=1

( m∑
i=1

g(xi)wt
ij

)αj

is monotone increasing on [t0, t1] . This was proved in [4] for the function h given in
(1).

EXAMPLE 3. An immediate example of Theorem 1 for

f (x) = xβ , F(x) = (1 + xq)
1
q , r(x, t) = xt (0 < x; 0 � t, β , q � 1)

and xi = (xi1, xi2) (i = 1, . . . , m) with xij > 0 (j = 1, 2) is the Minkowski-Hölder-
type inequality

m∑
i=1

A(xi, t) =
m∑

i=1

(x1−β
i1 xβi2)

1−t(xqt
i1 + xqt

i2)
1
q

�
( m∑

i=1

xi1

)(1−β)(1−t)( m∑
i=1

xi2

)β(1−t)(( m∑
i=1

xi1

)qt

+
( m∑

i=1

xi2

)qt) 1
q

= A

( m∑
i=1

(xi, t)
)

,

and as a result of Theorem 2 we get that the function H given by

H(t) =
(( m∑

i=1

(x1−β
i1 xβi2)

1−txt
i1

)q

+
( m∑

i=1

(x1−β
i1 xβi2)

1−txt
i2

)q) 1
q

is increasing on {t � 0} for q � 0 in the following cases:
1. β = 1

2 and xi2
xi1

� 1 or xi2
xi1

� 1 (i = 1, . . . , m) .

2. β � 1
2 and xi2

xi1
� 1 (i = 1, . . . , m) .

3. β � 1
2 and xi2

xi1
� 1 (i = 1, . . . , m) .

In these three cases we get especially that

m∑
i=1

A(xi, 0) = H(0) � H(t) � H(1) = A

( m∑
i=1

(xi, 1)
)

for 0 � t � 1 .
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Proof. Denote yi = xi1( xi2
xi1

)β and wij = xij
yi

for i = 1, . . . , m and j = 1, 2 . Then,
according to Lemma 3 and Lemma 4,

H′(t)
H(t)

= (1 − P)

∑
1�i�k�m yiyk(wt

i1 − wt
k1)(ln wi1 − lnwk1)

(
∑m

i=1 yiwt
i1)(

∑m
i=1 yk)

+P

∑
1�i�k�m yiyk(wt

i2 − wt
k2)(ln wi2 − ln wk2)

(
∑m

i=1 yiwt
i2)(

∑m
i=1 yk)

+
1∑m
i=1 yi

m∑
i=1

(
(1 − P) lnwi1 + P lnwi2

)
(8)

where

P =
(
∑m

i=1 yiwt
i2)

q

(
∑m

i=1 yiwt
i1)q + (

∑m
i=1 yiwt

i2)q
.

As xi2
xi1

= wi2
wi1

, we get that

1
2

� P � 1 when
xi2

xi1
� 1

0 < P � 1
2

when
xi2

xi1
� 1 (i = 1, . . . , m; t � 0, q > 0).

Hence, if β = 1
2 , t � 0, q > 0 we get

1∑m
i=1 yi

m∑
i=1

yi ln
(xi2

xi1

)P−β
� 0. (9)

It is easy to verify that (9) holds too when β � 1
2 , q > 0, t > 0 for xi2

xi1
� 1 (i =

1, . . . , m) and also when β � 1
2 , q > 0, t � 0 for 0 < xi2

xi1
� 1 (i = 1, . . . , m) . As

1
(
∑m

i=1 yi)

m∑
i=1

(
(1 − P) lnwi1 + P lnwi2

)
=

1
(
∑m

i=1 yi)

m∑
i=1

yi ln
(xi2

xi1

)P−β

and as t � 0 we get from (8) and (9) that H′(t) � 0 in all the three cases which are
stated in this example.

EXAMPLE 4. For t � 1 and x � 0 , the functions r(x, t) = xttx and V(x, t) =
r′t (x,t)
r(x,t) = ln x + x

t are similarly ordered in x for every fixed t , V(1, t) � 0 and V(ex, t)
is convex in x . Therefore, under the conditions of Theorem 2, its result holds here for
t � 1 . In particular, if n = 2 , f (x) = x

1
2 and F(x) = (1 + xq)

1
q , then

H(1) =
(( m∑

i=1

xi1

)q

+
( m∑

i=1

xi2

)q) 1
q

�
(( m∑

i=1

x
1
2 + t

2
i1 x

1
2− t

2
i2 t(

xi1
xi2

)
1
2

)q

+
( m∑

i=1

x
1
2− t

2
i1 x

1
2 + t

2
i2 t(

xi2
xi1

)
1
2

)q) 1
q

= H(t) � H(t1)

for 1 � t � t1 .
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REMARK 1. The inequality
∑n

j=1

x
Pj
ij
yi

� 1 (i = 1, . . . , m) in Theorem 2 means

that, in the case n = 2 , F has to satisfy the differential inequality xx F′(x)
F(x) � f (x) . For

instance, the inequality holds if F(x) = xβ ( 1
2 � β � 1) and f (x) = arc tan x (x � 0) .

As these functions are concave too, Theorem 1 holds for any r(x, t) � 0 which is
concave on R+ , for every t0 � t � t1 .

Theorem 2 holds if r = r(x, t) satisfies the relevant conditions stated there. If, for
instance, r(x, t) = xt (x > 0, 0 � t � 1) , then for the functions F and f above both

theorems hold for n = 2 . The result of Theorem 2, if we choose F(x) = (1 + xq)
1
q

with 0 < q < 1 and f (x) = arc tan x , holds too for xi2
xi1

� 1 (i = 1, . . . , m) .

REMARK 2. The differential equation xx F′(x)
F(x) = f (x) is solvable for F(x) = f (x) =

xβ only, and in order for Theorems 1 and 2 to hold in the case n = 2 , F has to be
concave and hence 0 � β � 1 .

The following theorem can be proved in a similar way as Theorem 2 and therefore
the proof is omitted.

THEOREM 3. Let Y : [a, b] → R and f j : [a, b] → R+ (j = 1, . . . , n) be
continuous functions, and let Fj : R+ → R+ (j = 1, . . . , n) be concave differentiable
functions. Further, let r = r(x, t) with r(x, t) > 0 for (x, t) ∈ R+ × [t0, t1] be

differentiable on R+ × (t0, t1) , set V = r′t
r and suppose V(x, t) to be non-negative on

{x � 1} , V(ex, t) to be convex on R+ , and r(x, t) and V(x, t) to be similarly ordered
in x , for all t0 � t � t1 . At least, let

∏n
i=1 f Pi

i (x) � Y(x) (x > 0) where Pi are
defined in (7). Then the function H defined by

H(t) = G(z1(t), . . . , zn(t)) (t0 � t � t1)

with

zi(t) =
∫ b

a
Y(x)r

( f i(x)
Y(x)

, t
)
dx (i = 1, . . . , n)

is monotone increasing on [t0, t1] .

3. Continuous sharpening of the inverse Hölder’s inequality

In this chapter we consider the reverse Hölder’s inequality in both forms: discrete
and integral. For this let p > 0 and q < 0 be real numbers such that p + q = 1 . The
discrete reverse Hölder’s inequality states that if xi1, xi2 > 0 (i = 1, . . . , m) , then

m∑
i=1

xp
i1x

q
i2 >

( m∑
i=1

xi1

)p( m∑
i=1

xi2

)q

.

The integral reverse Hölder’s inequality states that if f , g � 0 are integrable real-valued
functions on [a, b] , then

∫ b

a
f (x)pg(x)qdx �

( ∫ b

a
f (x) dx

)p( ∫ b

a
g(x) dx

)q

.
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The following theorem shows that the above inequalities can be sharpened too using a
function similar to that in [4].

THEOREM 4. Let p > 0 and q < 0 be real numbers such that p + q = 1 .
(a) If f , g : [a, b] → R+ are continuous functions and Y = f pgq , then the

function

hI(t) =
( ∫ b

a
Y(x)

( g(x)
Y(x)

)t
dx

)p( ∫ b

a
Y(x)

( f (x)
Y(x)

)t
dx

)q

is decreasing on [0, 1] . In particular, for t ∈ [0, 1] we have
∫ b

a
f (x)pg(x)qdx � hI(t) �

( ∫ b

a
f (x) dx

)p( ∫ b

a
g(x) dx

)q

which is a sharpening of the integral reverse Hölder’s inequality.
(b) If xi1, xi2 > 0 are real numbers and yi = xp

i1x
q
i2 (i = 1, . . . , m) , then the

function

hD(t) =
( m∑

i=1

yi

(xi1

yi

)t
)p( m∑

i=1

yi

(xi2

yi

)t
)q

is decreasing on [0, 1] .

Proof. (a) As a consequence of Chebyshev inequality [3: p. 198]
∫ b

a
p(x) dx

∫ b

a
p(x)g1(x)g2(x) dx �

∫ b

a
p(x)g1(x) dx

∫ b

a
p(x)g2(x) dx

for similarly ordered functions g1 and g2 and weight p , choosing g1(x) = ln g(x)
f (x) and

g2(x) =
( g(x)

f (x)

)t (t ∈ [0, 1]) and as weight function p(x) = Y(x)
( g(x)

f (x)

)−tq
, we get

∫ b

a
Y(x)

(g(x)
f (x)

)tp
ln

g(x)
f (x)

dx
∫ b

a
Y(x)

( g(x)
f (x)

)−tq
dx

−
∫ b

a
Y(x)

(g(x)
f (x)

)−tq
ln

g(x)
f (x)

dx
∫ b

a
Y(x)

( g(x)
f (x)

)tp
dx � 0

and, because p > 0 and q < 0 ,

h′I(t)
hI(t)

= pq

∫ b
a Y(x)( f (x)

g(x) )
tq ln f (x)

g(x)dx∫ b
a Y(x)( f (x)

g(x) )
tqdx

+ pq

∫ b
a Y(x)( g(x)

f (x) )
tp ln g(x)

f (x)dx∫ b
a Y(x)( g(x)

f (x) )
tpdx

= pq

∫ b
a Y(x)( g(x)

f (x) )
tp ln g(x)

f (x)dx
∫ b

a Y(x)( g(x)
f (x) )

−tqdx∫ b
a Y(x)( g(x)

f (x) )
−tqdx

∫ b
a Y(x)( g(x)

f (x) )
tpdx

− pq

∫ b
a Y(x)( g(x)

f (x) )
−tq ln g(x)

f (x)dx
∫ b

a Y(x)( g(x)
f (x) )

tpdx∫ b
a Y(x)( g(x)

f (x) )
−tqdx

∫ b
a Y(x)( g(x)

f (x) )
tpdx

� 0.
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Hence h′I(t) � 0 for t ∈ [0, 1] , i.e. hI is a decreasing function on [0, 1] . The proof of
statement (b) is similar and is therefore omitted
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