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Abstract. We give a purely algebraic proof of AG inequality. We also give some examples.

0. Introduction

AG inequality states that

X1+ ..+ Xy

> Ur 1
p, X1 X, (1)

where xi,...,x, are positive real numbers. The equality in (1) holds if and only if
Xl = ... = Xp.

A form of (1) that can be viewed as an algebraic version of AG inequality is the
following:

(X1 4 o +x)" = 0"x1 (2)
For n = 2, AG inequality follows from the identity

(X) +X2)* =22 - X1 X, = (X; — X»)?
It is easy to check the identity
X1+ X2+ X3)° = 3 X1 X X3
= %((xl + X +7X3) (X1 — X2)? + (X1 + X3 + 7X) (X — X3)?
+ (X2 + X3 4 7X)) (X2 — X3)?)

from which AG inequality for n = 3 follows directly.
To generalize these identities we introduce the concept of quasi-sum of squares.
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DEFINITION 1. Let f be a homogenous symmetric n-degree polynomial in n
variables. We say that f is a quasi-sum of squares if

f= Y fuli-x)

1<i<j<n

where f;; (for each i,j) is a homogenous polynomial of degree n — 2 that is a linear
combination of monomials with nonnegative coefficients.

For example,
[ =XY+XZ+YX +YZ+7°X +7°Y — 6XYZ
is a quasi-sum of squares since
f=ZX-Y)?+Y(X -2 +X(Y - 2).

It is easy to see that if f is a quasi-sum of squares then f (x1,x,...,x,) > 0 for all
nonnegative xj, X, ..., X, .
In this note we prove the following

THEOREM 1.
X1+ .. +X)" —n"X) - Xy (3)

is a quasi-sum of squares, for all natural numbers n.

Note that Hurwitz [3] gave an explicit expression of
X!+ X0+ X! — nXi X X,

as a quasi-sum of squares (see [1], p.87), which may be understood as a purely algebraic
proof of AG inequality for positive numbers x{, ...,x; . However, the Hurwitz result
is insufficient for purely algebraic proof of (2). Note also that Theorem 1 provides a
proof of a noncommutative version of AG inequality (see [2]).

The organization of the paper is the following. In section 1 we give a characteri-
zation of the standard ordering on the partitions of a fixed natural number #n in terms
of quasi-sum of squares, and in section 2 we use this characterization to prove AG

inequality.

1. A characterization of the standard ordering of partitions

The vector A = (A4, ..., A,) where A; are nonnegative integers is called a partition
of a natural number n if A; > ... > A, > 0 and A; + ... + A, = n (see, for example
[4]). We define the monomial X* and the symmetric polynomial m; as follows:

Ao yA A
Xt =Xxp X

where X1, ..., X, are commutative variables; m; is the sum of monomials obtained
from X* by different permutations of (Ay, ..., A,) . For example, if A = (3,1,0,0),a
partition of 4, then X = X13X2 (we omit variables with zero exponents), and m; =
X?Xz—l—X%X} +X?X4+X§X1 +XSX3 +X§X4+X§X1 +X§X2+X§X4+X2X1 +XZX2+X2X3.
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We denote by n; the number of monomials contained in m; (in our example
n, =12).

Let us recall the definitions of the standard ordering and the lexicographic ordering
on the set of partitions of a fixed natural number n. A partition A is said to be larger
than a partition u (in the standard ordering) if

k= > w

1<i<k 1<i<k

for all k = 1,...,n. A partition A is said to be larger than a partition u (in the
lexicographic ordering) if A; > y; for the first index i such that A; # ;.

Note that the standard ordering is not linear for n > 6 and that the lexicographic
ordering is linear for all 7.

Assume that A > u in the standard ordering. Then A > u in the lexicographic
ordering. In order to describe the paths joining A and u we have to describe the set of
successors of a fixed partition. Here, we say that u is a successor of A (in an ordering)
if

(i) A >u and
(ii) if A > m > u for a partition 7 then 7 = .

We have two types of successors according to the following two types of situations:

1. type. If A; — A;x1 = 2 for some i then the corresponding successor is the
partition (Al, v A1, A — 1, Ai+l + l,lprz, ...7An) .

2. type. If Ai—1 = Aiy1 = ... = Aiam = Airmy1 + 1 then the corresponding
successor is the partitions (A1, ..., Ai—1, Ai— 1, Aiv1, ooy Ay Aipmr1 1, Aitmg2, ooy An).

LEMMA 1. Assume that A > W in the standard ordering. Then there exists a chain
in the standard ordering such that.
(i) it consists of successive partitions
(ii) it joins A and .

Proof. (induction on the number of steps between A and u in the lexicographic

ordering). If u is the successor of A in the lexicographic ordering then it is a successor
of A in the standard ordering (since A > ). Assume now that 7 is the first index such
that A; > u;, and, further, that j > i is the first index such that A; > 4;. There are two
possibilities.
(i) Ai—A; > 2. Thenthereis 7, asuccessor of A ofthe 1. type, suchthat A > m > .
(ii) Ai—A; = 1. Then A; # 0, and we look at the firstindex k > j suchthat A;—A, > 1.
Therefore, there is 7, a successor of A either of the 1. type or of the 2. type, such that
A>T>u.

THEOREM 2. Let A and u be partitions of a natural number n. Then A > U in
the standard ordering if and only if

my (X1, ooy Xn) < my (X1, ..., X,)
=
n, ny




194 IviCcA GusI¢

for all positive xi, ...,x,. The equality holds if and only if x| = ... = x,,.
Moreover

" My

n, o ny

is a quasi-sum of squares.
Note that the Hurwitz’s result shows that the theorem is valid for A = (n, 0, ..., 0)

and u = (1,...,1). Note also that the first part of the theorem is well-known and that
it is a special case of the Muirhead theorem (see [1], p.357-359).

EXAMPLE 1. Assume that n = 4, m; = X}+X5+X3+X{, with n;, = 4;and my, =
XXo+X3X + XX+ XX+ X5 X+ X0 X+ X5 X+ X3 X0+ X5 X+ X3 X0 + X5 X+ X3 X5,
with n, = 12.

It is easy to see that

my; m 1
— -+t = ! o (XXX + X)) (X - X))
M T 1< <izj<4

A step in our proof of Theorem 2 is a proof of an analogous result for neighboring

partitions.

LEMMA 2. Let A be a partition of a natural number n and let U be a successor
of A in the standard ordering. Then

my, (X1, ..y Xn) S my (X1, ..., X,)
=

ny, ny
for all positive xy, ..., x,. The equality holds if and only if x| = ... = x,.
Moreover

A _ M

n),  ny

is a quasi-sum of squares.

Proof. However we only have to prove the second statement. Let us denote
A = (ay,ay, ..., a,) . There are three possibilities.

: A vai ay ay ay ap—2 ap—2 A L1
() X* =X XX XX T X X

Xy =X XX

ay ap—1 ap—1 ap—2 ap—2 A imi1
HIRIED (LD (LERED (L PRED (LPRPTNED CLINED Gl R

k+1 k+m k+m+1

with ap — a1 =2, agemr1 < ax—2 or ag =2,and a; > a; or [ =0.

We see that m = () (") (57 m = ()(,) (77 (75). henee

ny, :ny =2 : (k—1I)m, so we have to prove that (k — I)mm; — 2m,, is a quasi-sum of
squares. We fix [ variables with dominant exponents, say X{',...,X;" and n —k —m
variables with lower exponents, say X;}, ... and permutate the remaining variables.
Let us denote by I the subsets of {/+ 1,...,k + m} with cardinality k — [ and by J
the subsets of {l + 1, ...,k + m} with cardinality k—1— 1. We get (after neglecting

aj q ak+m+l .
X{",....X;" and Xk+m+17"')'

ZHXak HXak 2 2ZHXak Z Xak IXak 1 H Xak 2

iel i¢l JjeJ r<sirs @ J Jj & Jj#rs

)
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N LDV I LT s

J jeJ r<sis@Jj¢J

Forexample, if A = (4,3,3,1,0,...) wehaven=11,1=1,k=3,m=1; |I| =2,
| =1, I,J C {2,3,4}; X} = X{X3X3Xy, X, = X{X3X3X7. After neglecting X}
we have

2-1(X5X3Xs + X3 X3X5 + X3X3X2) — 2(GX3X3 + X5 X3X3 + X3X3X3)

= X3X3X4((X3 — X4)? + X3Xo X4 (X2 — X4)? + X3 X2 X3 (X2 — X3)?

Therefore,
— = (X3X3X 1 X5 + X{X3X1X:) (X1 — X,)?
numy, —nymy = (X3X3X1X2 + Xy X3X1X2) (X, 2)"+
i A _ yai aj ag ag At1 At A im1
(ii)) X =X\ XX XX e X X
_ ya aj yay ar =1 A+l g Ayt yOhimil
Xﬂ —Xl Xl 'Xl+1"~"Xk71Xk 'Xk+1 'Xk+2' Xk+m Xk+m+1""

with @y —ar1 =t 2 3, agamsr1 < @gy1 Or a1 =0,and a; > a; or [ = 0.
Similarly as in (i) we see that n; : ny, = 1 : (k — [)m, so we have to prove that
(k — l)mm; — my, is a quasi-sum of squares. Similarly as in (i) we get:

oy T T

i€l i¢l
_ Z ijflk Z (kaflxgkﬂJrl + X;zkflehl*l) H Xjflkﬂ
J ojed r<sir,s&J Jj&Jj#r.s
=S I TIx™ D) 2+ XX+ o+ X7D)(X, — X0)?
J jeJ Jj&J r<sir,s@J

A _ vai aj ay ay ap—1 ap—1 ap—2 ap—2 Al p+1
(i) X% = X0 XX XX X X X X

Xy = X[ X)X X X : Xl(clill - Xl(climl Xllcli;il Xllcli;iz
with ay — a1 =1, tGiym — @Gimy1 = 1, @gipr1 < aryp OF aryp = 0, and
a>a,orl=0.

We see that n; :ny, = (m+ 1)(m+2) : (k—1)(p —m), so we have to prove that
(k—1)(p — m)my, — (m + 1)(m + 2)my, is a quasi-sum of squares. We fix X{", ..., X}"
and n — k — p variables ka‘:[ffl, ... and permutate the remaining variables. Denote by
I the subsets of {/+ 1,...,k + p} with cardinality k — [ and by J the subsets with
cardinality k — [ — 1, by V the subsets with cardinality m and by W the subsets with

cardinality m + 2. We get:

(k—1)(p ZHX“k > IIxet I xe

i€l VivnI=0 i€V i¢IuvV

RURSUCEEID 9 | ED NN | N | I

JojeJ wwnJ=0jewW j¢EJuw
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=3 IIx > IIx+" > Il & -x)

J jer V:vnJ=pjeV r<sins ¢ JUVj ¢ JUvV

Proof of Theorem 2. If A > u then, by Lemma 1, there exists a chain A > 7 >
p > ...> x > U consisting of successors. Therefore

my  my m) Mg My My my  my
e G- VY . SRS R e L )
n),  ny ny, Ny ng Ny Ny Ny
By Lemma 2, each summand on the right is a quasi sum of squares, so that 72 — 2 g
ny ﬂu

a quasi-sum of squares, too. The converse is well-known.

COROLLARY 1. Let P be a nonempty subset of the set of all partitions of a fixed
natural number n and let W be a partition of n suchthat A > W forall A € P. Define

f = Z)LEP bymy, , with positive real numbers b, . Then there exists one and only
one positive real number d such that f (xy,...,X,) = d - my(x1, ..., x,) for all positive
real numbers xi,...,x,. The equality holds if and only if x| = ... = x,. Moreover

fXy, ... X,) —d - my is a quasi-sum of squares.

Proof. By Theorem 2, for each A € P there exists unique positive real number d,
such that m; — djm,, is a quasi-sum of squares. Itis easy to see that d := Z/lep b, d),
satisfies the statement of the Corollary.

Similarly, one may prove a slightly more general assertion.

COROLLARY 2. Let P, Q be two disjoint nonempty subsets of the set of all
partitions of a fixed natural number n such that each element of P is greater than
each element of Q (in the standard ordering). Define f = ), _pbymy, g =
Z)LEQ c)my , with positive real numbers b ,c) . Then there exists one and only one
positive real number d such that f (xy,...,x,) = d - g(x1,...,x,) for all positive real
numbers Xi,...,X,. The equality holds if and only if x; = ... = x,. Moreover
fX, ... X,) —d-g(Xi,...,X,) is a quasi-sum of squares.

Note that a similar procedure as in the proof of Theorem 2 leads to an elegant
proof of the Hurwitz result (see [1], p. 359). The simplicity of expression therein
is a consequence of a choice of a special chain joining partitions (n,0,...,0) and

(1, 1,....1).
EXAMPLE 2. Since

X+ Y+ 2 +3XYZ — (X*Y + Y’ X + X Z+ Z°X + Y*Z + Z°Y)

= %((X+YfZ)(X—Y)2+(X+ZfY)(X—Z)2+(Y+ZfX)(Y—Z)2)

=(X+YP+2Z—Z(X+ V) —Z*X + 7)) + XY(5Z — 4X — 4Y)
etc., we see that x> +y* + 23 + 3xyz > X2y + y?x + x2z + 2°x + y*z + 2%y for all positive
X9, 2.
However, X° + Y3 +Z3 +3XYZ — (X’Y + Y’ X + X°Z + Z’X + Y?Z + Z°Y) is
not a quasi-sum of squares.
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EXAMPLE 3. We have

3(X Y+ 2+ W 22XV + XPZE 4 XPWR Y2 4 YR WE 4 2P WR)
22XV +YVX+XZ+ X+ XWAW X+ YV Z+ Y+ VW W Y+ Z2 W+ W?Z) =
(XH+Y)X =Y+ (XP+Z)(X -2+ X+ W) (X = W)+ (Y2 +Z2°) (Y - 2)* +
(Y2 + W2)(Y — W)? + (Z* + W?)(Z — W)2. This identity shows that the converse of
the statement from Corollary 1. is not valid, generally.

2. AG inequality

Proof of Theorem 1. (X; + ... + X,,)" — n!X; - ... - X, is a linear combination with
positive coefficients of m; where A pass through all partitions of n, apart the minimal
partition. Since X - ... - X, corresponds to the minimal partition we conclude, by
Corollary 1, that (X1 +...+X,,)"—n'X; -...- X, —d- X - ...- X, is aquasi-sum of squares
for some positive d, and, by the uniqueness of d, we conclude that d = n" — n!.

As a consequence we have that

(14 o +x)" =01y

for all positive real numbers xi, ..., x, with equality if and only if x; = ... = x,.
In the following example we use procedure from Lemma 2 to represent

X1+ ..+ X)" —n"Xy - Xy 4)
as a quasi-sum of squares, for some 7.

EXAMPLE 4. In this example my denotes m; for A = (4,0,0,0), m3; denotes
my, for A = (3,1,00) etc. We have:
(forn=3)

1 1 1 7
5(2}’}13—}’}12,1) = E((X1+X2(X1_X2)2+-~-)(3+§)(m2,1_ml,l,l) = E(X}(Xl—Xz)z—l—...).
Combining these two identities we obtain
1
(X1 + X+ X3)" = 37 XiXoXs = (X1 + X2 +7X3) (X1 = X2) + )
(for n = 4) Similarly as for n = 3 we obtain
(X1 + X2+ X3+ X4)* — 4% X1 X0 X3X,

(X7 4+ X3 4+ 11X3 + 11X] + 14X, X, + 58X:X4) (X; — X2)* + ...)

W] =

(forn=35)
X1+ X+ X3+ X4+ X5)° = 57 - X1 X0 X3 XaXs

1
= ﬂ(6(Xf +X3) + 122(X3 + X3 + X2)

+ 132(X{ X + X3X1) + 361(X3Xs + X5X;3 + ...)
+362(X1 X2 X3 + X1 X2 X4 + X1 X2Xs) + 3606X3X4X5)) (X1 — X2)* + ...)
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(for n = 6). In this case the standard ordering is not linear, so we have to mod-
ify our procedure. We first follow the path (6,0,0,0,0,0) > (5,1,0,0,0,0) >
(4,2,0,0,0,0) > (4, 0 0,0) > (3,2,1,0,0,0). Here we add the contribu-
tion of the path (3, 3,0, ,0) > (3, ,1,0,0, 0) and continue through the path
(3,2,1,0,0,0) > (3,1,1,1 7O 0) > (2,2,1,1,0,0). Here we add the contribution
of the path (2,2,2,0,0,0) > (2,2,1,1,0,0) and continue. Finally, we get:

Xi4+Xo4 ...+ Xs)® —6° - X1 X5 ... - X
1
~ 10
+64(X; X + X3X1) + 276(X3X4 + X3X3 + ...)
+25(X1 X5 + X2 X3 + ...) + 64X7X3 + 100(X3X; + X3X2 + ...)
+203(X7Xo X5 + X3X1 X3 + ...) + 976(X3XaXs + X3X4 X6 + ...)
+952(X1 X2 X3Xs + X1 X2X3X5 + ...) + 15312X3X4X5X6) (X1 — X2)* + ...)

At present we do not know any closed general formula for the difference (4).
In the following example we show that the representation as a quasi-sum of squares
is not unique, generally.

—((2(X? +X3) + 53(X5 + X{ + X2 +X2)

EXAMPLE 5. Let notation be as in Example 4. Then,

4myr — m30 1

>0 0K+ (XX + XXX (X — X))

1<i<j<6 rij

SO XX+ (X + X)X (X — X))

1i<j<6 iy
These two representations correspond to the two paths that join the partition (4,2, 0,0, 0, 0)
and the partition (3,2,1,0,0,0).
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