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ON WEIGHTED EULER HARMONIC IDENTITIES WITH APPLICATIONS

A. AGLIC ALJINOVIC, L1. DEDIC, M. MATIC AND J. PECARIC

Dedicated to the memory
of prof. Mladen Ali¢

(communicated by P. S. Bullen)

Abstract. A weighted Euler identities involving harmonic sequences of functions are established.
Consequently various generalizations of Ostrowski inequality involving weighted integrals are
obtained.

1. Introduction

Assume that (Pi(7),k > 0) is a harmonic sequence of polynomials i.e. the
sequence of polynomials satisfying

P/i(t) :Pkfl(t), k>1; P()(t) =1.

Define P (), k > 0, to be a periodic functions of period 1, related to Pi(¢), k > 0,
as
Pi(t) = Pi(r), 0 <t < 1,

Pi(t+1)=P;(t), t€R.
Thus, P§(r) = 1, while for k > 1, P;(¢) is continuous on R\Z and has a jump of
Oy = Pk(O) — Pk(l)

at every integer ¢, whenever o4 # 0. Note that oy = —1, since Py(t) =t + ¢, for
some ¢ € R. Also, note that from the definition it follows

P{'(t) = P_(t), k=1, teR\Z.

Let f : [a,b] — R be such that f "~V is a continuous function of bounded variation
on [a, b] for some n > 1. In the recent paper [4] the following two identities have been
proved:

b
700 =5 [ F0ar T + 50 + R (11)
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and
1 b ~ ~
fx) = Py / FOdt + T,—1(x) + 1,(x) + R; (%), (1.2)

where
xX—a
b—a

&
=

I
M=

- ap e (52) [0 st ).

m

Tm(x) = Z(b - a)kilakf(kil)(x)v

k=2
with convention Ty(x) =0, 71(x) = 0, while

R =—(b—ay! /[ N (=L))o

B =~G-ar [ 7 () - m (=) e

Here, as in the rest of the paper, we write f[a 5 g(1)de(z) to denote the Riemann-Stieltjes

and

integral with respect to a function ¢ : [a,b] — R of bounded variation, and f: g(t)de
for the Riemann integral.

The formulae (1.1) and (1.2) hold for every x € [a,b]. They have been used in
[4] to prove some generalized Ostrowski inequalities. Further natural generalization
of such results arises by replacing harmonic sequence of polynomials by a harmonic
sequence of functions generated by some weight function. Some results of this type
involving integration by parts formula are recently obtained by Dragomir [8].

The aim of this paper is to generalize formulae (1.1) and (1.2), by replacing the
harmonic sequence of polynomials by a weighted harmonic sequence of functions.
Using those generalized formulae we prove some further generalizations of Ostrowski
inequality.

For some other weighted generalizations of Euler identity, Ostrowski type inequal-
ities and it’s discrete analogues the reader is referred to the papers [1], [2], [3].

2. Weighted Euler harmonic identities

For a,b € R, a < b,let w: [a,b] — [0,00) be a probability density function i.e.
integrable function satisfying
b
/ w(r)dr = 1.

wy(t) = ﬁ/ﬂ (t —5)"'w(s)ds. (2.1)

For n > 1 and t € [a,b] let
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Also, let
wo(t) = w(r), t € [a,b]. (2.2)
It is well known that w,, is equal to the n-th indefinite integral of w, being equal to
zero at a, i.e. w,(qn)(t) = w(r) and w,(a) =0, forevery n > 1.
A sequence of functions H, : [a,b] — R, n > 0, is called w-harmonic sequence
of functions on [a, b] if

H\(t) = H,_1(t), n > 1; Hy(t) =w(t), t € [a,b].
The sequence (w,(7),n > 0) is an example of w-harmonic sequence of functions on
[a, b].

LEMMA 1. Let (Hy(t),n > 0) be a w-harmonic sequence of functions on [a,b].
Then there exists a unique sequence (Q,(t),n > 0) of polynomials satisfying

Qi/l(t) = anl(t)a dean <n-—1 (l’l = 1)3 QO(I) =0
such that
H,(t) = Qu(t) + wy(t), n > 0.

Proof. The n-th derivative, for n > 1, of the function H,(t) — wy,(t) is equal to
zero by definition. Therefore, there exists a polynomial Q,(t) of degree at most n — 1
such that

Hy () — wa(t) = Qn(1),

which proves the existence. The uniqueness of Q,(t) is evident. ([l

REMARK 1. In the special case when w(t) = ;- t € [a, b], the w-harmonic se-
quence of functions becomes the harmonic sequence of polynomials from Introduction,
up to multiplicative constant ﬁ . In this case

1 (r—a)

W"(t):b—a py ,n=0.

Therefore, every harmonic sequence of polynomials has the form

(t—a)
n!

(b —a)0.(1) + ,n >0,

where Q,(t), n > 0 are as stated in Lemma 1.

Assume that (H,(f),n > 0) is a w-harmonic sequence of functions on [a, D].
Define H;(z), for n > 0, to be a periodic function of period 1, related to H,(z) as

H,(a+ (b—a)r)
(b—a)
H;(t+1)=H,(), t€R.

H (1) =

n

,0<r <1,

Thus, for n > 1, H(z) is continuous on R\Z and has a jump of

Hn(a) B Hn(b)

Bn = (b—a)n
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atevery t € Z, whenever 3, # 0. Note that

1
b—a’

Bi=—
since .
H({)=c+w (@) =c+ / w(s)ds,

for some ¢ € R. Also, note that ’
HY(t)=H; (1), n>1, t e R\ Z.

LEMMA 2. For x € [a,b] and n > 0 define @,(x;-) : [a,b] — R as

— 1
Qu(x;t) = H, (Z >,a<t<b.
—da

Then for every continuous function F : [a,b] — R, and n > 1, we have

—da

b
/[a | Floda (s = bl / F()@n_1 (x: )t — BuF(x),

for a<x<b,and

—a

/ F(t)dg,(b;t) = — ! /b F(1) (b; 1)dt — B,F(a)
s ®n; - b ; On—1(0; n .

Further, for every integrable function F : [a,b] — R,

b b
/F(t)(po(x;t)dt:/ F()W,(2)dt,

where

_Jwla+x—1), a<rt<x
WX(I)_{w(bert), x<t<b ~ (2.3)

Proof. Let n > 1 and assume that a < x < b. The function @,(x;-) is
differentiable on [a, b] \ {x} and its derivative is equal to ;—-@,_;(x;-) . Further, it has
ajump of @,(x;x+0) — @,(x;x —0) = —f, at x, which gives the first formula in this
case. For x = a the function @,(a;-) is differentiable on (a,b) and its derivative is
equal to %(pn,l(a; -). Further, it has jump of @,(a;a + 0) — @,(a;a) = —p, at the
point a, while @,(a; b)— @,(a; b—0) = 0, which gives the first formulafor x = a. The
second formula is a consequence of the first one and the fact that @,(b;-) = @,(a;-).

The last assertion follows by simple observation that @y(x;-) = Wy(-), for all
X € [a,b) , while @(b;-) and W,(-) differ only at point ¢ = a. O

Let f : [a,b] — R be such that f "~V exists on [a, b] for some n > 1. For every
X € [a,b] and 1 < m < n we introduce the following notation

m

Sn@) = D" He () [ 00) — 4 @)] + 3 He (@)~ He )l V), (24)
k=1

k=2
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with convention S;(x) = H; (x) [f (D) — f (a)] -

THEOREM 1. Let (Hy,k > 0) be a w-harmonic sequence of functions on |a, b]
and f : a,b] — R such that f (»=1)"is a continuous function of bounded variation on
[a, D] for some n > 1. Then for every x € |a, b]

9= [ TOW0a 50 + R, 25)
where W(t) and S,(x) are defined by (2.3) and (2.4), respectively, while

R =6 [ m(3=)e

Proof. For 1 < k < n consider the integral

1k<x>—<ba>’</[ab]Hk (=L))o

Integration by parts yields

k) = 0oty (5=1) 1400

b

a

—b-a)f | FED@)am: (’“ —! > : (2.6)

[a,b] b—a

First, assume that @ < x < b. For every k > 1 we have

o x—b g (e N\ (e Hy (x)
K\b-—a) F\b-ua K\b—a) (b-ak
Therefore, using the first formula from Lemma 2, from (2.6) we get

Ii(x) = Hy (x) [f(k—l)(b) —f(k_”(a)} +(b— a)kﬁkf(k—l)(x)

)k~ / ' FEYNEE (%) dr. (2.7)

Since B; = — 5, by the last formula from Lemma 2, for k = 1 (2.6) reduces to
bW = W 0) @) -+ [ roms (1) a
I W B) @] £+ [ oW 8)

where W,(z) is given by (2.3). For k > 2 we have

b
oo [ reom (=1 ) a
(b )k « (X1 (k—2)
=-a [ (o) ot

= L—1(x)
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and (2.7) can be rewritten as
1) = Hi () [f“00) = 1 (@)
+ (b — a)Bif I (x) + L (x)
= He(x) |4 0) - )]
+ [H (@) — He (D) f %79 (x) + L (), (2.9)

since

Hk(a) — Hk(b) )

Be = T

From (2.8) and (2.9) it follows

1) = > Hi () [0 ) -4V (@)]
k=1

n b
+Xﬁﬂ@—wwm%“wfﬂm+/f@mmm
k=2 a

which proves our assertion in this case, since I,(x) = —R!(x). Thus, (2.5) holds for
a<x<bh.
If x = b, then
.(b=b ] Hi(a) . (b—a> . Hi(a)
H = H*0) = , H =H;(0) = .
(G2) =m0 = M (5=0) =)= 1

Similarly as we did for a < x < b, using the above equalities and the second formula
from Lemma 2, we get

1(b) = Hia) [£ <0 (b) = £ ¢ V(@)
+ (b= a)*Bif “V(a) + L1 (b),
for k > 2, and
b
1) = (@) [ (0) ~F @] (@) + [ £l
Applying the above identities and
Hl(a) —Hl(b) = —1,

we get

1(b) = Y Hila) [f 4V (b) = %V (a)]
k=1

n b
+> [Hi(a) = He (D) £ V() *f(a)Jr/ J ()W (2)de
k=2 a
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= >~ Hel®) [f*00) - 4 a)]

k=1
n b
5 He (@) — He ()] <V () — £ (b) + / FOWa()ds
k=2 a

which proves (2.7) for x = b, because 1,(b) = —R.(b). O

THEOREM 2. Let (Hy,k > 0) be w-harmonic sequence of functions on [a,b] and
f :la,b] — R suchthat f "=V is a continuous function of bounded variation on [a, b]
for some n > 1. Then for every x € [a,b] and n > 2

/ F(OWe()dt + S,_1(x) + [Hy (a) — Hy (b)]f "V (x) + R2(x),  (2.10)
while for n = 1

/ f(OW(r)dt + R3(x),
where Sy_1(x) is defined by (2.4), and

R(x) = —(b— a)' /[a’b] { ;(Z_;) ~ (Zln_();))n] a0,

Proof. First note that for n > 2

$(3) = Sy1(x) = Hy () [F 00 (0) = £V ()| + [H, (@) — Hy ()] 1) ().
Thus

forn>1.

R(x) = R(x) + H, (x) / ar = (s)

[a,b]
= Ri() + Hy () [ () = 107V (@)
= Rill(x) + Su(x) = Sp—1(x) — [H, (@) — Hy (b)}f(n_n(x%
for n > 2, and

Ri(x) = Ri(x) + H) (x) [f (b) —f ()]

Therefore, our assertion follows from formula (2.7). O

REMARK 2. Inthe case when @ : [a,b] — R issuchthat ¢’ exists and is integrable
on [a,b], then the Riemann-Stieltjes integral f g(t)do(t) is equal to the Riemann

integral fa g(1)@'(r)dz. Therefore, if f : [a,b] — R is such that ") exists and is
integrable on [a, b], for some n > 1, then Theorems 1 and 2 hold with

R =-0-a [ (=L))o
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Ry(x) = —(b—a)" /M { . (Z;) - (Zln(z))n]f(n>(t)dt.

REMARK 3. In the special case when w(f) = 7, t € [a,b], formulae (2.5) and
(2.10) are generalizations of (1.1) and (1.2), respectively, since in this case

and

b b
[ rowioa == [ rwar

for every x € [a, b], and the sum S, (x) + R} (x) , calculated with respect to w-harmonic
sequence of functions on |a, b]

where Q,(r), n > 0 are as stated in Lemma 2, becomes T, (x) + T,(x) + R\ (x),

calculated with respect to the harmonic sequence of polynomials

7Qn((1+(b7a)[) ﬁ
(b—a)! n!’

P, (1) n=>=0,

as in [4].
There is a difference in the definition of our H}(¢) and P () from Introduction,
because a w-harmonic sequence of functions on [a, b] is not defined on [0, 1].

REMARK 4. Itis easy to see that for x = b we get
Sa(b) = N B)If (b) ~ £ (@)] + Y [He(@f D (b) = Hi(b)f ¢ V(@)
k=2

assuming the sum on the right hand side to be zero when n = 1. So, applying Theorem
1 with x = b we get the identity

b
7= [ QW) d+5,0) + R @11
Let us denote
W(t)=Wy(t)=w(a+b—1t),t€[a,b].
Note that W (r) > 0, t € [a, D] and f: W(t)dt = 1. Further we have

o _o\n * b—t (n—1)
oear [ (5=g) o

=— | Hy(a+b—0)df" V).
[a.0]

R\(b)
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Also, since Hy(x) = ¢ + [ w(s)ds, for some real constant ¢ ,we have H(b) = c + 1
and putting all this together we can rewrite the identity (2.11) in the form
(c+ 1)f (@) = cf (b)

/ 7w+ Y [l o) - B )]
k=2

— | Hy(a+b—1)df " V().
[uab]

We can regard this identity as generalized trapezoid identity since for n = 1 and
c= —% it reduces to

1 b
sr@erol=[rowoa- [ maro-neo,

0.t

where H(x) = —5 + f s)ds. Similarly, applying Theorem 1 with x =
generahzed m1dp01nt 1dent1ty

() /f (r)dt+gm(“§b)[f““”(b)—ﬂk-“(a)}

+b
T we get

where

and

For n = 1 we have Hy(x) = ¢+ [ w(s)ds so that choice ¢ = — f w(s)ds yields
Hy(x) = [a w(s)ds and (2.12) reduces to the simple midpoint identity
2

(a+b) /f dt+Rl<a—2kb>.

For some recent results on trapezoid and midpoint identities the reader is referred to the
papers [6] and [7].
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3. Generalizations of Ostrowski inequality

In this section we use the identities obtained in Theorem 1 and Theorem 2 to prove
some inequalities which can be regarded as generalizations of Ostrowski inequality for
various classes of functions. First we prove a number of inequalities which hold for a
class of functions f whose derivatives f"~!) are either L-Lipschitzian on [a,b] or
continuous and of bounded variation on [a, b] . After that, for the sake of completeness,
we state and prove some analogous results holding for a class of functions f possessing
derivatives f ") in L,[a,b].

Throughout this section we use the same notations as in the previous section.
So, (Hi(t), k > 0) always denotes a w-harmonic sequence of functions on [a, ] as
defined at the beginning of Section 2, while the special w-harmonic sequence (w(7),
k > 0) is defined by (2.1) and (2.2).

THEOREM 3. Let (Hi(t), k > 0) be a w-harmonic sequence of functions on |a, b]
and f : [a,b] — R such that f "~V is an L-Lipschitzian function on [a,b] for some
n>=1. Thenfor n > 2

‘f(x) - fabf (I)Wx(t)dt - Sn—l(x) - [Hn (a) — H, (b)]f(n_l)(x)
< L[ |Hy(r) — Hy (x)] dr, (3.1)

b
}mx)— [ rowa

forevery x € [a,b].

while for n = 1

<L [ [Hi(t) = Hi(x)]dr,

Proof. If @ : |a,b] — R is L-Lipschitzian on [a, b], i.e.
[9(x) =W <L-|x—yl, x, y€la,b],

then for any integrable function g : [a,b] — R

[ st
@b

L Gs) - oo
co-ore [ (i) -5
momore ] 1 (5=0) - o

+(b—a)”L/xb H (Z_; + 1) - (:"(Z))n dr

b
<L/ lg(7)] dr. (3.2)

Using this estimate we get

[Ra()| = (b —a)"

dt

dt
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_ wy [F|Hala+x—1)  Hy(x)

‘w‘”)LL b—ar -a|”
" H,(b+x—1) H, (x)

*“‘”>9Z b-ar G-a|”

—L(/amwammmeWHAWHmme

_L/ |H, (¢ (x)| dr.

Therefore, our assertion follows from Theorem 2. O

COROLLARY 1. If f is L-Lipschitzian on |a,b], then

b
Pw/f@wwm<

forevery x € a,b].

L[(2x — a — D)wi(x) — 2wy (x) + wa(b)],

Proof. Put n =1 in the theorem above and

b X b
/ |H(t) — Hy (x)|dt = / (wi(x) — wl(t))dtJr/ (w1 (1) —wy(x)) dt
= (2x — a — b)w(x) — 2wa(x) + wa (D),
H({t)=c+w (@) =c+ /tw(s)ds,
for some real c. (]

REMARK 5. In the special case when w(z) = ﬁ the inequality of Corollary 1
reduces to Ostrowski inequality for L-Lipschitzian functions, since in this case

b b
/af(t)Wx(t)dt:bia/af(t)dt

1 (- #)21

and

(2x —a—D)wi(x) = 2wa(x) + wa(b) = (b—a) |~ +

i G

COROLLARY 2. If f' is L-Lipschitzian on |a,b], then

}f /f ndt = e+ wi ()] [f (b) = f (@)] + [e(b — a) + w2(b)]f" (x)

L/ le(t — %) + wa (1) — wa(¥)| db,

forevery x € [a,b] and ¢ € R.
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Proof. Apply Theorem 3 with n = 2 and note that by Lemma 1 we have

H(t) = ¢+ wi (1), Ha(t) = co+c(t — a) + wa(r),

where ¢(, and ¢ are some real constants. O
REMARK 6. In the special case, when ¢ = —1 and w () = ;- , we have
2
t—a (t—a)
wi(t) = ——., wyr () = ——
1() b—a’ 2() 2(b—a)

and the inequality from Corollary 2 reduces to

pio-sts [row (=) 10

(b— a)2 8 ’ 1
< — | = — — -
ST 35 (x) — 0% (x) + 5 L,
where | +b|
- ”—2
o (x) = e

This result was proved in [5],
REMARK 7. For ¢ > 0, by a simple but long calculation we get

b
/ le(t — x) + wa(t) — wa(x)|dr

= % [(x— a)’+ (b - x)z] + (2x — a — b)wa(x) — 2ws(x) + w3 (b).

COROLLARY 3. Assume f satisfies the conditions of Theorem 3. For n > 2 and
for every x € [a,b] we have

b —
}/(X) - / f(t)WX(t)dt - Snfl(x) + Wy (b)f(n_l>(x)

S L[(2x — a—b)wy(x) = 2wup1(x) + wap1 (B)]

where

Ll
3
—
-
S~—
|
(]
S
~
—~
=
Nab
~
=
|
—~
S
=
I
~
=
|
—~
Q
=
o
S
~
—
S
S~—
~
=
|
—~
=
Nab

k=1 k=2
Proof. We apply Theorem 3 with w-harmonic sequence Hi(t) = wi(t), k > 0
s

defined at the beginning of previous section. In that case S,_;(x) becomes S,_;(x),
while

b
/ [Wa(2) — wy (X)|dt = (2x — a — b)wy(x) — 2wyr1 () + Wuy1 (D).
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O

COROLLARY 4. Assume f satisfies the conditions of Theorem 3. For n > 2 and
for every x € [a,b] we have

b —a n—1
}/(X) — 1 / f([)dt — 3\‘”71()() + uf(nfl)(x)

b—a n!

L Z(X _ a)n+1 (b a)n+1
——|(2x—a—-b)(x—a)" — ,
(b—a)n! {(x a=b)x—a) n+1 n+1
where
3 _ — (x—a) (k—1) (k—1) — (b - a)kil (k—1)
m(x) - Z (b — (l)k' |;f (b) _f (Cl):| - Z k! f ()C)
k=1 k=2
Proof. Apply Corollary 3 for the special case when w(t) = ﬁ and, therefore
1 (t—a)
=———— k=0
Wk(t) b—ua ! ) 0

O

THEOREM 4. Let (Hi(t), k > 0) be a w-harmonic sequence of functions on |a, b]
and f : [a,b] — R such that f "=V is an L-Lipschitzian function on [a,b] for some
n>=1. Then

b b
P(X)—/ f(OWi(r)dr = S, (x) <L/ |H,(1)] dr, (3-3)

forevery x € [a,b].

Proof. Using the estimate (3.2) and arguing similarly as in the proof of Theorem

3, we get
Rl = e-ar| [ a(5=L) a0
[a.b] b—a
b
xX—1t
<(b—a)'L H dr
o-are [ (=2)
b
= L/ |H, ()| dz.
Therefore, our assertion follows from (2.5). O

COROLLARY 5. If f is L-Lipschitzian on [a,b], then for every x € [a,b] and
c € R we have

}m)— [ rowou e+ m@lF6) ~f@)| <L [ et
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Proof. Put n =1 in the theorem above. (Il

COROLLARY 6. If f is L-Lipschitzian on |[a,b] then for every x,y € [a,b] we
have

b
P(X) - / f@OW()dr — [wi (x) —wi(p)] [f (b) —f (a)]
S L[R2y —a—Db)wi(y) = 2wa(y) +w2(b)].

Proof. Put ¢ = —w(y) in Corollary 5. O

REMARK 8. For y = x the above inequality reduces to

b
P@—/f@M@m

i.e. to the inequality from Corollary 1.

< L[(2x — a — b)wi(x) — 2wa(x) + w ()],

COROLLARY 7. Assume f satisfies the conditions of Theorem 4. For n > 1 and
for every x € [a, b] we have

< Lwn+l (b)7

%ﬂ—/f@mmw—zm

where S,(x) is defined as in Corollary 3.

Proof. We apply Theorem 4 with the w-harmonic sequence H(r) = wy(1),
k> 0. Then S,(x) becomes S,(x) while

b b
/|wn(t)|dt:/ wy (1)dt = wy1(D).
]

COROLLARY 8. Assume f satisfies the conditions of Theorem 4. For n > 1 and
for every x € [a,b] we have

1 b PN (b—a)
- — tHdr — S, <L ,
Pu>ba[fo )| < L
where S,(x) is defined as in Corollary 4.
Proof. Apply Corollary 7 to the special case when w(z) = bi—a . ]

THEOREM 5. Let (Hi(t), k > 0) be a w-harmonic sequence of functions on |a, b]
and f : [a,b] — R be such that f (»=1) is a continuous function of bounded variation
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on [a,b] for some n = 1. Then for n >

b
P(x) —/ F(@OWy(1)dt — S,_y(x) — [H, (a) — H, (b)) £ "V (x)

< max |H, (1) — Hy (1) Vo (f ")
t€(a,b]

and for n =1
b
}/(x)/f(t)W r)dt

for every x € [a,b], where VE(f "=V is the total variation of f ") on [a,b].

< max Hi(1) — Hy (x)| V2(F),

Proof. If F : [a,b] — R is bounded and the Stieltjes integral

[ Fgte
a,D]

exists, then

< max [F(1)] - Vg (r"~Y).
t€la,b)

/ Foydr™ ()
[a,b]

Let us apply this estimation to the formula (2.10). We have

IR2(x)| = ‘—(b —a) /ab [H* (Z;) B (ZIH(Z))”} dar ()
< t> H,(x)
—maX\H() H, (x)| V2(F"Y),

1€fab

< (b — a)" max Vf(f(“l))

t€(a,b]

which proves our assertion. |

COROLLARY 9. If f is a continuous function of bounded variation on [a, D], then

b
P@/f@Wt

Proof. Put n =1 in the theorem above and note that w;(b) = 1. Therefore

< [+ 1120 VA).

max H (1)~ Hy ()] = max por (1) w1 (2

= max{wi (x), w;(b) — wi(x)}
= 21— 2w (o).
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COROLLARY 10. If f is a continuous function of bounded variation on |a, b), then

b
P(x)—bla/ F(ndr] <

Proof. Apply Corollary 9 with w(r) = 7

a

[ — 2|

b —

Va(f)-

and wy(r) = =2 O

a

COROLLARY 11. If f' is a continuous function of bounded variation on |a,b],
then for every x € [a,b] and ¢ € R we have

P(X) - / fFOWe()dt = [e+wi(@)][f (B) = f ()] + [e(b — a) + wa(B)] " (x)

< m[a);] le(t = x) + wa(t) — wa(x)| V2(F').
t€la

Proof. Put n = 2 in Theorem 5. ([l

COROLLARY 12. Assume f satisfies the conditions of Theorem 5. For n > 2 and
forevery x € [a,b] we have

P /f Sn—1(x) + wy (b)f(n_U(X)

< 3 1on(B) + () = 20, VA,
where S,_1(x) is defined as in Corollary 3.

Proof. We apply Theorem 5 with the w-harmonic sequence H(r) = wy(1),
k> 0. Then S,_;(x) becomes S,_;(x) while

1
tgl[f}’;] [wa(2) — wa (x)] = B [Wa (D) + [wa (D) — 2wa(x)[] -

O

COROLLARY 13. Assume f satisfies the conditions of Theorem 5. For n > 2 and
for every x € [a, b] we have

n—1
P _a/f Dt - § 1) + £ ,) £ ()

<& {1+’1—2<2a)n

2-n! —a

[ vere),

where S,_\(x) is defined as in Corollary 4.
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Proof. Apply Corollary 12 in the special case when w(z) = bl . (]

—a

THEOREM 6. Let (Hi(t), k > 0) be a w-harmonic sequence of functions on |a, b]
and f : [a,b] — R be such that f (»=1) is a continuous function of bounded variation
on la,b| for some n > 1. Then

}Ax) - / FOWL(0)dt — S,(x)

Sforevery x € [a,b].

< max [H, (1) Va(r "),
t€(a,b]

Proof. The result follows from (2.5) similarly as we proved Theorem 5. ]

COROLLARY 14. If f is a continuous function of bounded variation on |a, b, then
forevery x € [a,b] and ¢ € R we have

P /f (1)dt — e +wi ()] [f (b) — f (@)]] < max {lc[, |e + L[} VE(F).

Proof. Put n = 1 in the theorem above and note that H, (1) = c+w;(7), wi(a) =0
and wy(b) = 1. O

COROLLARY 15. If f is a continuous function of bounded variation on |a, b), then
forevery x,y € [a,b] we have

}f / £ — i (@)~ wi )] [ (B) — £ (@)

2[1+|1*2wl( DINAGE

Proof. Put ¢ = —w;(y) in Corollary 14. Then |c| = wi (), |c+ 1] = 1 — w(y)
and

max (w1 (), 1~ wi ()} = 3 [1+ 11— 2w ()]
O

COROLLARY 16. Assume f satisfies the conditions of Theorem 6. For n > 1 and
forevery x € [a,b] we have

}f /f (1)dt — 5,(x)

where S,(x) is defined as in Corollary 3.

<wa(B)Va(r"Y),
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Proof. We apply Theorem 6 with the w-harmonic sequence H(r) = wy(1),
k> 0. Then S,(x) becomes S,(x) and

max_ |wy(1)| = wy(b).
t€a,b)

O

COROLLARY 17. Assume f satisfies the conditions of Theorem 6. For n > 1 and
forevery x € [a,b] we have

b
wafa/fmmiw

where S,(x) is defined as in Corollary 4.

(b _ a)nfl

<

Proof. Apply Corollary 16 with w(r) = ﬁ and note that

(b —a)"!

wn(b) = .

O

Now, we finish this section considering the case when f : [a,b] — R is such that
£ exists for some n > 1 and is integrable on [a,b]. In this case we can use the
versions of the identities from Theorems 1 and 2 as noted in Remark 2.

THEOREM 7. Let (Hi(t), k > 0) be a w -harmonic sequence of functions on |a, b]
and f : |a,b] — R be such that f" is integrable for some n > 1. Then for n > 2

b
P(x) —/ F(OW(t)dt — S,—1(x) — [Hy (@) — Hy (b)}f(nfl)(x)
< max [Hy (1) = Hy (0] If ™1,

t€(a,b]

while for n = 1

b
%m/f@mmm

Sforevery x € [a,b].

1 ’
< g L =2wi@R Il

Proof. Note that in this case

b
Vi) = [T a= i,

and apply Theorem 5. ]
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THEOREM 8. Let (Hi(t), k > 0) be a w-harmonic sequence of functions on |a, b]
and f : [a,b] — R be such that ") is integrable for some n > 1. Then

}f /f (1)dt — ,(x)

forevery x € [a,b].

< max H, ()] - [If ™11,
t€fa,b

Proof. Apply Theorem 6 and note again that V2(f "=1) = |[f ™). O

THEOREM 9. Let (Hi(t), k > 0) be a w-harmonic sequence of functions on |a, b]
and f : [a,b] — R be such that f") € Lo|a,b] for some n > 1. Then for n > 2

b
}/(X) - / f(t)Wx(t)dt - Snfl(x) - [Hn (a) —H, (b)]f(’hl)(x)

< [ im0 1

while for n = 1

b
}/(x)/f(t)W r)dt

forevery x € [a,b].

< [(2x = a = b)wi(x) = 2wa(x) + wa(B)] I [l

Proof. Tn this case f "1 is L-Lipschitzian with L = ||[f | . O

THEOREM 10. Let (Hi(t), k > 0) be a w-harmonic sequence of functions on
[a,b] and f : [a,b] — R be such that f") € Ly, |a,b] for some n > 1. Then

b b
}mx)— [ rowia-s,00| < [ 1m0 1)

Sforevery x € [a,b].

Proof. In this case f "~V is L-Lipschitzian with L = ||f || . O

THEOREM 11. Let (Hi(t), k = 0) be a w-harmonic sequence of functions on
[a,b] and f : [a,b] — R be such that f") € Ly[a,b] forsome n > 1 and 1 < p < .
Then for n

>2
P Wi(£)dr — -1 (x) — [Hy (@) = Hy (D)) f "~ ()
<

1Ey — Hiu (6) Ngllf 1,
while for n = 1

P(x)—/f(t)W 1)dt

forevery x € |a,b], where 1/p+1/q=1.

< 1Hy = Hy () [lgllf 1l
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Proof. By applying the Holder inequality we have

b
(x) — / F(O)W(0)dt = S,—1(x) = [Ha (a) — Hy ()] f "V ()

b
x—t H,(x)
< (b— n H* o V(n) ‘d
o-ar [ (520) - 2 o] o
1/q
b q
x—t H,(x)
<(b—a) H; - dr ()
( Cl) (/a n (b a) (b —a)” Hf HP
b l/q
N / [Hy(0) = Hy ()" de | If ),
which proves our assertion. ]

THEOREM 12. Let (Hi(t), k > 0) be a w-harmonic sequence of functions on

[a,b] and f : [a,b] — R be such that f") € Ly[a,b] forsome n > 1 and 1 < p < <.
Then

b
(0= [ £ = $,09) < Wl ™l

forevery x € |a,b], where 1/p+1/q=1.

(1]

Proof. Similar to the proof of the theorem above. ]
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