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Abstract. A weighted Euler identities involving harmonic sequences of functions are established.
Consequently various generalizations of Ostrowski inequality involving weighted integrals are
obtained.

1. Introduction

Assume that (Pk(t), k � 0) is a harmonic sequence of polynomials i.e. the
sequence of polynomials satisfying

P′
k(t) = Pk−1(t), k � 1; P0(t) = 1.

Define P∗
k (t) , k � 0 , to be a periodic functions of period 1 , related to Pk(t) , k � 0 ,

as
P∗

k (t) = Pk(t), 0 � t < 1,

P∗
k (t + 1) = P∗

k (t), t ∈ R.

Thus, P∗
0(t) = 1 , while for k � 1 , P∗

k (t) is continuous on R\Z and has a jump of

αk = Pk(0) − Pk(1)

at every integer t , whenever αk �= 0 . Note that α1 = −1 , since P1(t) = t + c , for
some c ∈ R . Also, note that from the definition it follows

P∗′
k (t) = P∗

k−1(t), k � 1, t ∈ R\Z.

Let f : [a, b] → R be such that f (n−1) is a continuous function of bounded variation
on [a, b] for some n � 1 . In the recent paper [4] the following two identities have been
proved:

f (x) =
1

b − a

∫ b

a
f (t)dt + T̃n(x) + τn(x) + R̃1

n(x) (1.1)
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and

f (x) =
1

b − a

∫ b

a
f (t)dt + T̃n−1(x) + τn(x) + R̃2

n(x), (1.2)

where

T̃m(x) =
m∑

k=1

(b − a)k−1Pk

(
x − a
b − a

)[
f (k−1)(b) − f (k−1)(a)

]
,

for 1 � m � n , and

τm(x) =
m∑

k=2

(b − a)k−1αkf
(k−1)(x),

with convention T̃0(x) = 0 , τ1(x) = 0 , while

R̃1
n(x) = −(b − a)n−1

∫
[a,b]

P∗
n

(
x − t
b − a

)
df (n−1)(t)

and

R̃2
n(x) = −(b − a)n−1

∫
[a,b]

[
P∗

n

(
x − t
b − a

)
− Pn

(
x − a
b − a

)]
df (n−1)(t).

Here, as in the rest of the paper, we write
∫

[a,b] g(t)dϕ(t) to denote the Riemann-Stieltjes

integral with respect to a function ϕ : [a, b] → R of bounded variation, and
∫ b

a g(t)dt
for the Riemann integral.

The formulae (1.1) and (1.2) hold for every x ∈ [a, b] . They have been used in
[4] to prove some generalized Ostrowski inequalities. Further natural generalization
of such results arises by replacing harmonic sequence of polynomials by a harmonic
sequence of functions generated by some weight function. Some results of this type
involving integration by parts formula are recently obtained by Dragomir [8].

The aim of this paper is to generalize formulae (1.1) and (1.2), by replacing the
harmonic sequence of polynomials by a weighted harmonic sequence of functions.
Using those generalized formulae we prove some further generalizations of Ostrowski
inequality.

For some other weighted generalizations of Euler identity, Ostrowski type inequal-
ities and it’s discrete analogues the reader is referred to the papers [1], [2], [3].

2. Weighted Euler harmonic identities

For a, b ∈ R , a < b , let w : [a, b] → [0,∞) be a probability density function i.e.
integrable function satisfying ∫ b

a
w(t)dt = 1.

For n � 1 and t ∈ [a, b] let

wn(t) =
1

(n − 1)!

∫ t

a
(t − s)n−1w(s)ds. (2.1)
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Also, let
w0(t) = w(t), t ∈ [a, b]. (2.2)

It is well known that wn is equal to the n -th indefinite integral of w , being equal to
zero at a , i.e. w(n)

n (t) = w(t) and wn(a) = 0 , for every n � 1 .
A sequence of functions Hn : [a, b] → R, n � 0 , is called w -harmonic sequence

of functions on [a, b] if

H′
n(t) = Hn−1(t), n � 1; H0(t) = w(t), t ∈ [a, b].

The sequence (wn(t), n � 0) is an example of w -harmonic sequence of functions on
[a, b] .

LEMMA 1. Let (Hn(t), n � 0) be a w -harmonic sequence of functions on [a, b] .
Then there exists a unique sequence (Qn(t), n � 0) of polynomials satisfying

Q′
n(t) = Qn−1(t), degQn � n − 1 (n � 1), Q0(t) = 0

such that
Hn(t) = Qn(t) + wn(t), n � 0.

Proof. The n -th derivative, for n � 1 , of the function Hn(t) − wn(t) is equal to
zero by definition. Therefore, there exists a polynomial Qn(t) of degree at most n − 1
such that

Hn(t) − wn(t) = Qn(t),

which proves the existence. The uniqueness of Qn(t) is evident. �

REMARK 1. In the special case when w(t) = 1
b−a , t ∈ [a, b], the w -harmonic se-

quence of functions becomes the harmonic sequence of polynomials from Introduction,
up to multiplicative constant 1

b−a . In this case

wn(t) =
1

b − a
(t − a)n

n!
, n � 0.

Therefore, every harmonic sequence of polynomials has the form

(b − a)Qn(t) +
(t − a)n

n!
, n � 0,

where Qn(t) , n � 0 are as stated in Lemma 1.

Assume that (Hn(t), n � 0) is a w -harmonic sequence of functions on [a, b] .
Define H∗

n (t) , for n � 0 , to be a periodic function of period 1 , related to Hn(t) as

H∗
n (t) =

Hn(a + (b − a)t)
(b − a)n , 0 � t < 1,

H∗
n (t + 1) = H∗

n (t), t ∈ R.

Thus, for n � 1 , H∗
n (t) is continuous on R\Z and has a jump of

βn =
Hn(a) − Hn(b)

(b − a)n
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at every t ∈ Z, whenever βn �= 0 . Note that

β1 = − 1
b − a

,

since

H1(t) = c + w1(t) = c +
∫ t

a
w(s)ds,

for some c ∈ R . Also, note that

H∗′
n (t) = H∗

n−1(t), n � 1, t ∈ R\ Z.

LEMMA 2. For x ∈ [a, b] and n � 0 define ϕn(x; ·) : [a, b] → R as

ϕn(x; t) = H∗
n

(
x − t
b − a

)
, a � t � b.

Then for every continuous function F : [a, b] → R, and n � 1 , we have∫
[a,b]

F(t)dϕn(x; t) = − 1
b − a

∫ b

a
F(t)ϕn−1(x; t)dt − βnF(x),

for a � x < b , and∫
[a,b]

F(t)dϕn(b; t) = − 1
b − a

∫ b

a
F(t)ϕn−1(b; t)dt − βnF(a).

Further, for every integrable function F : [a, b] → R,∫ b

a
F(t)ϕ0(x; t)dt =

∫ b

a
F(t)Wx(t)dt,

where

Wx(t) =
{

w(a + x − t), a � t � x
w(b + x − t), x < t � b

. (2.3)

Proof. Let n � 1 and assume that a < x < b . The function ϕn(x; ·) is
differentiable on [a, b] \ {x} and its derivative is equal to −1

b−aϕn−1(x; ·) . Further, it has
a jump of ϕn(x; x + 0)− ϕn(x; x− 0) = −βn at x , which gives the first formula in this
case. For x = a the function ϕn(a; ·) is differentiable on (a, b) and its derivative is
equal to −1

b−aϕn−1(a; ·) . Further, it has jump of ϕn(a; a + 0) − ϕn(a; a) = −βn at the
point a , while ϕn(a; b)−ϕn(a; b−0) = 0 , which gives the first formula for x = a . The
second formula is a consequence of the first one and the fact that ϕn(b; ·) = ϕn(a; ·) .

The last assertion follows by simple observation that ϕ0(x; ·) = Wx(·) , for all
x ∈ [a, b〉 , while ϕ0(b; ·) and Wb(·) differ only at point t = a . �

Let f : [a, b] → R be such that f (n−1) exists on [a, b] for some n � 1 . For every
x ∈ [a, b] and 1 � m � n we introduce the following notation

Sm(x) =
m∑

k=1

Hk (x)
[
f (k−1)(b) − f (k−1)(a)

]
+

m∑
k=2

[Hk (a) − Hk (b)] f (k−1)(x), (2.4)
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with convention S1(x) = H1 (x) [f (b) − f (a)] .

THEOREM 1. Let (Hk, k � 0) be a w -harmonic sequence of functions on [a, b]
and f : [a, b] → R such that f (n−1) is a continuous function of bounded variation on
[a, b] for some n � 1 . Then for every x ∈ [a, b]

f (x) =
∫ b

a
f (t)Wx(t)dt + Sn(x) + R1

n(x), (2.5)

where Wx(t) and Sn(x) are defined by (2.3) and (2.4), respectively, while

R1
n(x) = −(b − a)n

∫
[a,b]

H∗
n

(
x − t
b − a

)
df (n−1)(t).

Proof. For 1 � k � n consider the integral

Ik(x) = (b − a)k
∫

[a,b]
H∗

k

(
x − t
b − a

)
df (k−1)(t).

Integration by parts yields

Ik(x) = (b − a)kH∗
k

(
x − t
b − a

)
f (k−1)(t)

∣∣∣∣b
a

− (b − a)k
∫

[a,b]
f (k−1)(t)dH∗

k

(
x − t
b − a

)
. (2.6)

First, assume that a � x < b . For every k � 1 we have

H∗
k

(
x − b
b − a

)
= H∗

k

(
x − a
b − a

− 1

)
= H∗

k

(
x − a
b − a

)
=

Hk (x)
(b − a)k

.

Therefore, using the first formula from Lemma 2, from (2.6) we get

Ik(x) = Hk (x)
[
f (k−1)(b) − f (k−1)(a)

]
+ (b − a)kβkf

(k−1)(x)

+ (b − a)k−1
∫ b

a
f (k−1)(t)H∗

k−1

(
x − t
b − a

)
dt. (2.7)

Since β1 = − 1
b−a , by the last formula from Lemma 2, for k = 1 (2.6) reduces to

I1(x) = H1 (x) [f (b) − f (a)] − f (x) +
∫ b

a
f (t)H∗

0

(
x − t
b − a

)
dt

= H1 (x) [f (b) − f (a)] − f (x) +
∫ b

a
f (t)Wx(t)dt, (2.8)

where Wx(t) is given by (2.3). For k � 2 we have

(b − a)k−1
∫ b

a
f (k−1)(t)H∗

k−1

(
x − t
b − a

)
dt

= (b − a)k−1
∫

[a,b]
H∗

k−1

(
x − t
b − a

)
df (k−2)(t)

= Ik−1(x)
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and (2.7) can be rewritten as

Ik(x) = Hk (x)
[
f (k−1)(b) − f (k−1)(a)

]
+ (b − a)kβkf

(k−1)(x) + Ik−1(x)

= Hk (x)
[
f (k−1)(b) − f (k−1)(a)

]
+ [Hk (a) − Hk (b)] f (k−1)(x) + Ik−1(x), (2.9)

since

βk =
Hk(a) − Hk(b)

(b − a)k .

From (2.8) and (2.9) it follows

In(x) =
n∑

k=1

Hk (x)
[
f (k−1)(b) − f (k−1)(a)

]
+

n∑
k=2

[Hk (a) − Hk (b)] f (k−1)(x) − f (x) +
∫ b

a
f (t)Wx(t)dt,

which proves our assertion in this case, since In(x) = −R1
n(x) . Thus, (2.5) holds for

a � x < b .
If x = b , then

H∗
k

(
b − b
b − a

)
= H∗

k (0) =
Hk(a)

(b − a)k , H∗
k

(
b − a
b − a

)
= H∗

k (0) =
Hk(a)

(b − a)k .

Similarly as we did for a � x < b , using the above equalities and the second formula
from Lemma 2, we get

Ik(b) = Hk(a)
[
f (k−1)(b) − f (k−1)(a)

]
+ (b − a)kβkf

(k−1)(a) + Ik−1(b),

for k � 2 , and

I1(b) = H1(a) [f (b) − f (a)] − f (a) +
∫ b

a
f (t)Wb(t)dt.

Applying the above identities and

H1(a) − H1(b) = −1,

we get

In(b) =
n∑

k=1

Hk(a)
[
f (k−1)(b) − f (k−1)(a)

]
+

n∑
k=2

[Hk (a) − Hk (b)] f (k−1)(a) − f (a) +
∫ b

a
f (t)Wb(t)dt
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=
n∑

k=1

Hk(b)
[
f (k−1)(b) − f (k−1)(a)

]
+

n∑
k=2

[Hk (a) − Hk (b)] f (k−1)(b) − f (b) +
∫ b

a
f (t)Wb(t)dt,

which proves (2.7) for x = b , because In(b) = −R1
n(b) . �

THEOREM 2. Let (Hk, k � 0) be w -harmonic sequence of functions on [a, b] and
f : [a, b] → R such that f (n−1) is a continuous function of bounded variation on [a, b]
for some n � 1 . Then for every x ∈ [a, b] and n � 2

f (x) =
∫ b

a
f (t)Wx(t)dt + Sn−1(x) + [Hn (a) − Hn (b)] f (n−1)(x) + R2

n(x), (2.10)

while for n = 1

f (x) =
∫ b

a
f (t)Wx(t)dt + R2

1(x),

where Sn−1(x) is defined by (2.4), and

R2
n(x) = −(b − a)n

∫
[a,b]

[
H∗

n

(
x − t
b − a

)
− Hn(x)

(b − a)n

]
df (n−1)(t).

for n � 1 .

Proof. First note that for n � 2

Sn(x) − Sn−1(x) = Hn (x)
[
f (n−1)(b) − f (n−1)(a)

]
+ [Hn (a) − Hn (b)] f (n−1)(x).

Thus

R2
n(x) = R1

n(x) + Hn (x)
∫

[a,b]
df (n−1)(t)

= R1
n(x) + Hn (x)

[
f (n−1)(b) − f (n−1)(a)

]
= R1

n(x) + Sn(x) − Sn−1(x) − [Hn (a) − Hn (b)] f (n−1)(x),

for n � 2 , and
R2

1(x) = R1
1(x) + H1 (x) [f (b) − f (a)] .

Therefore, our assertion follows from formula (2.7). �

REMARK 2. In the case when ϕ : [a, b] → R is such that ϕ′ exists and is integrable
on [a, b] , then the Riemann-Stieltjes integral

∫
[a,b] g(t)dϕ(t) is equal to the Riemann

integral
∫ b

a g(t)ϕ′(t)dt . Therefore, if f : [a, b] → R is such that f (n) exists and is
integrable on [a, b] , for some n � 1 , then Theorems 1 and 2 hold with

R1
n(x) = −(b − a)n

∫
[a,b]

H∗
n

(
x − t
b − a

)
f (n)(t)dt,
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and

R2
n(x) = −(b − a)n

∫
[a,b]

[
H∗

n

(
x − t
b − a

)
− Hn(x)

(b − a)n

]
f (n)(t)dt.

REMARK 3. In the special case when w(t) = 1
b−a , t ∈ [a, b] , formulae (2.5) and

(2.10) are generalizations of (1.1) and (1.2), respectively, since in this case∫ b

a
f (t)Wx(t)dt =

1
b − a

∫ b

a
f (t)dt,

for every x ∈ [a, b] , and the sum Sn(x)+R1
n(x) , calculated with respect to w -harmonic

sequence of functions on [a, b]

Hn(t) = Qn(t) +
1

b − a
(t − a)n

n!
, n � 0,

where Qn(t) , n � 0 are as stated in Lemma 2, becomes T̃n(x) + τn(x) + R̃1
n(x) ,

calculated with respect to the harmonic sequence of polynomials

Pn (t) =
Qn (a + (b − a) t)

(b − a)n−1 +
tn

n!
, n � 0,

as in [4].
There is a difference in the definition of our H∗

n (t) and P∗
n(t) from Introduction,

because a w -harmonic sequence of functions on [a, b] is not defined on [0, 1] .

REMARK 4. It is easy to see that for x = b we get

Sn(b) = H1(b)[f (b) − f (a)] +
n∑

k=2

[
Hk(a)f (k−1)(b) − Hk(b)f (k−1)(a)

]
,

assuming the sum on the right hand side to be zero when n = 1 . So, applying Theorem
1 with x = b we get the identity

f (b) =
∫ b

a
f (t) Wb (t) dt + Sn(b) + R1

n(b). (2.11)

Let us denote
W (t) = Wb (t) = w (a + b − t) , t ∈ [a, b] .

Note that W (t) � 0 , t ∈ [a, b] and
∫ b

a W(t)dt = 1 . Further we have

R1
n(b) = −(b − a)n

∫
[a,b]

H∗
n

(
b − t
b − a

)
df (n−1)(t)

= −
∫

[a,b]
Hn (a + b − t) df (n−1)(t).
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Also, since H1(x) = c +
∫ x

a w(s)ds , for some real constant c ,we have H1(b) = c + 1
and putting all this together we can rewrite the identity (2.11) in the form

(c + 1)f (a) − cf (b)

=
∫ b

a
f (t) W (t) dt +

n∑
k=2

[
Hk(a)f (k−1)(b) − Hk(b)f (k−1)(a)

]
−
∫

[a,b]
Hn (a + b − t) df (n−1)(t).

We can regard this identity as generalized trapezoid identity since for n = 1 and
c = − 1

2 it reduces to

1
2

[f (a) + f (b)] =
∫ b

a
f (t) W (t) dt −

∫
[a,b]

H1 (a + b − t) df (t),

where H1(x) = − 1
2 +

∫ x
a w(s)ds . Similarly, applying Theorem 1 with x = a+b

2 we get
generalized midpoint identity

f

(
a + b

2

)
=
∫ b

a
f (t) W̃ (t) dt +

n∑
k=1

Hk

(
a + b

2

)[
f (k−1) (b) − f (k−1) (a)

]
+

n∑
k=2

[Hk (a) − Hk (b)] f (k−1)
(

a + b
2

)
+ R1

n

(
a + b

2

)
, (2.12)

where

W̃ (t) = Wa+b
2

(t) =
{

w
(
a + a+b

2 − t
)
, a � t � a+b

2
w
(
b + a+b

2 − t
)
, a+b

2 < t � b

and

R1
n

(
a + b

2

)
= −

∫
[a, a+b

2 ]
Hn

(
a +

a + b
2

− t

)
df (n−1)(t)

−
∫
〈 a+b

2 ,b]
Hn

(
b +

a + b
2

− t

)
df (n−1)(t).

For n = 1 we have H1(x) = c +
∫ x

a w(s)ds so that choice c = − ∫ a+b
2

a w(s)ds yields
H1(x) =

∫ x
a+b

2
w(s)ds and (2.12) reduces to the simple midpoint identity

f

(
a + b

2

)
=
∫ b

a
f (t) W̃ (t) dt + R1

1

(
a + b

2

)
.

For some recent results on trapezoid and midpoint identities the reader is referred to the
papers [6] and [7].
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3. Generalizations of Ostrowski inequality

In this section we use the identities obtained in Theorem 1 and Theorem 2 to prove
some inequalities which can be regarded as generalizations of Ostrowski inequality for
various classes of functions. First we prove a number of inequalities which hold for a
class of functions f whose derivatives f (n−1) are either L -Lipschitzian on [a, b] or
continuous and of bounded variation on [a, b] . After that, for the sake of completeness,
we state and prove some analogous results holding for a class of functions f possessing
derivatives f (n) in Lp[a, b] .

Throughout this section we use the same notations as in the previous section.
So, (Hk(t) , k � 0) always denotes a w -harmonic sequence of functions on [a, b] as
defined at the beginning of Section 2 , while the special w -harmonic sequence (wk(t) ,
k � 0) is defined by (2.1) and (2.2).

THEOREM 3. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on [a, b]
and f : [a, b] → R such that f (n−1) is an L -Lipschitzian function on [a, b] for some
n � 1 . Then for n � 2∣∣∣f (x) − ∫ b

a f (t)Wx(t)dt − Sn−1(x) − [Hn (a) − Hn (b)] f (n−1)(x)
∣∣∣

� L
∫ b

a |Hn(t) − Hn (x)| dt, (3.1)

while for n = 1 ∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt

∣∣∣∣∣ � L
∫ b

a
|H1(t) − H1 (x)| dt,

for every x ∈ [a, b] .

Proof. If ϕ : [a, b] → R is L -Lipschitzian on [a, b] , i.e.

|ϕ(x) − ϕ(y)| � L · |x − y| , x, y ∈ [a, b] ,

then for any integrable function g : [a, b] → R∣∣∣∣∣
∫

[a,b]
g(t)dϕ(t)

∣∣∣∣∣ � L
∫ b

a
|g(t)| dt. (3.2)

Using this estimate we get∣∣R2
n(x)

∣∣ = (b − a)n

∣∣∣∣∣
∫

[a,b]

[
H∗

n

(
x − t
b − a

)
− Hn(x)

(b − a)n

]
df (n−1)(t)

∣∣∣∣∣
� (b − a)nL

∫ b

a

∣∣∣∣H∗
n

(
x − t
b − a

)
− Hn(x)

(b − a)n

∣∣∣∣ dt

= (b − a)nL
∫ x

a

∣∣∣∣H∗
n

(
x − t
b − a

)
− Hn(x)

(b − a)n

∣∣∣∣ dt

+ (b − a)nL
∫ b

x

∣∣∣∣H∗
n

(
x − t
b − a

+ 1

)
− Hn(x)

(b − a)n

∣∣∣∣ dt
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= (b − a)nL
∫ x

a

∣∣∣∣Hn (a + x − t)
(b − a)n − Hn (x)

(b − a)n

∣∣∣∣ dt

+ (b − a)nL
∫ b

x

∣∣∣∣Hn (b + x − t)
(b − a)n − Hn (x)

(b − a)n

∣∣∣∣ dt

= L

(
−
∫ a

x
|Hn (u) − Hn (x)| du −

∫ x

b
|Hn (v) − Hn (x)| dv

)
= L

∫ b

a
|Hn(t) − Hn (x)| dt.

Therefore, our assertion follows from Theorem 2. �

COROLLARY 1. If f is L -Lipschitzian on [a, b] , then∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt

∣∣∣∣∣ � L [(2x − a − b)w1(x) − 2w2(x) + w2(b)] ,

for every x ∈ [a, b] .

Proof. Put n = 1 in the theorem above and∫ b

a
|H1(t) − H1 (x)| dt =

∫ x

a
(w1(x) − w1(t)) dt +

∫ b

x
(w1(t) − w1(x)) dt

= (2x − a − b)w1(x) − 2w2(x) + w2(b),

since

H1(t) = c + w1(t) = c +
∫ t

a
w(s)ds,

for some real c . �

REMARK 5. In the special case when w(t) = 1
b−a the inequality of Corollary 1

reduces to Ostrowski inequality for L -Lipschitzian functions, since in this case∫ b

a
f (t)Wx(t)dt =

1
b − a

∫ b

a
f (t)dt

and

(2x − a − b)w1(x) − 2w2(x) + w2(b) = (b − a)

[
1
4

+
(x − a+b

2 )2

(b − a)2

]
.

COROLLARY 2. If f ′ is L -Lipschitzian on [a, b] , then∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt − [c + w1(x)] [f (b) − f (a)] + [c(b − a) + w2(b)] f ′(x)

∣∣∣∣∣
� L

∫ b

a
|c(t − x) + w2(t) − w2(x)| dt,

for every x ∈ [a, b] and c ∈ R .
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Proof. Apply Theorem 3 with n = 2 and note that by Lemma 1 we have

H1(t) = c + w1(t), H2(t) = c0 + c(t − a) + w2(t),

where c0 , and c are some real constants. �

REMARK 6. In the special case, when c = − 1
2 and w (t) = 1

b−a , we have

w1 (t) =
t − a
b − a

, w2 (t) =
(t − a)2

2 (b − a)

and the inequality from Corollary 2 reduces to∣∣∣∣∣f (x) − 1
b − a

∫ b

a
f (t) dt −

(
x − a + b

2

)
f (b) − f (a)

b − a

∣∣∣∣∣
� (b − a)2

2

[
8
3
δ 3 (x) − δ 2 (x) +

1
12

]
· L,

where

δ (x) =

∣∣x − a+b
2

∣∣
b − a

.

This result was proved in [5],

REMARK 7. For c � 0 , by a simple but long calculation we get∫ b

a
|c(t − x) + w2(t) − w2(x)| dt

=
c
2

[
(x − a)2 + (b − x)2

]
+ (2x − a − b)w2(x) − 2w3(x) + w3(b).

COROLLARY 3. Assume f satisfies the conditions of Theorem 3. For n � 2 and
for every x ∈ [a, b] we have∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn−1(x) + wn (b) f (n−1)(x)

∣∣∣∣∣
� L [(2x − a − b)wn(x) − 2wn+1(x) + wn+1(b)] ,

where

Sm(x) =
m∑

k=1

wk (x)
[
f (k−1)(b) − f (k−1)(a)

]
−

m∑
k=2

wk (b) f (k−1)(x).

Proof. We apply Theorem 3 with w -harmonic sequence Hk(t) = wk(t) , k � 0
defined at the beginning of previous section. In that case Sn−1(x) becomes Sn−1(x) ,
while ∫ b

a
|wn(t) − wn (x)| dt = (2x − a − b)wn(x) − 2wn+1(x) + wn+1(b).
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�

COROLLARY 4. Assume f satisfies the conditions of Theorem 3. For n � 2 and
for every x ∈ [a, b] we have∣∣∣∣∣f (x) − 1

b − a

∫ b

a
f (t)dt − Ŝn−1(x) +

(b − a)n−1

n!
f (n−1)(x)

∣∣∣∣∣
� L

(b − a)n!

[
(2x − a − b)(x − a)n − 2(x − a)n+1

n + 1
+

(b − a)n+1

n + 1

]
,

where

Ŝm(x) =
m∑

k=1

(x − a)k

(b − a)k!

[
f (k−1)(b) − f (k−1)(a)

]
−

m∑
k=2

(b − a)k−1

k!
f (k−1)(x).

Proof. Apply Corollary 3 for the special case when w(t) = 1
b−a and, therefore

wk(t) =
1

b − a
(t − a)k

k!
, k � 0.

�

THEOREM 4. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on [a, b]
and f : [a, b] → R such that f (n−1) is an L -Lipschitzian function on [a, b] for some
n � 1 . Then ∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn(x)

∣∣∣∣∣ � L
∫ b

a
|Hn(t)| dt, (3.3)

for every x ∈ [a, b] .

Proof. Using the estimate (3.2) and arguing similarly as in the proof of Theorem
3, we get ∣∣R1

n(x)
∣∣ = (b − a)n

∣∣∣∣∣
∫

[a,b]
H∗

n

(
x − t
b − a

)
df (n−1)(t)

∣∣∣∣∣
� (b − a)nL

∫ b

a

∣∣∣∣H∗
n

(
x − t
b − a

)∣∣∣∣ dt

= L
∫ b

a
|Hn(t)| dt.

Therefore, our assertion follows from (2.5). �

COROLLARY 5. If f is L -Lipschitzian on [a, b] , then for every x ∈ [a, b] and
c ∈ R we have∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − [c + w1(x)] [f (b) − f (a)]

∣∣∣∣∣ � L
∫ b

a
|c + w1(t)|dt.
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Proof. Put n = 1 in the theorem above. �

COROLLARY 6. If f is L -Lipschitzian on [a, b] then for every x, y ∈ [a, b] we
have ∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − [w1(x) − w1(y)] [f (b) − f (a)]

∣∣∣∣∣
� L [(2y − a − b)w1(y) − 2w2(y) + w2(b)] .

Proof. Put c = −w1(y) in Corollary 5. �

REMARK 8. For y = x the above inequality reduces to∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt

∣∣∣∣∣ � L [(2x − a − b)w1(x) − 2w2(x) + w2(b)] ,

i.e. to the inequality from Corollary 1.

COROLLARY 7. Assume f satisfies the conditions of Theorem 4. For n � 1 and
for every x ∈ [a, b] we have∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn(x)

∣∣∣∣∣ � Lwn+1(b),

where Sn(x) is defined as in Corollary 3.

Proof. We apply Theorem 4 with the w -harmonic sequence Hk(t) = wk(t),
k � 0 . Then Sn(x) becomes Sn(x) while∫ b

a
|wn(t)| dt =

∫ b

a
wn(t)dt = wn+1(b).

�

COROLLARY 8. Assume f satisfies the conditions of Theorem 4. For n � 1 and
for every x ∈ [a, b] we have∣∣∣∣∣f (x) − 1

b − a

∫ b

a
f (t)dt − Ŝn(x)

∣∣∣∣∣ � L
(b − a)n

(n + 1)!
,

where Ŝn(x) is defined as in Corollary 4.

Proof. Apply Corollary 7 to the special case when w(t) = 1
b−a . �

THEOREM 5. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on [a, b]
and f : [a, b] → R be such that f (n−1) is a continuous function of bounded variation



WEIGHTED EULER HARMONIC IDENTITIES 251

on [a, b] for some n � 1 . Then for n � 2∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt − Sn−1(x) − [Hn (a) − Hn (b)] f (n−1)(x)

∣∣∣∣∣
� max

t∈[a,b]
|Hn(t) − Hn (x)|Vb

a (f
(n−1))

and for n = 1 ∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt

∣∣∣∣∣ � max
t∈[a,b]

|H1(t) − H1 (x)|Vb
a (f ),

for every x ∈ [a, b] , where Vb
a (f (n−1)) is the total variation of f (n−1) on [a, b] .

Proof. If F : [a, b] → R is bounded and the Stieltjes integral∫
[a,b]

F(t)df (n−1)(t)

exists, then ∣∣∣∣∣
∫

[a,b]
F(t)df (n−1)(t)

∣∣∣∣∣ � max
t∈[a,b]

|F(t)| · Vb
a (f (n−1)).

Let us apply this estimation to the formula (2.10). We have

∣∣R2
n(x)

∣∣ =

∣∣∣∣∣−(b − a)n
∫ b

a

[
H∗

n

(
x − t
b − a

)
− Hn(x)

(b − a)n

]
df (n−1)(t)

∣∣∣∣∣
� (b − a)n max

t∈[a,b]

∣∣∣∣H∗
n

(
x − t
b − a

)
− Hn(x)

(b − a)n

∣∣∣∣Vb
a (f

(n−1))

= max
t∈[a,b]

|Hn(t) − Hn (x)|Vb
a (f

(n−1)),

which proves our assertion. �

COROLLARY 9. If f is a continuous function of bounded variation on [a, b] , then∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt

∣∣∣∣∣ � 1
2

[1 + |1 − 2w1(x)|] Vb
a (f ).

Proof. Put n = 1 in the theorem above and note that w1(b) = 1 . Therefore

max
t∈[a,b]

|H1(t) − H1 (x)| = max
t∈[a,b]

|w1(t) − w1 (x)|
= max{w1(x), w1(b) − w1(x)}
=

1
2

[1 + |1 − 2w1(x)|] .

�
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COROLLARY 10. If f is a continuous function of bounded variation on [a, b] , then∣∣∣∣∣f (x) − 1
b − a

∫ b

a
f (t)dt

∣∣∣∣∣ �
[

1
2

+

∣∣x − a+b
2

∣∣
b − a

]
Vb

a (f ).

Proof. Apply Corollary 9 with w(t) = 1
b−a and w1(t) = t−a

b−a . �

COROLLARY 11. If f ′ is a continuous function of bounded variation on [a, b] ,
then for every x ∈ [a, b] and c ∈ R we have∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − [c + w1(x)] [f (b) − f (a)] + [c(b − a) + w2(b)] f ′(x)

∣∣∣∣∣
� max

t∈[a,b]
|c(t − x) + w2(t) − w2(x)|Vb

a (f
′).

Proof. Put n = 2 in Theorem 5. �

COROLLARY 12. Assume f satisfies the conditions of Theorem 5. For n � 2 and
for every x ∈ [a, b] we have∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn−1(x) + wn (b) f (n−1)(x)

∣∣∣∣∣
� 1

2
[wn(b) + |wn(b) − 2wn(x)|] Vb

a (f
(n−1)),

where Sn−1(x) is defined as in Corollary 3.

Proof. We apply Theorem 5 with the w -harmonic sequence Hk(t) = wk(t),
k � 0 . Then Sn−1(x) becomes Sn−1(x) while

max
t∈[a,b]

|wn(t) − wn (x)| =
1
2

[wn(b) + |wn(b) − 2wn(x)|] .

�

COROLLARY 13. Assume f satisfies the conditions of Theorem 5. For n � 2 and
for every x ∈ [a, b] we have∣∣∣∣∣f (x) − 1

b − a

∫ b

a
f (t)dt − Ŝn−1(x) +

(b − a)n−1

n!
f (n−1)(x)

∣∣∣∣∣
� (b − a)n−1

2 · n!

[
1 +

∣∣∣∣1 − 2

(
x − a
b − a

)n∣∣∣∣]Vb
a (f (n−1)),

where Ŝn−1(x) is defined as in Corollary 4.
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Proof. Apply Corollary 12 in the special case when w(t) = 1
b−a . �

THEOREM 6. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on [a, b]
and f : [a, b] → R be such that f (n−1) is a continuous function of bounded variation
on [a, b] for some n � 1 . Then∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn(x)

∣∣∣∣∣ � max
t∈[a,b]

|Hn(t)|Vb
a (f

(n−1)),

for every x ∈ [a, b] .

Proof. The result follows from (2.5) similarly as we proved Theorem 5. �

COROLLARY 14. If f is a continuous function of bounded variation on [a, b] , then
for every x ∈ [a, b] and c ∈ R we have∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − [c + w1(x)] [f (b) − f (a)]

∣∣∣∣∣ � max {|c| , |c + 1|}Vb
a (f ).

Proof. Put n = 1 in the theoremabove and note that H1(t) = c+w1(t) , w1(a) = 0
and w1(b) = 1 . �

COROLLARY 15. If f is a continuous function of bounded variation on [a, b] , then
for every x, y ∈ [a, b] we have∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − [w1(x) − w1(y)] [f (b) − f (a)]

∣∣∣∣∣
� 1

2
[1 + |1 − 2w1(y)|] Vb

a (f ).

Proof. Put c = −w1(y) in Corollary 14. Then |c| = w1(y), |c + 1| = 1 − w1(y)
and

max {w1(y), 1 − w1(y)} =
1
2

[1 + |1 − 2w1(y)|] .
�

COROLLARY 16. Assume f satisfies the conditions of Theorem 6. For n � 1 and
for every x ∈ [a, b] we have∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn(x)

∣∣∣∣∣ � wn(b)Vb
a (f

(n−1)),

where Sn(x) is defined as in Corollary 3.
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Proof. We apply Theorem 6 with the w -harmonic sequence Hk(t) = wk(t),
k � 0 . Then Sn(x) becomes Sn(x) and

max
t∈[a,b]

|wn(t)| = wn(b).

�

COROLLARY 17. Assume f satisfies the conditions of Theorem 6. For n � 1 and
for every x ∈ [a, b] we have∣∣∣∣∣f (x) − 1

b − a

∫ b

a
f (t)dt − Ŝn(x)

∣∣∣∣∣ � (b − a)n−1

n!
Vb

a (f
(n−1)),

where Ŝn(x) is defined as in Corollary 4.

Proof. Apply Corollary 16 with w(t) = 1
b−a and note that

wn(b) =
(b − a)n−1

n!
.

�
Now, we finish this section considering the case when f : [a, b] → R is such that

f (n) exists for some n � 1 and is integrable on [a, b] . In this case we can use the
versions of the identities from Theorems 1 and 2 as noted in Remark 2.

THEOREM 7. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on [a, b]
and f : [a, b] → R be such that f (n) is integrable for some n � 1 . Then for n � 2∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn−1(x) − [Hn (a) − Hn (b)] f (n−1)(x)

∣∣∣∣∣
� max

t∈[a,b]
|Hn(t) − Hn (x)| ‖f (n)‖1,

while for n = 1∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt

∣∣∣∣∣ � 1
2

[1 + |1 − 2w1(x)|] ‖f ′‖1,

for every x ∈ [a, b] .

Proof. Note that in this case

Vb
a (f

(n−1)) =
∫ b

a

∣∣∣f (n)(t)
∣∣∣ dt = ‖f (n)‖1,

and apply Theorem 5. �
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THEOREM 8. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on [a, b]
and f : [a, b] → R be such that f (n) is integrable for some n � 1 . Then∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn(x)

∣∣∣∣∣ � max
t∈[a,b]

|Hn(t)| · ‖f (n)‖1,

for every x ∈ [a, b] .

Proof. Apply Theorem 6 and note again that Vb
a (f (n−1)) = ‖f (n)‖1 . �

THEOREM 9. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on [a, b]
and f : [a, b] → R be such that f (n) ∈ L∞[a, b] for some n � 1 . Then for n � 2∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn−1(x) − [Hn (a) − Hn (b)] f (n−1)(x)

∣∣∣∣∣
�
∫ b

a
|Hn(t) − Hn (x)| dt · ‖f (n)‖∞,

while for n = 1∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt

∣∣∣∣∣ � [(2x − a − b)w1(x) − 2w2(x) + w2(b)] ‖f ′‖∞,

for every x ∈ [a, b] .

Proof. In this case f (n−1) is L -Lipschitzian with L = ‖f (n)‖∞ . �

THEOREM 10. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on
[a, b] and f : [a, b] → R be such that f (n) ∈ L∞[a, b] for some n � 1 . Then∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn(x)

∣∣∣∣∣ �
∫ b

a
|Hn(t)| dt · ‖f (n)‖∞,

for every x ∈ [a, b] .

Proof. In this case f (n−1) is L -Lipschitzian with L = ‖f (n)‖∞ . �

THEOREM 11. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on
[a, b] and f : [a, b] → R be such that f (n) ∈ Lp[a, b] for some n � 1 and 1 < p < ∞ .
Then for n � 2∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn−1(x) − [Hn (a) − Hn (b)] f (n−1)(x)

∣∣∣∣∣
� ‖Hn − Hn (x) ‖q‖f (n)‖p,

while for n = 1 ∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt

∣∣∣∣∣ � ‖H1 − H1 (x) ‖q‖f ′‖p,

for every x ∈ [a, b] , where 1/p + 1/q = 1 .
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Proof. By applying the Hölder inequality we have

∣∣∣∣∣f (x) −
∫ b

a
f (t)Wx(t)dt − Sn−1(x) − [Hn (a) − Hn (b)] f (n−1)(x)

∣∣∣∣∣
� (b − a)n

∫ b

a

∣∣∣∣H∗
n

(
x − t
b − a

)
− Hn(x)

(b − a)n

∣∣∣∣ ∣∣∣f (n)(t)
∣∣∣ dt

� (b − a)n

(∫ b

a

∣∣∣∣H∗
n

(
x − t
b − a

)
− Hn(x)

(b − a)n

∣∣∣∣q dt

)1/q

‖f (n)‖p

=

(∫ b

a
|Hn(t) − Hn (x)|q dt

)1/q

‖f (n)‖p,

which proves our assertion. �

THEOREM 12. Let (Hk(t) , k � 0) be a w -harmonic sequence of functions on
[a, b] and f : [a, b] → R be such that f (n) ∈ Lp[a, b] for some n � 1 and 1 < p < ∞ .
Then ∣∣∣∣∣f (x) −

∫ b

a
f (t)Wx(t)dt − Sn(x)

∣∣∣∣∣ � ‖Hn‖q‖f (n)‖p,

for every x ∈ [a, b] , where 1/p + 1/q = 1 .

Proof. Similar to the proof of the theorem above. �
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Department of Mathematics

Faculty of Natural Sciences, Mathematics and Education
University of Split

Teslina 12
21000 Split

Croatia
e-mail: mmatic@pmfst.hr

J. Pečarić
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