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THE WEIGHTED EULER IDENTITY

A. AGLIC ALJIINOVIC AND J. PECARIC

Dedicated to the memory
of prof. Mladen Ali¢

(communicated by P. S. Bullen)

Abstract. Some new weighted generalisations of Euler-type identities are given, by using weighted
Montgomery identity.

1. Introduction

For every function f : [a,b] — R such that £"~1 is a continuous function of
bounded variation on [a,b] for some n > 1 and for every x € [a,b], the following
two formulae have been poved (see [8]):

b
£ = ﬁ/f () di+ Ty (x) + Py (), (1.1)

and
1

b
£ = b_a/f (1) di + Toy (x) + Ra (), (12)

where

N (x—a Ty (k1)
Tt =3 Con (5 ) 0 )~ )
with convention Ty (x) = 0, and

Pn(x):—%/ab {B:: (Z_;ﬂdf("” OF

L Y e N e | e

Here By (x), k > 0, are the Bernoulli polynomials, By = By (0), k > 0, the Bernoulli
numbers, and Bj (x), k > 0, are periodic functions of period 1, related to Bernoulli
polynomials as

Bi(x)=Bi(x), 0<x<1, Bi(x+1)=Bi(x), xck.

Mathematics subject classification (2000): 26D15, 26D20.
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208 A. AGLIC ALJINOVIC AND J. PECARIC

From the properties of Bernoulli polynomials B (f) = 1, B} is adiscontinuous function
with the jump of —1 at each integer, and Bf , k > 2, is a continuous function (see
[1]). The formule (1.1) and (1.2) are extensions of the Euler formula (see [9] ).

Here, as in the rest of paper, we write jab ¢ (1) dg (¢) to denote the Riemann-
Stieltjes integral with respect to a function g : [a,b] — R of bounded variation, and
fu b @ () dr for the Riemann integral.

The aim of this paper is to give one new weighted generalization of the Euler
identity, which can be obtained by using the weighted Montgomery identity given
by Pecari¢ in [10]. (For other weighted generalizations of the Euler identity see
[4], [2]). This identity is used to obtain some Ostrowski type inequalities (weighted
generalizations of the results from [8] and [2]), as well as the generalizations of the
estimations of the difference of two weighted integral means (generalizations of the
results from [3], [5], [6], [7], [11]).

2. Weighted Euler type identities

THEOREM 1. Let’s suppose f "~V is a continuous function of bounded variation
on [a,b] forsome n = 1. If w: [a,b] — [0,00) issome probability density function i.e.
integrable function satisfying fab w(t)dt =1, and W () = f;w (x)dx for t € [a,b],
W (t) =0 for t <a and W (t) =1 for t > b, the weighted Peano kernel is

Py (x,1) = (2.1)

AL (G [ron (D)oo

and
b n—1 k-1
£ () :/awmf (t)dr+kz_;(b o
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and

e ([ oo o (35) o (35 ) a0

(2.5)

Proof. Multiplying identity (1.1) by w (x) and then integrating we obtain

b —1

/abW(X)f(x)dx—</ub - a/f dtJrZ k'
) (/ab 0B, (b )dt) {f(k D (p) — f kD (a)}
0t (ot (22 )

If we subtract this identity from (1.1) we obtain (2.2). Further

(:20)- from (i)
)

n(120) w2
(i) (5 o [ voma i

Ja

s v (i
2

= <

Q
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k b t—a k b t—a
=—— | B | —— By_
b—a/x kl(b—a>dt+b—a/uw(t) kl(b—a)dt
k b t—a
_b—a/a Py (x,1) By—y (b—a)dt'

Similarly we get for n > 1

b b
X —1 s—1 n s—1
B - B = P,(x8)B [ —
F(52) - [ rom (=) em st [ e eoma (5=5) o

since B

no

B(2) - from (1)

=—P, (x,1) +

n > 1 is a continuous function: for n = 1 we have

1 b L[ Ss—t
bfa/u\ PW(.X7S)B0 (m)ds
The identity (2.4) follows. The proofs of the identities (2.5) and (2.3) are similar,

(using the identity (1.2)). O

REMARK 1. We could also obtain identities (2.4) and (2.5) by applying identities
(1.1) and (1.2) with f/ (x) :

—f(a . —a)*! xX—a
7w =T M;“ om0 o) - @

b—a

o [ o

S () e s )
k=0

e () o

n—1 k—1
7' ==Ll > = | RICEAl)

and

b— b—a

e [ =) - (=) J o
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Now by putting these two formulae in the weighted Montgomery identity (see [10])

b b
f(x):/w(t)f(t)dt+/ P, (x,0)f' (¢r)dt

where the weighted Peano kernel is given by (2.1), we obtain

S
5 e ([ fr (=)o)

™ e (e (22) ()

Finally, if we interchange the order of integration and replace n with n— 1 we get (2.4)
and (2.5). These identities are valid for n — 1 > 1,i.e. n > 1.
REMARK 2. In the special case, if we take w (¢) L, t € [a,b] we have

=~ b=a’

(n(5=2) - [ vom(i=2)4)
(=) - (55 )

xX—a 1
= By (ba) BOEDIEE) (Bes1 (1) = Bey1 (0))
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Consequently, the identities (2.2) and (2.4) reduce to the Euler identity (1.1) and the
identities (2.3) and (2.5) reduce to the identity (1.2). So we may regard them as
weighted Euler identities.

COROLLARY 1. Suppose that all assumptions of Theorem 1 hold. Additionally
assume that w : [a,b] — [0,00) is symmetric on [a,b], i.e. w(t) =w (b —a—1), for
t € [a,b]. Then

fx) = /ab dt+z Bk<
- Z (b zzC;C))Z!kl ( ath B (lt) ) ) (2%k—1) (b) 7f(2k—1) (a)}

) (b’Z)nl /b< <Xf> /bw ( ;) ds) v (t)(2.6)

=) e - @)

k=1 b—a
| =] (b_a)Zkfl ash o
+ Z W (2/ w (2) Ba (b ) dt) {f(Zk—l) (b) _f(2k—1) (a)}
k=1 : a

S (G ()
/abw(s) { " (lj—t> ~ B (Z_Zﬂ dS) ar=v (1. (2.7)

Proof. We have

w
at+b
By (ZZ_T(Z) =27 w(t) Bk (,’,:’;) dt, if k is even,
(52). if k is odd,

since B, (1 —x) = (=1)"B, (x), x € [0, 1]. If we put this in (2.2) and (2.3) the proof
follows. 0O
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REMARK 3. Applying identity (2.6) with x = b we get

k 1
£ (B) = / dr+2 ) [ @) 14 (@)]

3] - ash
_ > (bfa)Zk 1 ( / ? w (1) Bay (2_ > dt) [f<2k71) (b) —f *~D (a)}
- / ( ( ) B, (%) ds> df "N (1)
Since B, (1) = ,(0) = (=1)"B, fOf”>0anden+1—0forn/1(see
®

[])andalsofork—l Z> ()[f(k V(®) =%V (@)] = 31f (0) —f (a)]

the last identity reduces to

b 13] _ gt
fi(“);f ®) :/aw(t)f (t)dt+;7(b (213)! x

a+b

X (sz - 2/aTW (t) Bax <;_Z> dt) [fm*l) (b) —f 3V (a)}
a (b;l!)n_l /ab (BZ <£_—;> - /abw (s) B, (%) ds) df(nl)(z(.?;).

We can regard this as the first Euler-Maclaurin formula (the generalized trapezoid
identity). Similarly, applying 1dent1ty (2 6) with x = <2 we get

[ (£52)- foo a(2) s
5% (z [ <;_‘;> )t

S [ (i () - [ (k) a)are

Since B, (%) = — (1 —2'"") B, for n > 0 (see [1]) the last identity reduces to
15) 2%—1
a+b\ [* (b—a)
f ( ) = [Fwios - >

a —

L () [rom (),

( (1-2'7%) sz+2 ; w (1) sz(;)_‘c‘l) d,) {fuk—w (b) —f ®=D (a)}
_ -
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We can regard this as the second Euler-Maclaurin formula (the generalized midpoint
identity).

3. Ostrowski type inequalities

For n > 1 we write

Tw,n (x)

o ) m ()e) o

(?k_—aik)!z (/ub Py, (x,1) By, <;:_6;> dt) {f(k_w (b) =% (a)}

For all the results in this section we will use identities (2.4) and (2.5). But these results
can also be obtained from identities (2.2) and (2.3).

I
~
= HM
—_

k=1

THEOREM 2. Assume (p,q) is a pair of conjugate exponents, thatis 1 < p,q <
00, 117 + % =1. Let lf<”)|p : la,b] — R be an R-integrable function for some n > 1.
Then for x € |a, b] the following inequalities hold

< % (/b /awa (x,5) B, (%) dsth> q e

P (3.)
and
b (b—a)"?
%wlw@fmmnﬂmmg—gfﬁrx
(L () o] )

The constants on the right-hand sides of (3.1) and (3.2) are sharp for 1 < p < oo and
the best possible for p = 1.

Proof. Let’s denote C (1) = % fab P, (x,8)Bi_, (g:;) ds. We use the

identity (2.4) and apply the Holder inequality to obtain

b
Pm/wwvmmnAm

_—

/b Ci ()" () ar

§ </ab|Cl (t)th> Hf(”)

P
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1
For the proof of the sharpness of the constant ( f: |Cy (2)]* dt) * we will find a function
S for which the equality in (3.1) is obtained. For 1 < p < oo take f to be such that

£ (1) = sgn €y (1) x |Cy ()77 .

For p = oo take

£ (1) = sgn Ci (7).

<mgiao ([oela) o

is the best possible inequality. Suppose that |C; (¢)| attains its maximum at 7y € [a, b]
First we assume that C, (fp) > 0. For € > 0 define f; ()

For p = 1 we shall prove that

/b Ci ()™ () dr

by
0, asts o,
1 n
fe (©) Q(l—lo), o <t<ih+e,
1 n—
= (1 — o) L to+e<t<b
Then, for € small enough
b fo+€ 1 1 fo+€
/ Ci () f™ (1) dr / C (1) Edt‘ : / C (¢) dr.
a fo

Now, from inequality (3.3) we have

1 fh+€ 1o+€ 1
—/ C (l) drt < Cy (t())/ —dt = C; (t()) .
e Ji, £

to
Since,

fo+€
lim

Jm E g C (t) dt=C, (to)

the statement follows. In case C (fo) < 0, we take

1 —1
E(t_to_s)” ,

fe (1)

— (t—1n—¢8)", w<t<n+te,
en!

O, To + & < t < b>
and the rest of proof is the same as above. For the inequality (3.2) the proof is
similar. [
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COROLLARY 2.  Suppose that all assumptions of Theorem 2 hold. Then the
following inequality holds

Pm—/wwf@m—nﬂﬂ

g( n_"11+ </ By 1 (s |dS>an

Proof. Since 0 < W (1) < 1,1t € [a,b],s0 |P, (x,5)] <1 and B}_, is a periodic
function with period 1 and [, |B: (v +s)|ds = [, |B; (s)|ds = [ B, (s)|ds for
every y € R, we have

/ [Py (x, )

/abp (x,5) B:_ 1<S t>ds
</

b q
/HPW(x,s) ) (;_ )ds

(3.4)

So

([

a—1 (s)] ds

0
1
= (b-0)"*} [ 1B, ()]s
0

and by applying (3.1) the inequality is proved. [

7N\ q
dt)

REMARK 4. For n = 2 inequality (3.4) reduces to

Pm—/wwvmm—nﬂﬂ

for n = 3 it reduces to

Pm—/wwvmm—nﬂﬂ

and for n =4 to

1 1+4
<5 b= r",;

V3

241y
< B aphip,:

b
1 L
(x) —/ w () f (£)dt — Tya (¥)| < = (b—a)*" V<4)“ .
a ’ 192 p
REMARK 5. If we use the identities (2.8) and (2.9) for n = 2 and w (1) = ;-
t € [a,b] and then apply the Holder inequality with p = co, ¢ = 1, we obtain
fl@+f®) 1 [ —a \/§
R AL 8~ @)]| < 1"l % 2 (a)?
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and

}f(““’) o [0 ) @) <

By doing the same for n = 3 we have

b —a

and

}1(““’) /f yart 22 [ )~ ()| <

The last two inequalities were obtained in [2] (Corollary 1). In fact, inequality (3.2)
from the Theorem 2 applied with n = 3 is weighted generalization of Theorem 1 from
[2] and applied with n = 2 is weighted generalization of Corollary 1 from [8].

11 % L2 (b-a?.

1
<"l % 155 (-0)°

I oo (b a)’.

4. Estimations of the difference of two weighted integral means

In this section we will will use the following notations when n > 1 and the
function f : [a,b] — R is such that £ *~1 is continuous and of bounded variation on
[a,b]:

Bt (o (5e) - [rom (1) ) v
k=1 ¢

:_%/j’ (3:; 1<%>—/abw<s)3;‘ 1(%) ds) aro (1)

aepor=- 058 [ (o (5) -2 (52)
[l () e (522)] ds) ).

The following results are generalizations of the results from the recent papers [11], (in
case [c,d] C [a,b]), and [3], (incase [a,b]N[c,d] = [c, b]). Other two possible cases,
when [a,b] N [c,d] # ) we simply get by change a <+ ¢, b« d.

THEOREM 3. Let f : [a,b] U [c,d] — R be such that f"~V is a continuous
Sunction of bounded variation on |a,b] for some n = 1, w : [a,b] — [0,00) and
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u: [c,d] — [0,00) some probability density functions. Then if [a,b] N [c,d] # 0 and
X € [a,b] N [c,d], we have

max{b.d}

/bw () f (¢) dt— /du () f (1) dt + TP (x) — TL[lL";ld] () = / K (x, 1) df " (1
min{a,c} )

and

b d max{b,d}

/W(l)f (1) dl—/u(t)f () d+ T (x) T | (x) = / K2 (v, 1) df "D (1)
e (4.2)

where in case [c,d] C [a, b]

¢ _,3) - (B (f) — [ w(s)B (,,%t) dS) , t € [a,c)
—_a) !
K, (x,1) = i (B:W ~ LB (3=) )

=T (g (32) - o 8 () ). €l

o cf)nl (BZ (ﬁ) — Jiw(s)B; (ﬁ) dS) , 1€ (d,b],

and

K2 (x,1) = - fabw(s) [BZ (;;7; — By, (;72 } ds)
B .
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and in case la,b) N [c,d] = [c, ]]

¢ _,j)n | (BZ (ifii) — [ w(s)B; (%) dS) , t€lac),
(b—a)" o 2=t b o (st
K} (x,1) = n! (B,?g”‘“) — w08 (55) ds)
d —nc!) (BZ %) — [ u(s) By (;—22) ds) , 1€ e,b],

and

K,Zl (x,1) =

Proof. We subtract identities (2.2) for interval [a,b] and [c,d], to get the first
formula. By doing the same with identity (2.3), we get the second formula. [

THEOREM 4. Assume (p,q) is a pair of conjugate exponents and let
[f("> ’p : [a,b] — R be an R-integrable function for some n > 1. Then we have

b d
/W(f)f (1) dt — / u(t)f (r)dt+ Tv[Z;f] (x) — T;thd] (x)

1

max{b,d} q
< / Ky (x,1)|" dr Hﬂ”)
min{a,c}

P
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and

b d
/w@fmmf/umfmm+ﬁﬁumfﬁﬁmm

max{b,d} ‘_li
< / (K2 ()| "ar ) [l
in{a,c}

m

(4.4)

for every x € [a,b] N [c,d]. The constants

max{b,d} é max{b,d}
/ Ky (x, t)|th and / K (x, t)|th

min{a,c} min{a,c}

in the inequalities (4.3) and (4.4) are sharp for 1 < p < oo and the best possible for
p=1.

Proof. Use the identity (4.1) and apply the Holder inequality to obtain

b d
/ w (1) f (1) di — / u (D) f (¢)dt + T (x) — Tl (x)

max{b,d}
<[ kil | o] a
min{a,c}
max{b,d} é
</ K3 e[ ar ||l
min{a,c}

which proves the first inequality. Similarly we prove the second inequality. The proof
for sharpness and the best possibility are similar as in Theorem 2. [

REMARK 6. Similar results to those in two last Theorems could be obtained using
the identities (2.4) and (2.5) instead of (2.2) and (2.3).
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