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Abstract. We give a purely algebraic proof of AG inequality. We also give some examples.

0. Introduction

AG inequality states that

x1 + ... + xn

n
� n

√
x1 · ... · xn (1)

where x1, ..., xn are positive real numbers. The equality in (1) holds if and only if
x1 = ... = xn .
A form of (1) that can be viewed as an algebraic version of AG inequality is the
following:

(x1 + ... + xn)n � nnx1 · ... · xn (2)

For n = 2 , AG inequality follows from the identity

(X1 + X2)2 − 22 · X1X2 = (X1 − X2)2

It is easy to check the identity

(X1 + X2 + X3)3 − 33 · X1X2X3

=
1
2
((X1 + X2 + 7X3)(X1 − X2)2 + (X1 + X3 + 7X2)(X1 − X3)2

+ (X2 + X3 + 7X1)(X2 − X3)2)

from which AG inequality for n = 3 follows directly.
To generalize these identities we introduce the concept of quasi-sum of squares.
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DEFINITION 1. Let f be a homogenous symmetric n -degree polynomial in n
variables. We say that f is a quasi-sum of squares if

f =
∑

1�i<j�n

f i,j(Xi − Xj)2

where f i,j (for each i, j ) is a homogenous polynomial of degree n − 2 that is a linear
combination of monomials with nonnegative coefficients.

For example,

f := X2Y + X2Z + Y2X + Y2Z + Z2X + Z2Y − 6XYZ

is a quasi-sum of squares since

f = Z(X − Y)2 + Y(X − Z)2 + X(Y − Z)2.

It is easy to see that if f is a quasi-sum of squares then f (x1, x2, ..., xn) � 0 for all
nonnegative x1, x2, ..., xn .

In this note we prove the following

THEOREM 1.
(X1 + ... + Xn)n − nnX1 · ... · Xn (3)

is a quasi-sum of squares, for all natural numbers n .

Note that Hurwitz [3] gave an explicit expression of

Xn
1 + Xn

2 ... + Xn
n − nX1X2...Xn

as a quasi-sum of squares (see [1], p.87), which may be understood as a purely algebraic
proof of AG inequality for positive numbers xn

1, ..., x
n
n . However, the Hurwitz result

is insufficient for purely algebraic proof of (2). Note also that Theorem 1 provides a
proof of a noncommutative version of AG inequality (see [2]).

The organization of the paper is the following. In section 1 we give a characteri-
zation of the standard ordering on the partitions of a fixed natural number n in terms
of quasi-sum of squares, and in section 2 we use this characterization to prove AG
inequality.

1. A characterization of the standard ordering of partitions

The vector λ = (λ1, ..., λn) where λi are nonnegative integers is called a partition
of a natural number n if λ1 � ... � λn � 0 and λ1 + ... + λn = n (see, for example
[4]). We define the monomial Xλ and the symmetric polynomial mλ as follows:

Xλ := Xλ1
1 · ... · Xλn

n

where X1, ..., Xn are commutative variables; mλ is the sum of monomials obtained
from Xλ by different permutations of (λ1, ..., λn) . For example, if λ = (3, 1, 0, 0) , a
partition of 4 , then Xλ = X3

1X2 (we omit variables with zero exponents), and mλ =
X3

1X2+X3
1X3+X3

1X4+X3
2X1+X3

2X3+X3
2X4+X3

3X1+X3
3X2+X3

3X4+X3
4X1+X3

4X2+X3
4X3.



A PURELY ALGEBRAIC PROOF OF AG INEQUALITY 193

We denote by nλ the number of monomials contained in mλ (in our example
nλ = 12 ).

Let us recall the definitions of the standard ordering and the lexicographic ordering
on the set of partitions of a fixed natural number n . A partition λ is said to be larger
than a partition μ (in the standard ordering) if

∑

1�i�k

λi �
∑

1�i�k

μi

for all k = 1, ..., n . A partition λ is said to be larger than a partition μ (in the
lexicographic ordering) if λi � μi for the first index i such that λi �= μi .
Note that the standard ordering is not linear for n � 6 and that the lexicographic
ordering is linear for all n .

Assume that λ � μ in the standard ordering. Then λ � μ in the lexicographic
ordering. In order to describe the paths joining λ and μ we have to describe the set of
successors of a fixed partition. Here, we say that μ is a successor of λ (in an ordering)
if

(i) λ > μ and
(ii) if λ > π � μ for a partition π then π = μ .
We have two types of successors according to the following two types of situations:
1. type. If λi − λi+1 � 2 for some i then the corresponding successor is the

partition (λ1, ..., λi−1, λi − 1, λi+1 + 1, λi+2, ..., λn) .
2. type. If λi − 1 = λi+1 = ... = λi+m = λi+m+1 + 1 then the corresponding

successor is the partitions (λ1, ..., λi−1, λi−1, λi+1, ..., λi+m, λi+m+1+1, λi+m+2, ..., λn).

LEMMA 1. Assume that λ � μ in the standard ordering. Then there exists a chain
in the standard ordering such that:

(i) it consists of successive partitions
(ii) it joins λ and μ .

Proof. (induction on the number of steps between λ and μ in the lexicographic
ordering). If μ is the successor of λ in the lexicographic ordering then it is a successor
of λ in the standard ordering (since λ � μ ). Assume now that i is the first index such
that λi > μi , and, further, that j > i is the first index such that λi > λj . There are two
possibilities.
(i) λi−λj � 2 . Then there is π , a successor of λ of the 1. type, such that λ > π � μ .
(ii) λi−λj = 1 . Then λj �= 0 , and we look at the first index k > j such that λj−λk � 1 .
Therefore, there is π , a successor of λ either of the 1. type or of the 2. type, such that
λ > π � μ .

THEOREM 2. Let λ and μ be partitions of a natural number n . Then λ � μ in
the standard ordering if and only if

mλ (x1, ..., xn)
nλ

� mμ(x1, ..., xn)
nμ
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for all positive x1, ..., xn . The equality holds if and only if x1 = ... = xn .
Moreover

mλ

nλ
− mμ

nμ
is a quasi-sum of squares.

Note that the Hurwitz’s result shows that the theorem is valid for λ = (n, 0, ..., 0)
and μ = (1, ..., 1) . Note also that the first part of the theorem is well-known and that
it is a special case of the Muirhead theorem (see [1], p.357-359).

EXAMPLE 1. Assume that n = 4 , mλ = X4
1+X4

2+X4
3+X4

4 , with nλ = 4 ; and mμ =
X3

1X2+X3
2X1+X3

1X3+X3
3X1+X3

1X4+X3
4X1+X3

2X3+X3
3X2+X3

2X4+X3
4X2+X3

3X4+X3
4X3 ,

with nμ = 12 .
It is easy to see that

mλ

nλ
− mμ

nμ
=

1
12

(
∑

1�<i<j�4

(X2
i + XiXj + X2

j )(Xi − Xj)2)

A step in our proof of Theorem 2 is a proof of an analogous result for neighboring
partitions.

LEMMA 2. Let λ be a partition of a natural number n and let μ be a successor
of λ in the standard ordering. Then

mλ (x1, ..., xn)
nλ

� mμ(x1, ..., xn)
nμ

for all positive x1, ..., xn . The equality holds if and only if x1 = ... = xn .
Moreover

mλ

nλ
− mμ

nμ
is a quasi-sum of squares.

Proof. However we only have to prove the second statement. Let us denote
λ = (a1, a2, ..., an) . There are three possibilities.

(i) Xλ = Xa1
1 · ... · Xal

l · Xak
l+1 · ... · Xak

k · Xak−2
k+1 · ... · Xak−2

k+m · Xak+m+1
k+m+1 · ...

Xμ = Xa1
1 · ... ·Xal

l ·Xak
l+1 · ... ·Xak

k−1X
ak−1
k ·Xak−1

k+1 ·Xak−2
k+2 · ... ·Xak−2

k+m ·Xak+m+1
k+m+1 · ...

with ak − ak+1 = 2 , ak+m+1 < ak − 2 or ak = 2 , and al > ak or l = 0 .
We see that nλ =

(n
l

)( n−l
n−k−m

)(k+m−l
k−l

)
, nμ =

(n
l

)( n−l
n−k−m

)(k+m−l
k−l−1

)(m+1
2

)
, hence

nλ : nμ = 2 : (k − l)m , so we have to prove that (k − l)mmλ − 2mμ is a quasi-sum of
squares. We fix l variables with dominant exponents, say Xa1

1 , ..., Xal
l and n − k − m

variables with lower exponents, say X
ak+m+1
k+m+1, ... and permutate the remaining variables.

Let us denote by I the subsets of {l + 1, ..., k + m} with cardinality k − l and by J
the subsets of {l + 1, ..., k + m} with cardinality k − l − 1 . We get (after neglecting
Xa1

1 , ..., Xal
l and X

ak+m+1
k+m+1, ... ):

(k − l)m
∑

I

∏

i∈I

Xak
i

∏

i /∈ I

Xak−2
i − 2

∑

J

∏

j∈J

Xak
j

∑

r<s;r,s /∈ J

Xak−1
r Xak−1

s

∏

j /∈ J;j�=r,s

Xak−2
j
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=
∑

J

∏

j∈J

Xak
j

∑

r<s;r,s /∈ J

∏

j /∈ J

Xak−2
j (Xr − Xs)2

For example, if λ = (4, 3, 3, 1, 0, ...) we have n = 11 , l = 1 , k = 3 , m = 1 ; |I| = 2 ,
|J| = 1 , I, J ⊂ {2, 3, 4} ; Xλ = X4

1X
3
2X

3
3X4 , Xμ = X4

1X
3
2X

2
3X

2
4 . After neglecting X4

1
we have

2 · 1(X3
2X

3
3X4 + X3

2X
3
4X3 + X3

3X
3
4X2) − 2(X3

2X
2
3X

2
4 + X3

2X
2
4X

2
3 + X3

3X
2
4X

2
2)

= X3
2X3X4((X3 − X4)2 + X3

3X2X4((X2 − X4)2 + X3
4X2X3((X2 − X3)2

Therefore,

nμmλ − nλmμ = (X4
3X

3
4X1X2 + X4

4X
3
3X1X2)(X1 − X2)2 + ...

(ii) Xλ = Xa1
1 · ... · Xal

l · Xak
l+1 · ... · Xak

k · Xak+1
k+1 · ... · Xak+1

k+m · Xak+m+1
k+m+1 · ...

Xμ = Xa1
1 · ... ·Xal

l ·Xak
l+1 · ... ·Xak

k−1X
ak−1
k ·Xak+1+1

k+1 ·Xak+1
k+2 · ... ·Xak+1

k+m ·Xak+m+1
k+m+1 · ...

with ak − ak+1 = t � 3 , ak+m+1 < ak+1 or ak+1 = 0 , and al > ak or l = 0 .
Similarly as in (i) we see that nλ : nμ = 1 : (k − l)m , so we have to prove that

(k − l)mmλ − mμ is a quasi-sum of squares. Similarly as in (i) we get:

(k − l)m
∑

I

∏

i∈I

Xak
i

∏

i /∈I

X
ak+1
i

−
∑

J

∏

j∈J

Xak
j

∑

r<s;r,s /∈J

(Xak−1
r X

ak+1+1
s + Xak−1

s X
ak+1+1
r )

∏

j /∈J;j�=r,s

X
ak+1
j

=
∑

J

∏

j∈J

Xak
j

∏

j /∈J

X
ak+1
j

∑

r<s;r,s /∈J

(Xt−2
r + Xt−3

r Xs + ... + Xt−2
s )(Xr − Xs)2

(iii) Xλ = Xa1
1 ·...·Xal

l ·Xak
l+1 ·...·Xak

k ·Xak−1
k+1 ·...·Xak−1

k+m ·Xak−2
k+m+1 ·...·Xak−2

k+p ·Xak+p+1

k+p+1...

Xμ = Xa1
1 · ... ·Xal

l ·Xak
l+1 · ... ·Xak

k−1 ·Xak−1
k ·Xak−1

k+1 · ... ·Xak−1
k+m ·Xak−1

k+m+1 ·Xak−2
k+m+2...

with ak − ak+1 = 1 , ak+m − ak+m+1 = 1 , ak+p+1 < ak+p or ak+p = 0 , and
al > ak or l = 0 .

We see that nλ : nμ = (m + 1)(m + 2) : (k − l)(p − m) , so we have to prove that
(k − l)(p − m)mλ − (m + 1)(m + 2)mμ is a quasi-sum of squares. We fix Xa1

1 , ..., Xal
l

and n − k − p variables X
ak+p+1

k+p+1, ... and permutate the remaining variables. Denote by
I the subsets of {l + 1, ..., k + p} with cardinality k − l and by J the subsets with
cardinality k − l − 1 , by V the subsets with cardinality m and by W the subsets with
cardinality m + 2 . We get:

(k − l)(p − m)
∑

I

∏

i∈I

Xak
i

∑

V;V∩I=∅

∏

i∈V

Xak−1
i

∏

i /∈ I∪V

Xak−2
i

−(m + 1)(m + 2)
∑

J

∏

j∈J

Xak
j

∑

W;W∩J=∅

∏

j∈W

aak−1
j

∏

j /∈ J∪W

Xak−2
j
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=
∑

J

∏

j∈J

Xak
j

∑

V:V∩J=∅

∏

j∈V

Xak−1
j

∑

r<s;r,s /∈ J∪V

∏

j /∈ J∪V

Xak−2
j (Xr − Xs)2

Proof of Theorem 2. If λ > μ then, by Lemma 1, there exists a chain λ > π >
ρ > ... > χ > μ consisting of successors. Therefore

mλ

nλ
− mμ

nμ
= (

mλ

nλ
− mπ

nπ
) + (

mπ

nπ
− mρ

nρ
) + ... + (

mχ

nχ
− mμ

nμ
)

By Lemma 2, each summand on the right is a quasi sum of squares, so that mλ
nλ

− mμ
nμ

is
a quasi-sum of squares, too. The converse is well-known.

COROLLARY 1. Let P be a nonempty subset of the set of all partitions of a fixed
natural number n and let μ be a partition of n such that λ > μ for all λ ∈ P . Define
f :=

∑
λ∈P bλmλ , with positive real numbers bλ . Then there exists one and only

one positive real number d such that f (x1, ..., xn) � d · mμ(x1, ..., xn) for all positive
real numbers x1, ..., xn . The equality holds if and only if x1 = ... = xn . Moreover
f (X1, ..., Xn) − d · mμ is a quasi-sum of squares.

Proof. By Theorem 2, for each λ ∈ P there exists unique positive real number dλ
such that mλ − dλmμ is a quasi-sum of squares. It is easy to see that d :=

∑
λ∈P bλdλ

satisfies the statement of the Corollary.
Similarly, one may prove a slightly more general assertion.

COROLLARY 2. Let P , Q be two disjoint nonempty subsets of the set of all
partitions of a fixed natural number n such that each element of P is greater than
each element of Q (in the standard ordering). Define f :=

∑
λ∈P bλmλ , g :=∑

λ∈Q cλmλ , with positive real numbers bλ , cλ . Then there exists one and only one
positive real number d such that f (x1, ..., xn) � d · g(x1, ..., xn) for all positive real
numbers x1, ..., xn . The equality holds if and only if x1 = ... = xn . Moreover
f (X1, ..., Xn) − d · g(X1, ..., Xn) is a quasi-sum of squares.

Note that a similar procedure as in the proof of Theorem 2 leads to an elegant
proof of the Hurwitz result (see [1], p. 359). The simplicity of expression therein
is a consequence of a choice of a special chain joining partitions (n, 0, ..., 0) and
(1, 1, ..., 1) .

EXAMPLE 2. Since

X3 + Y3 + Z3 + 3XYZ − (X2Y + Y2X + X2Z + Z2X + Y2Z + Z2Y)

=
1
2
((X + Y − Z)(X − Y)2 + (X + Z − Y)(X − Z)2 + (Y + Z − X)(Y − Z)2)

= ((X + Y)3 + Z3 − Z(X + Y)2 − Z2(X + Y)) + XY(5Z − 4X − 4Y)

etc., we see that x3 + y3 + z3 + 3xyz � x2y+ y2x + x2z+ z2x + y2z+ z2y for all positive
x, y, z .

However, X3 + Y3 + Z3 + 3XYZ − (X2Y + Y2X + X2Z + Z2X + Y2Z + Z2Y) is
not a quasi-sum of squares.
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EXAMPLE 3. We have

3(X4 + Y4 + Z4 + W4) + 2(X2Y2 + X2Z2 + X2W2 + Y2Z2 + Y2W2 + Z2W2)

−2(X3Y+Y3X+X3Z+Z3X+X3W+W3X+Y3Z+Z3Y+Y3W+W3Y+Z3W+W3Z) =
(X2 +Y2)(X −Y)2 +(X2 +Z2)(X−Z)2 +(X2 +W2)(X −W)2 +(Y2 +Z2)(Y −Z)2 +
(Y2 + W2)(Y − W)2 + (Z2 + W2)(Z − W)2. This identity shows that the converse of
the statement from Corollary 1. is not valid, generally.

2. AG inequality

Proof of Theorem 1. (X1 + ... + Xn)n − n!X1 · ... · Xn is a linear combination with
positive coefficients of mλ where λ pass through all partitions of n , apart the minimal
partition. Since X1 · ... · Xn corresponds to the minimal partition we conclude, by
Corollary 1, that (X1 + ...+Xn)n−n!X1 · ... ·Xn−d ·X1 · ... ·Xn is a quasi-sum of squares
for some positive d , and, by the uniqueness of d , we conclude that d = nn − n! .

As a consequence we have that

(x1 + ... + xn)n � nnx1 · ... · xn

for all positive real numbers x1, ..., xn with equality if and only if x1 = ... = xn .
In the following example we use procedure from Lemma 2 to represent

(X1 + ... + Xn)n − nnX1 · ... · Xn (4)

as a quasi-sum of squares, for some n .

EXAMPLE 4. In this example m4 denotes mλ for λ = (4, 0, 0, 0) , m3,1 denotes
mλ for λ = (3, 1, 00) etc. We have:
(for n = 3 )

1
2
(2m3−m2,1) =

1
2
((X1+X2(X1−X2)2+...)(3+

1
2
)(m2,1−m1,1,1) =

7
2
(X3(X1−X2)2+...).

Combining these two identities we obtain

(X1 + X2 + X3)3 − 33 · X1X2X3 =
1
2
((X1 + X2 + 7X3)(X1 − X2)2 + ...)

(for n = 4 ) Similarly as for n = 3 we obtain

(X1 + X2 + X3 + X4)4 − 44 · X1X2X3X4

=
1
3
((X2

1 + X2
2 + 11X2

3 + 11X2
4 + 14X1X2 + 58X3X4)(X1 − X2)2 + ...)

(for n = 5 )

(X1 + X2 + X3 + X4 + X5)5 − 55 · X1X2X3X4X5

=
1
24

(6(X3
1 + X3

2) + 122(X3
3 + X3

4 + X3
5)

+ 132(X2
1X2 + X2

2X1) + 361(X2
3X4 + X2

4X3 + ...)

+ 362(X1X2X3 + X1X2X4 + X1X2X5) + 3606X3X4X5))(X1 − X2)2 + ...)
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(for n = 6 ). In this case the standard ordering is not linear, so we have to mod-
ify our procedure. We first follow the path (6, 0, 0, 0, 0, 0) > (5, 1, 0, 0, 0, 0) >
(4, 2, 0, 0, 0, 0) > (4, 1, 1, 0, 0, 0) > (3, 2, 1, 0, 0, 0) . Here we add the contribu-
tion of the path (3, 3, 0, 0, 0, 0) > (3, 2, 1, 0, 0, 0) and continue through the path
(3, 2, 1, 0, 0, 0) > (3, 1, 1, 1, 0, 0) > (2, 2, 1, 1, 0, 0) . Here we add the contribution
of the path (2, 2, 2, 0, 0, 0) > (2, 2, 1, 1, 0, 0) and continue. Finally, we get:

(X1 + X2 + ... + X6)6 − 66 · X1X2 · ... · X6

=
1
10

((2(X4
1 + X4

2) + 53(X4
3 + X4

4 + X4
5 + X4

6)

+64(X3
1X2 + X3

2X1) + 276(X3
3X4 + X3

4X3 + ...)

+25(X1X
3
3 + X2X

3
3 + ...) + 64X2

1X
2
2 + 100(X2

3X
2
4 + X2

3X
2
5 + ...)

+203(X2
1X2X3 + X2

2X1X3 + ...) + 976(X2
3X4X5 + X2

3X4X6 + ...)

+952(X1X2X3X4 + X1X2X3X5 + ...) + 15312X3X4X5X6)(X1 − X2)2 + ...)

At present we do not know any closed general formula for the difference (4).
In the following example we show that the representation as a quasi-sum of squares

is not unique, generally.

EXAMPLE 5. Let notation be as in Example 4. Then,

4m4,2 − m3,2,1

=
∑

1�i<j�6

(
∑

r �=i,j

X4
r + (X2

i Xj + X2
j Xi)Xr)(Xi − Xj)2

=
∑

1�i<j�6

(
∑

r �=i,j

X2
i X

2
j + (Xi + Xj)X3

r )(Xi − Xj)2.

These two representations correspond to the twopaths that join the partition (4, 2, 0, 0, 0, 0)
and the partition (3, 2, 1, 0, 0, 0) .
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