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Abstract. Some properties of functions which in special cases lead to sharpening of Holder’s
and other interesting inequalities are proved. Results analogue to theorems leading to reverse
Holder’s inequality are presented.

1. Introduction

For numbers x; € R* (i=1,...,m;j=1,...,n) and real numbers 0 < p; < 1
n Pj

with 377, pj =1 denote y; = [, xj (i=1,...,m) and define the function / by

n m N [)]
=TI o) 0<i<n, ()
= bio Y
In [4] Yang proved that & is increasing on [0, 1]. As
m n ) n m pj
W) =S [[  and hm_H(Zx,.j) |
i=1 j=1 =1 Ni=l
this result may be regarded as a generalization of Holder’s inequality
m n i n m p]
ST <T1 () -
i=1 j=1 =1 Ni=1

But this result is a special case of an older result by J. Pecari¢ and P. Beesack [2] which
we give here in somewhat more generalized and therefore abbreviated form:
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THEOREM A. Let A be an isotonic linear functional on a linear class L of real-
valued functions definedon E. Forfixedr e R, fic Land 0 < g, € R (i=1,...,n)
with Y, % = 1 define the function g by

ﬁ@—IIAQﬁﬂIﬁ”)W (ER).
=1 k=1
Then

8(x) <g(y) (2)
Sorall x,y € R with |x| < |y| and xy > 0.

Proof. The proof of inequality (2) is based on using Holder’s inequality and a
suitable substitutions as follows: Let s} € [0,1] with > 7 si =1 (j = 1,...,n).
Using Holder’s inequality 7 -times we get

n . .
[Tt -
j=1
By the substitutions

ai(y) =f" - (fr--fa)™, 5‘11::—(1—;) (i #7), sf:—(l——)—s-;

n ) ) n

J VAN Zni
P <[ (A@) - Aan)™) T = T Ala) > 5.

j=1 i=1

2|

we get (2).

If A is a functional defined as
Af)=>_fG) (f:E={1,2,...,m} > R),
i=1

we obtain Yang’s result. Another functional A often used is defined as A(f) =
/. b f (x)dx for all integrable functions f : E = [a,b] — R. For some other examples
of isotonic linear functionals see [3].

We will discuss here instead of & as defined in [4] a more general function, and as
a special case we get again Holder’s inequality.

In the sequel we need the following notations:

DEFINITION 1. Let f; (j=1,...,n— 1) be positive real-valued functions on R"
andleta = (ai,...,a,) € R" witha; >0 (j=1,...,n). Forr,s € {1,2,...,n—1},
r < s we denote

Ar+1 Ary2 As+1
gr,s(ar7ar+1a-~-aas+1) :arfr( r+1( ff( )

ay Aart1 As

gs+1,s(as+l) = Us41

and

g(a) = gin—1(a) = alfl(;l_jfz(z_i . -fnfl(aan )))

n—1
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Similarly, for positive real-valued functions r, F; (j=1,...,n—1) on R" denote

Rla,b) = ar(g) ((a.b) € R?),
F

Ari1 Aari2 g1
Gr,s(ar7ar+l>~-~7as+l) :arFr(— r+1 o F >
ar Ar+1 As

Gs+1,s(as+1) = ds+1

and
G(a) = Gy (a) :alFl(Z_sz(“i,...,Fn,l( n )))

az ap—1

This definition leads to the following lemma which can be easily proved (see also [1:
Theorem 1] where this lemma is included).

LEMMA 1. Let f; (j = 1,...,n — 1) be positive increasing concave functions
defined on R", let g, be as defined above and x; = (xj1,%p,...,%,) € R* (i =
1,...,m) with x;; >0 (j=1,...,n). Then the inequalities

m
Z 81n—1 (Xi)
i=1

m m

<81l (inl, Z g2p—1(Xi2, - - - 7xin))
=1 =l

3)

m m

m m
<81,/< E Xil, E Xi2y ooy E Xijs E gj+l,n—l(xi.j+l>~-~7xin))
i=1 i=1 i=1 i=1
m m m
<81,n—1( E Xil, E X2y oo E xin>
i=1 i=1 i=1

hold. Moreover, if all f; are nonlinear on any subinterval of R", then equality holds in

m m m m
Zgl,nfl(xi) Sgl,n1<in1,zxi27~-~7zxin) 4)
i-1 i-1 i-1 i—1

ifand only ifall x; (i=1,...,m) are proportional.

In other words, (4) shows that g; ,—; is a superadditive function which means that

m m
Z in—1(Xi) < g1a—1 ( Z Xi>
i—1

i=1

for x; = (xj1,%,...,Xin) € R" with x; >0 (i=1,...,m,j=1,...,n) or, more
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explicitly,

S (2n(2 ()

Xin—1

m m m m
dimi X2, (DX i1 Xin
< g x'l)fl( )2 - S| SE— .
h (i_l l Srixn A\ T\ X

Using Lemma 1 we prove the following

THEOREM 1. Let r,f;,F; (j = 1,...,n — 1) be positive concave functions on
R and for x = (x1,...,x,) € R" with x; >0 (i = 1,...,n) denote by g,G,R
the functions accordingly to Definition 1. Then the function A = A(X) defined for
X=(x1,...,%,) ER" with x; >0 (i=1,...,n) by

A®) = G(R(g(x),x1), R(g(X), x2), ., R(g(x), %))

is superadditive.

Proof. As fj(x) > 0 and therefore xf;(1) (j = 1,...,n — 1) are increasing
for x > 0, it follows that the function g is increasing, too. The same holds for the
function G and R. According to Lemma 1, g, G and R are superadditive functions as
r.f;, F; are concave on R*. Hence, for X; = (x;1,...,xi) € R" with x; >0 (i =
L....mj=1,...,n),

D AX) =Y G(R(g(xi),xn), .. -, R(8(X), Xin))
i=1 i=1
<%§FMMMNWXFMWMO
i=1 i=1

< G(R(ii:g(x,-), éxil),...,R(Zg(xi), ;x»

i=1

<o(r(s(2x) o) #(o(2%) )

m

:A<§:m)

i=1

In this sequence of inequalities, the first is a result of the superadditivity of G, the
second is a consequence of the superadditivity of R and the monotonicity of G, and
the third follows from the superadditivity of g and the monotonicity of R and G.
Moreover, if additionally r,f;,F; (j =1,...,n— 1) are nonlinear on any subinterval
of R", equality holdsin Y7 | A(x;) < A(Y_[", x;) onlyifall x; are proportional.
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EXAMPLE 1. Let the conditions of Theorem 1 be fulfilled. Then if r(x) =1 (x >
0), we get the inequality

()

i=1
which in the case of fj(x) = x% with 0 < ¢; < 1 (j =1,...,n— 1) is Holder’s
inequality. If r(x) =x (x > 0), then we get the inequality

lZi:A(xz') - iZi:G(Xi) < G(iz:n;xil,...,éxm) =A<Zm:x,-)

i=1
which in the case of Fj(x) =x% (x> 0) with 0 <g; <1 (j=1,...,n) is Holder’s
inequality, too.

2. Main results

In the following, the functions g = g(a) and G = G(a) are defined by functions
fj and F; as in Definition 1, for elements a = (ai,...,a,) € R" with ¢; >0 (i =
1,...,n). However, the function r is now dependent on two variables r = r(x,#) and
the function R generated by it is now in analogy given by

R(a,b,1) = ar(g,t) ((a,b) eR* 19 <1< 1y).

We will discuss conditions on r,f;,F; (j = 1,...,n — 1) for which the function
H = H(r) defined by

m

H(t) = G(z(1)) = G(ZR(g(x,-),x,-Lt), - ZR(g(x,-),x,-,,j)) (5)
i=1 i=1

is monotone on [fy, 1], where z = (z1,...,z,) with z; (j =1,...,n) given by
5(1) =Y R(g(x),xp1) (0 <1<n) (6)
i=1
and as before x; = (xj1, ..., x;) € R with x; > 0.

We need the following lemmas.

LEMMA 2. Let F > 0 be a concave function on RY. Then F is increasing. If F

is also differentiable, then 0 < x% <1on RT.
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LEMMA 3. Let the functions F; generating by Definition 1 the function G and
the functions z; in (6) be differentiable and denote
d

Fi(D)) = —

J Fj(Dj)
and

D; = Zj%GjJrl,nl (Zj+1(t), . ,Zn(f))
_ Zj+1(f)FjH(Zj+2(f)F Z(Zm(f) -~-Fn—l( (1) )))

a1 (1) T \ga ()

where

n—1 n
Fi (D)
P, = ) d Pi=1
n g Fk(Dk) kK an ; J
= =
LEMMA 4. Let the functions F; = Fj(x) generating by Definition 1 the function
G and the function r = r(x,t) be differentiable in x and t, respectively, set V = 7’,

let P; given by (7) and denote w;; = g("i). Then the function H given by (5) is
diﬁ‘erentiable

Z : >y 8(xi)r(wy, )V (wy, 1)
Zl lg(X,) (Wijat)

_ZP{ lngl r(wy, OV(wy, 1) Y00 g(xi)V(wg, 1)

, lg(xl) (Wij7t) Z:ﬂ:l g(xi)
+Z( i= lg (le’t))Pj.

Do 18(7‘1)

A simple calculatlon shows also that
(0 Z p isicken 8(Xi)g(Xe) (r(wyjs 1) = r(wyg, 1)) (V(wy, 1) = V(wy, 1))
- J m m
2oicy 8(xi)r(wys 1) 324y 8(%e)

Zg (xi ZV Wij, 1)
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LEMMA 5. Let F; (j=1,...,n— 1) with Fj(x) > 0 be differentiable concave
functions on [0,00). Then P; (j=1,...,n— 1) defined by (7) satisfy 0 < P; < 1
and Z;':l P =1.

LEMMA 6. Let V = V(x,t) be a function given on R X [to, t1] such that V(x,1)
increasesin x, V(e*,t) is convexin x and V(1,t) > 0 forall t. Further, let 0 < P; <
1 (j=1,...,n) besuchthat ¥, | P; = 1. At least, let g = g(X) be the function from
Definition 1 defined for x = (xy,...,x,) € R* with x; >0 (j=1,...,n). Then

n P;
Hj:l xj]
8(x)

implies
n n P;
ijv(x_JJ) > V(L,t) >0
P g(x) g(x)
forall th <t < 1.

DEFINITION 2. Functions r(x,#) and V(x,¢) with common domain are said to be
similarly ordered in x if, for every fixed ¢,

(r(x1,0) = r(x2,0) - (V(x1,1) = V(x2,1)) >0
forall x.

THEOREM 2. Let the functions F; (j =1,...,n—1) in Definition 1 generating G
be differentiable and concave, and let the function r = r(x,t) generating R = R(a, b, 1)

/

be differentiable in t for every x > 0. Further, let P; be defined by (7), denote V = %’
and suppose V(x,t) = 0 for x > 1, V(e*,t) to be convex in x, and V(x,t) and
r(x,1) to be similarly ordered in x, for every t. At least, let g = g(x) be the function
from Definition 1.Then, for X; = (xi1,...,Xn) € R* with x; >0 (i=1,...,m,j =
1,...,n),

n P

Hj:lxijj > 1

8(xi)

implies that the function H given by (5) is increasing on [to, 11].

Proof. From Lemma 4 and also from the discrete Chebyshev inequality [3: p. 198]
we get that if r(x,#) and V(x,?) are similarly ordered in x for each 7p <7 < #; and if

> VwgOP =0 (i=1,...,m),
j=1

/(1)

then H) > 0 for any ¢. From Lemma 5 we get 0 < P; < 1 G=1,...,n) and
Z;':l P; =1, and as the conditions of Lemma 6 are satisfied and w; = g?%’) , we get

" T«
SPviw,n>v(=L=E ) >0 (i=1,....m).
= o g(xi)
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This completes the proof of Theorem 2.

EXAMPLE 2. If, for x = (x1,...,x,) € R" with x; >0 (i=1,...,n),

G(x):g(x):foj (x=(x1,...,x) €R")

j=1
with 0 < 1andZJ 10 = 1,andif r(x,7) =x" (0<7< 1) and wy = %, then
all condmons of Theorem 2 are satisfied, and for x; = (xi1,...,x,) € R" (i = 1 m)

with x; >0 (j=1,...,n) the function H given by
n m (272
- I1 (X stxms)
=1 Ni=1

is monotone increasing on [tg,#;]. This was proved in [4] for the function A given in
(1).
EXAMPLE 3. An immediate example of Theorem 1 for
fx) =+ Fx)=(1 —l—x")é, r(x, 1) =x' 0<x;0<86,q<1)
and xX; = (X1, x2) (i=1,...,m) with x; > 0 (j = 1,2) is the Minkowski-Holder-
type inequality

m

1— 1
ZA ) = Sk ) !

i=1

()

i=1

N

m

=A ( > (i, f)) :

i=1

and as a result of Theorem 2 we get that the function H given by

H() = ((i(xh fxi)'™ x11>q+ (Zm:<xtll 2" x’2>q>

i=1 i=1

N

is increasing on {7 > 0} for ¢ > 0 in the following cases:

1. ﬁ_%and;g>1or;g<1(1_1,..., m).
2.p<sand 2>1 (i=1,...,m).
3.B>5and 2 <1 (i=1,...,m).

In these three cases we get especially that

m

> A(xi,0) = H(0) < H(r) < H(1) = A(Z(Xh 1)>

i=1 i=1

for0<r<1
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Proof. Denote y; :xil(%)ﬁ and w;; = % fori=1,...,m and j = 1,2. Then,
according to Lemma 3 and Lemma 4,

H'(1) - - P)21§i§k§m yive(wWiy — wiq ) (Inwip — Inwyy)
H(t) (i yiwhy ) (i e)
_HDZlgigkgm Yivk(Wh — wip)(Inwip — Inwa)
(o yiwiy) (321, )
+ ! zm: 1 —P)lnw; + Plnwp) (8)
DY e
where
p— (Z;ﬂ L Yiwh)?

(i yiwh )9 + (Zi:l Yiwpy )1

As 2 = ¥2 e get that

1 ;
~<P<1 when Z3>1
2 Xil
1 Xi2 .
0<P<§ when — <1 (i=1,....,m;t>0,qg>0).
Xil
Hence,ifﬁ:%,t>0,q>0weget

\\/
o

©

~—

sy i ()

11’,‘1

It is easy to verify that (9) holds too when B < 3,4 > 0, > 0 for 22 > 1 (i =

Xil

1,...,m) and also when f3 > 27q>0t 0f0r0<x’2<1(1—1,...,m).As
1 = Xi2
—_— (1 —P)Inwy + Plnwp) viln (—)
(Zi:l yi) ;( , 1yz Z Xi1

and as 7 > 0 we get from (8) and (9) that H’ (t) > 0 in all the three cases which are
stated in this example.

EXAMPLE 4. For ¢t > 1 and x > 0, the functions r(x,7) = x'#* and V(x,t) =
rr’((jt? = Inx+ % are similarly ordered in x for every fixed ¢, V(1,7) > 0 and V(e",1)
is convex in x. Therefore, under the conditions of Theorem 2, its result holds here for

> 1. In particular, if n =2 , f(x) =x? and F(x) = (1 +xq)%f,then

- ((ixn)”(im)"f

Lt Lot g 9 S B T (324 9
E xz Iy 22 24 (33 + E xizl le_z2 145

i=1

= H(z ) \H(fl)

for 1 <r<.
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Pj

REMARK 1. The inequality > 7 >1 (i=1,...,m) in Theorem 2 means

/1)1

that, in the case n = 2, F has to satisfy the differential inequality xx% > f (x). For
instance, the inequality holds if F(x) = xP (5 <B<1)andf(x)=arctanx (x >0).
As these functions are concave too, Theorem 1 holds for any r(x,7) > 0 which is
concave on R™, forevery 1o <1< 1.

Theorem 2 holds if r = r(x, ) satisfies the relevant conditions stated there. If, for
instance, r(x,#) =x' (x > 0,0 < ¢ < 1), then for the functions F and f above both

theorems hold for n = 2 . The result of Theorem 2, if we choose F(x) = (1 + x4 )é
with 0 < ¢ < 1 and f(x) = arctanx, holds too for 2 > 1 (i=1,...,m).

REMARK 2. The differential equation xx% = f (x) is solvable for F(x) =f (x) =
xP only, and in order for Theorems 1 and 2 to hold in the case n = 2, F has to be
concave and hence 0 < 8 < 1.

The following theorem can be proved in a similar way as Theorem 2 and therefore
the proof is omitted.

THEOREM 3. Let Y : [a,b] — R and f; : [a,b] — RT (j = 1,...,n) be
continuous functions, and let F; : R" — R (j = 1,...,n) be concave differentiable
functions. Further, let r = r(x,t) with r(x,f) > 0 for (x,r) € R X [to,11] be
differentiable on R™ X (fo,11), set V = é and suppose V(x,t) to be non-negative on
{x =2 1}, V(e*,1) to be convex on RT, and r(x,t) and V(x,t) to be similarly ordered
in x, forall tg <t < ty. Atleast, let T[_, fFi(x) > Y(x) (x > 0) where P; are
defined in (7). Then the function H defined by

H(t) =G(zi(1),...,z:(1)) (fo <1< 1)

with

is monotone increasing on |to, t1].

3. Continuous sharpening of the inverse Holder’s inequality

In this chapter we consider the reverse Holder’s inequality in both forms: discrete
and integral. For this let p > 0 and g < O be real numbers such that p + g = 1. The
discrete reverse Holder’s inequality states that if x;;,x, >0 (i=1,...,m), then

Zx?lx?z > (Zx,-l) <Zx12) .
i=1 i=1

The integral reverse Holder’s inequality states thatif f, g > O are integrable real-valued
functions on [a, b], then

/ubf(x)p ¥)dx > (/f dx) (/ubg(x)dx)q.
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The following theorem shows that the above inequalities can be sharpened too using a
function similar to that in [4].

THEOREM 4. Let p > 0 and q < 0 be real numbers such that p +q = 1.
(a) If f,g : [a,b] — R" are continuous functions and Y = fPg?, then the

function
h(r) = (/b Y(x)(%)tdx)p(/ab Y(x)(%)tdx>q

is decreasing on [0, 1]. In particular, for t € [0, 1] we have

/f X)idx > (/f dx) (/ubg(x)dx)q

which is a sharpening of the integral reverse Holder’s inequality.
(b) If xi1,xn > 0 are real numbers and y; = xx}, (i = 1,...,m), then the

function
m AN L N
p(t) = (;yz(%) ) (;y1<%) )

is decreasing on [0, 1].

Proof. (a) As a consequence of Chebyshev inequality [3: p. 198]
b b b b
[ rwas [ pwnwemdr> [ pweatds [ s d

for similarly ordered functions g; and g, and weight p, choosing g;(x) = In (3 and

g(x) = (%)' (t € [0, 1]) and as weight function p(x) = Y (x) (%) " we get

b X)\ P X b X)\ 14
/uY(x)(j:(—x;) lnj:(—x;dx/u Y(x)(}%) dx

_ ubY(x) (%) o ln% dx/ub Y(x) (]%)tpdx >0

and, because p > 0 and ¢ <0,

ACEE f Y(x)(% %dx +qu Y(x g ) ) lnfg—i;dx
(1) IRER ),qu J Y(x)(ﬁ%)’ﬂdx
_ qf Y(x) (457 In £5dx [ ¥ (x) (45) ~dx
f Y(x) ﬁ? "Idxf Y(x (f(,c) Pdx
£

)
f Y(x) (89) = n $dx [ ¥ (x) (45 )P dx
(

()8 rquf Y (x) (£ ywdx

a

f(x)

N
o
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Hence hj(r) < 0 for ¢ € [0, 1], i.e. A is a decreasing function on [0, 1]. The proof of
statement (b) is similar and is therefore omitted
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