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Abstract. This is a continuation of an earlier work of Cheung-Pečarić. By using the C -technique
developed by Cheung and Pečarić, some new and interesting Hardy-type inequalities involving
vector-valued functions are established. These generalize and imporve some known results by
Cheung, Cheung-Hanjš-Pečarić, Izumi-Izumi, and Pachpatte.

1. Introduction

One of the classical and important inequalities of G.H. Hardy is the following
integral inequality [7, Theorem 330]:

If p > 1 , m �= 1 , f (x) is non-negative measurable on (0,∞) , and

F(x) =
{ ∫ x

0 f (t)dt for m > 1 ,∫ ∞
x f (t)dt for m < 1 ,

(A)

then ∫ ∞

0
x−mF(x)pdx <

( p
|m − 1|

)p
∫ ∞

0
x−m+pf (x)pdx (B)

unless f ≡ 0 , where the constant on the right is best possible.
Because of its fundamental importance in the discipline, over the years much

effort and time have been devoted to the improvement and generalizations of Hardy’s
inequality (B). These include, among others, the works by Cheung [1], Cheung-Hanjš-
Pečarić [3], Isumi-Isumi [8], Levinson [9], Love [10], Pachpatte [14], and Pachpatte-Love
[15]. Recently, Hanjš, Love and Pečarić [6] adopted a function more general than F(x)
in (A) and established some new and interesting Hardy-type integral inequalities. In
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this paper, using the C -technique developed by Cheung and Pečarić (see, e.g. [1-4]),
by adopting also a function similar to that in [6] and using techniques parallel to those in
Cheung-Pečarić [5], we obtain some new Hardy-type inequalities which generalize and
imporve some existing results of Cheung [1], Cheung-Hanjš-Pečarić [3], Isumi-Isumi
[8] and Pachpatte [14].

2. Main Results

We follow the notations used in [5], namely, R+ = (0,∞) , X ∈ R+ a fixed
number, n � 1 an integer, and i, j are indices running from 1 to n . Also, as all
summations and products that will appear are taken over i, j from 1 to n , we shall drop
the limits and denote these simply by

∑
i

,
∑
j

,
∏
i

,
∏
j

, etc.

THEOREM 1. Let m > 1 , p � 1 , and q � 0 . Let s(x) , w(x) and z(x) be
absolutely continuous and positive a.e. on [0, X] , with z′(x) essentially bounded and
positive. If f (x) is nonnegative and integrable on [0, X] ,

F(x) :=
1

s(x)

∫ x

x
2

s(t)z′(t)
z(t)

f (t)dt for 0 � x � X ,

and

1 +
1

m − 1
z(x)
z′(x)

(
(p + q)

s′(x)
s(x)

− w′(x)
w(x)

)
� 1

α
> 0 a.e. , (1)

then ∫ X

0
w(x)

z′(x)
z(x)m

F(x)p+qdx �
[α(p + q)

m − 1

]p
∫ X

0
w(x)

z′(x)
z(x)m

Fq(x) ˜f (x)pdx , (2)

where

˜f (x) :=
z(x)

z′(x)s(x)
|Δ(x)| ,

Δ(x) :=
s(x)z′(x)

z(x)
f (x) − s( x

2 )z
′( x

2 )
2z( x

2 )
f
( x

2

)
.

(3)

Proof. (i) By arguments similar to those in the proof of (i) of Theorem 1 in [6],
F(x) is absolutely continuous. So the whole integrand in the left hand side of (2) is
bounded, and the integral on the left hand side of (2) is convergent.
(ii) Again by arguments similar to those in the proof of (ii) of Theorem 1 in [6], the
following integration by parts is valid:

∫ X

0
w(x)F(x)p+q(1 − m)

z′(x)
z(x)m

dx =
[
w(x)F(x)p+qz(x)1−m

]x=X

x=0

−
∫ X

0
z(x)1−m

[
w′(x)F(x)p+q + w(x)(p + q)F(x)p+q−1F′(x)

]
dx ,
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hence

(m − 1)
∫ X

0

z′(x)
z(x)m

w(x)Fp+q(x)dx + z(X)1−mw(X)F(X)p+q

=
∫ X

0
z(x)1−m

[
w′(x)F(x)p+q + w(x)(p + q)F(x)p+q−1F′(x)

]
dx

=
∫ X

0
z(x)1−m

{
w′(x)F(x)p+q + w(x)(p + q)F(x)p+q−1

[
− s′(x)

s(x)
F(x)

+
1

s(x)

( s(x)z′(x)
z(x)

f (x) − s( x
2 )z

′( x
2 )

2z( x
2 )

f
( x
2

))]}
dx

=
∫ X

0

{
z′(x)
z(x)m

w(x)
[w′(x)

w(x)
z(x)
z′(x)

− (p + q)
s′(x)
s(x)

z(x)
z′(x)

]
F(x)p+q

+
z(x)1−m

s(x)
w(x)(p + q)

(s(x)z′(x)
z(x)

f (x) − s( x
2 )z

′( x
2 )

2z( x
2 )

f
( x
2

))
F(x)p+q−1

}
dx .

(4)

We note that

z(x)1−m

s(x)
w(x)

[ s(x)z′(x)
z(x)

f (x) − s( x
2 )z

′( x
2 )

2z( x
2 )

f
( x
2

)]
F(x)p+q−1

is integrable. In fact, by the proof of (i) of Theorem 1 in [6], s(x)z′(x)
z(x) f (x) is integrable,

so the same is true for s( x
2 )z′( x

2 )
2z( x

2 ) f
(

x
2

)
and Δ(x) , while the other factors in the item

including z(x)1−m are absolutely continuous.
Now, by additivity and using condition (1), (4) can be restated as

1
α

∫ X

0
w(x)F(x)p+qdx � p + q

m − 1

∫ X

0
w(x)F(x)p+q−1 ˜f (x)dx , (5)

where w(x) = z′(x)
z(x)m w(x) and ˜f (x) is defined as in (3).

From (5), we have

1
α

∫ X

0
w(x)F(x)p+qdx � p + q

m − 1

∫ X

0

(
w(x)1− 1

p F(x)p+q−1− q
p

)
·
(
w(x)

1
p F(x)

q
p ˜f (x)

)
dx

� p + q
m − 1

(∫ X

0
w(x)F(x)p+qdx

)1− 1
p
( ∫ X

0
w(x)Fq(x) ˜f (x)pdx

) 1
p

by Hölder’s inequality, and Theorem 1 follows.
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THEOREM 2. For any i = 1, . . . , n , let w, si, zi : [0, X] → R+ be absolutely
continuous with z′i essentially bounded and positive a.e., and ki > 1 , pi � qi > 0 ,
ri � 0 , αi > 0 be real numbers such that

∑
i

qi = 1 and

1 +
1

ki − 1
zi(x)
z′i(x)

[(pi + ri

qi

) s′i(x)
si(x)

− w′(x)
w(x)

]
� 1

αi
> 0 a.e. .

If for any i = 1, . . . , n , f i is integrable and nonnegative and

Fi(x) :=
1

si(x)

∫ x

x
2

si(t)z′i(t)
zi(t)

f i(t)dt , 0 � x � X ,

then

∫ X

0
w(x)

∏
i

[( z′i(x)
zi(x)ki

)qi
Fi(x)pi+ri

]
dx

�
( ∏

j

C
−pj
j

)∑
i

qiC
pi
qi
i

[αi(pi + ri)
qi(ki − 1)

] pi
qi

∫ X

0
w(x)

z′i(x)
zi(x)ki

Fi(x)
ri
qi ˜f i(x)

pi
qi dx ,

where

˜f i(x) =
zi(x)

z′i(x)si(x)
|Δi(x)|

Δi(x) =
si(x)z′i(x)

zi(x)
f i(x) −

si( x
2 )z

′
i(

x
2 )

2zi( x
2 )

f i

( x
2

)
.

Proof. By Theorem 1, we have

∫ X

0
w(x)

z′i(x)
zi(x)ki

F(x)
pi+ri

qi dx �
[αi(pi + ri)

qi(ki − 1)

] pi
qi

∫ X

0
w(x)

z′i(x)
zi(x)ki

Fi(x)
ri
qi ˜f

pi
qi

i (x)dx (6)

for all i = 1, . . . , n . On the other hand, for any Ci > 0 , by the arithmetic-geometric
inequality [7, 11-13], we have

w(x)
∏

i

[( z′i(x)
zi(x)ki

)qi
Fi(x)pi+ri

]
= w(x)

∏
i

{[
C

pi
qi
i

z′i(x)
zi(x)ki

Fi(x)
pi+ri

qi

]qi
C−pi

i

}

=
( ∏

j

C
−pj
j

)
w(x)

∏
i

[
C

pi
qi
i

z′i(x)
zi(x)ki

Fi(x)
pi+ri

qi

]qi

�
( ∏

j

C
−pj
j

)
w(x)

∑
i

qiC
pi
qi
i

z′i(x)
zi(x)ki

Fi(x)
pi+ri

qi .
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Therefore, from (6) we obtain∫ X

0
w(x)

∏
i

[( z′i(x)
zi(x)ki

)qi
Fi(x)pi+ri

]
dx

�
(∏

j

C
−pj
j

)∑
i

qiC
pi
qi
i

∫ X

0
w(x)

z′i(x)
zi(x)ki

Fi(x)
pi+ri

qi dx

�
(∏

j

C
−pj
j

)∑
i

(qiC
pi
qi
i )

[αi(pi + ri)
qi(ki − 1)

] pi
qi

∫ X

0
w(x)

z′i(x)
zi(x)ki

Fi(x)
ri
qi ˜f i(x)

pi
qi dx .

COROLLARY 1. For any i = 1, . . . , n , let si : [0, X] → R+ be absolutely continu-
ous and positive a.e., and pi � qi > 0 , mi > qi be real numbers such that

∑
i

qi = 1

and

1 +
pi

mi − qi

xs′i(x)
si(x)

� 1
αi

> 0 a.e.

If for any i = 1, . . . , n , f i is integrable and nonnegative and

F̃i(x) :=
1

si(x)

∫ x

x
2

si(t)
t

f i(t)dt , 0 � x � X ,

then ∫ x

0
x−

∑
i
mi

∏
i

(
F̃i(x)pi

)
dx

�
(∏

j

C
−pj
j

) ∑
i

qiC
pi
qi
i

[ piαi

mi − qi

] pi
qi

∫ X

0
x−

mi
qi ˜f ∗

i (x)
pi
qi dx

(7)

where
˜f ∗
i (x) =

1
si(x)

∣∣∣si(x)f i(x) − si
( x
2

)
f i
( x
2

)∣∣∣ .

Proof. This follows from Theorem 2 by setting w(x) ≡ 1 , zi(x) = x , ki = mi
qi

,
and ri = 0 for all i .

REMARK 1. If we rename f i(x) as gi(x)f i(x)βi−αi and si(x) as f i(x)αi , (7)
becomes∫ X

0
x−

∑
i
mi

∏
i

(μi(x)pi)dx

�
( ∏

j

C
−pj
j

)∑
i

qiC
pi
qi
i

[ piαi

mi − qi

] pi
qi

∫ X

0
x−

mi
qi

[
1

f i(x)αi

∣∣∣f βi
i (x)gi(x) − f βi

i

( x
2

)
gi

( x
2

)∣∣∣
] pi

qi

dx

(8)
which is exactly Theorem 2.9 in [1], where

μi(x) =
1

f αi
i (x)

∫ x

x
2

f βi
i (t)gi(t)

t
dt , 0 � x � X .
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Furthermore, if we restrict to αi = βi = 1 for all i , (8) reduces to Theorem 3 in [3].
Note that inequality (8) also generalizes a result of Isumi-Isumi [8, Theorem 2], which
only deals with the situation where n = 1 .

Now, we choose specific constants Ci , qi etc. to derive two interesting Hardy-type
inequalities from Theorem 2 in the following Corollaries.

COROLLARY 2. Under the same conditions as in Theorem 2,

∫ X

0
w(x)

∏
i

[( z′i(x)
zi(x)ki

)qi
Fi(x)pi+ri

]
dx � C

∑
i

∫ X

0
w(x)

z′i(x)
zi(x)ki

Fi(x)
ri
qi ˜f i(x)

pi
qi dx ,

where

C =
∏

j

{
q

qj
j

[αj(pj + rj)
qj(kj − 1)

]pj

}
,

Fi and ˜f i are defined as in Theorem 2.

Proof. It follows immediately from Theorem 2 by setting

Ci = q
− qi

pi
i

[αi(pi + ri)
qi(ki − 1)

]−1

for all i = 1, . . . , n .

COROLLARY 3. For any i = 1, . . . , n , let w, si, zi : [0, X] → R+ be absolutely
continuous with z′i essentially bounded and positive a.e. and ki > 1 , pi � 1

n , ri � 0
be real numbers such that

1 +
1

ki − 1
zi(x)
z′i(x)

[
n(pi + ri)

s′i(x)
si(x)

− w′(x)
w(x)

]
� 1

αi
> 0 a.e.

If for any i = 1, . . . , n , f i is integrable and nonnegative and

Fi(x) :=
1

si(x)

∫ x

x
2

si(t)z′i(t)
zi(t)

f i(t)dt , 0 � x � X ,

then

∫ X

0
w(x)

∏
i

[( z′i(x)
zi(x)ki

) 1
n
Fi(x)pi+ri

]
dx

�1
n

(∏
j

C
−pj
j

) ∑
i

Cnpi
i

[αi(pi + ri)n
ki − 1

]npi
∫ X

0
w(x)

z′i(x)
zi(x)ki

Fi(x)nri ˜f i(x)npidx

(9)

for any constants Ci > 0 , where Fi and ˜f i are defined as in Theorem 2.

Proof. This follows immediately from Theorem 2 by setting qi = 1
n for all i .
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REMARK 2. If we choose Ci = 1 for all i , (9) becomes

∫ X

0
w(x)

∏
i

[( z′i(x)
zi(x)ki

) 1
n
Fi(x)pi+ri

]
dx

�1
n

∑
i

[αi(pi + ri)n
ki − 1

]npi
∫ X

0
w(x)

z′i(x)
zi(x)ki

Fi(x)nri ˜f i(x)npidx .

In particular, setting zi(x) = x , ki = m , w ≡ 1 , and ri = 0 , this reduces to an inequality
obtained by Pachpatte in [13, Theorem 6]. Observe, though, that our assumption here
are considerably milder. In [14] it was required that pi > 1 for all i , while here all we
need is pi � 1

n for all i .

REMARK 3. In Theorems 1, 2 and Corollaries 1, 2 and 3, if the hypotheses on w ,
si , zi and z′i hold locally on [0,∞) , the assertions are still true with X replaced by ∞
(but in this case the improper integrals concerned may not always be convergent).
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[4] W. S. CHEUNG, J. PEČARIĆ, Multi-dimensional integral inequalities of the Wirtinger-type, Math. Ineq.
Appl., 1, (1998), 481–489.
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