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Abstract. The main objective of this paper is a study of some new generalizations of Hilbert’s and
Hardy-Hilbert’s type inequalities. We establish general form of multiple Hilbert-type inequality
and we also introduce multiple inequality of Hardy-Hilbert type. Further, the best possible
constants are obtained for some general cases.

1. Introduction

Hilbert’s and Hardy-Hilbert’s type inequalities are some significant weight inequal-
ities which play an important role in analysis and it’s applications. First, let us recall
the well known Hilbert’s integral inequality (1) and its equivalent form which we call
Hardy-Hilbert’s inequality (2).

THEOREM A. The following inequalities hold and are equivalent

/ / fx dxdy<7r</ f2(x)dx - /Oogz(x)dx)%, (1)
/0 (0 f()dxd) <7r/ fix (2)

where 1 and T* are the best constants.

Although classical, they are field of interest of numerous mathematicians and were
generalized in many different ways. For more details see [11].

Very recently, Brneti¢ and Pecari¢ ([8], [9]) gave some further generalizations of
Hilbert’s and Hardy-Hilbert’s inequalities. So we shall state their result that will take
our attention.
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THEOREM B. If n > 2 is an integer and Z =1,p;i>1,i=1,..,n, then

/ / H’ lfl dxldxz .dx,
1 lx’

1 i
< T H(F(l —piAi))I(A —n+1 +piAi+l)) X

i=1

l_
" (/ )Hlflf/lJrPi(Ai*Ai“)fipi (x)dx> :
0

—A-1 1
forany A >n—2 and A; € (1177
Di—1 Pi—1

and the indices i in A; are taken modulo n.

> , where T is the gamma-function

Further, Yang and Rassias obtained in [2] the following result

n
1
THEOREM C. If n > 2 is an integer and Z —=1,pi>1,i=1,..,n, then

i=1 P
/ / H’ lfl dxldxz .dx,
1 1 l

o = ([ et )_

i=1

forany A >n — min {p;}, where T is gamma-function.
1<i<n

Above results include many interesting Hilbert-type inequalities as the special
cases which can be found in [8] and [2].

On the other hand, these multiple Hilbert-type inequalities are not comparable,
since it is impossible to obtain one result from another. Our aim is to obtain more
general result from which both results will follow as special cases. Also, we introduce
the general form of multiple Hardy-Hilbert inequality and obtain the best possible
constants in some general cases.

The techniques that will be used in the proofs are mainly based on classical real
analysis, especially on the well known Holder’s inequality and on Fubini’s theorem.

2. Multiple Hilbert’s and Hardy-Hilbert’s inequalities

This section is dedicated to the most general form of multiple Hilbert’s and Hardy-
Hilbert’s inequalities. Since we use Fubini’s theorem, all the measures should be
o— finite. Further, throughout this paper, we assume that all the functions are non-
negative and not identically equal to zero. Also we suppose that all the integrals in the
paper converges, so we shall omit such types of conditions. Under these assumptions
we present our general result.



GENERALIZATION OF HILBERT AND HARDY-HILBERT INTEGRAL INEQUALITIES 261
n
: 1 .
THEOREM 1. Let n > 2 be an integer and E —=1,pi>1,i=1,..,n,

H 0ij(x;) = 1. Then the following inequalities hold and are equivalent
ij=1

/ /le,..., Hfz X )y (x1)....d by (Xn)

n L

<II( [ Fesrr e amta ) G)

i=1
and

/Q h(x,,)< /Q /Q K(xl,...,xn)ﬁf,-(x,-)dul(xl)...du,,1(x,11)>qdu,,(xn)

i=1

A

<H(/Q P ()9 <xl>dul<xl>)’", (4)

Fi(x;) /Q / (X1, ey Xn) i ()d(x;),

j= 1#!

h(5) = O (o) FL 9 (3,) and— Z—

zlpl

where

If pi >0, i€ {1,2,...,n} and pr < 0, k # i, then the reverse inequality in (3) is
valid. Also, if p; > 0, i € {1,2,...,n— 1} and p; < 0, k # i, then the reverse
inequality in (4) is valid. Further, the inequality (4) holds also when p, > 0 and
P <0, k#n.

Proof. First we prove the inequality (3). By applying Holder’s inequality we have

/Q~-~/QK(x1,...,xn) ilifi(x,-)dul(xl)...dun(x,,)
:/Q.../QK(xl,...,x,,)H(f,-(x,-)H([)ij(xj))dul(xl)...du,,(x,,)
=1 j=1

pi
</ / x17~- xn -xl H¢ x] dul X1 dun(xn)>

and we obtain the inequality (3).
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Now we prove the inequality (4). We denote

xn / /K)C],..., Hfl Xi d.ul(-xl) dﬂn l(-xn 1)

By putting
Salo) = h(ox) - ()™
in the inequality (3) we obtain

n—1

Jypatsyans) < TL( [ Ftsarr sisi ani)) "

1—1
q
< ([ R an) )
Q
Now we put
h(x,) = ¢r;1q(xn)F;iiq(xn)v
n—1
1 1
in the inequality (5). Then, by using — = Z — and denoting by / the integral of the
. TP

left-hand side of the inequality (5), we can easily obtain
n—1 L
pi
1<]] ( / tedent:s <xl)du,<xl>) 174,
=1 L
which gives the inequality (4). Analogously, we obtain the reverse inequalities, by
using the reverse Holder’s inequality.
It remains to prove that the inequalities (3) and (4) are equivalent. We only have
to check that the inequality (3) follows from the inequality (4). For this purpose let’s
suppose that the inequality (4) is valid. We start with the following identity

/Q~-~/QK(x1,...,xn) Hf,-(x,-)dul(xl)...du,,(x,,)

:/Q‘Pnn_l(x")Fn_I#(x") (L.~-/52K(xl,...,xn) Hf,-(x,-)dul(xl)...du,,1(x,,1)> X

i=1
X F,pn (xn) n(xn)‘Pnn (xn)d.un (xn)-

Now, by applying Holder’s inequality with conjugate parameters ¢ and p,, we have

/Q-'-/QK(xl,...7)(3,,)llzllfi(xi)dﬂl(xl)...dun(xn)

< (/Qh(xn)</g.../QK(xl,...,xn)ﬁfi(x,-)dul(xl)...dunl(x,,1)>qdun(xn)>q

([ Enturg e (xn>dun<xn>)’+”,

X
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and it is obvious that the result follows by using the inequality (4). We obtain the
equivalence of the reverse inequalities in a similar way, by using the reverse Holder’s
inequality. [J

REMARK 1. Equality in the previous theorem is possible if and only if it is equality
in Holder’s inequality. It means that the functions

(fi(xi) H i(x;))""

are proportional. Hence we obtain that the equality in Theorem 1 holds if and only if
filxi) = G qbn()cl)l Pz, i =1,2,...n, where C; are arbitrary constants. It is possible
only if the functions
b
Il 09 ()
H;:l.j#i ¢ (%)

are adequate constants and

i=1,2,...,n

_Dbi
/F(x,) i 7 () dwi(x) < oo, i=1,2,...n.
Q

Otherwise, the inequalities in Theorem 1 are strict.
Let’s mention that the special case of Theorem 1, for n = 2, was proved in [14].

3. Applications to homogeneous functions

In this section we apply our general results to the homogeneous function

1
i )

of degree —A, in n variables, and for some special choice of the functions ¢,
1 < i,j < n. Further, let y; = ... = u, be the Lebesgue measure and Q = (0, 00).

Also, let ¢;;(xj) = xA Then, the condition

K(x1, ..., xy) =

[T ot =1 (6)

ij=1

leads to

I =TT =

i=1 j=1
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We set ZAU' =0, j = 1,2,...,n, so that the condition (6) is satisfied. We also
i=1

define «; := ZAU" i = 1,2,...,n. For our homogeneous function K(xi,...,x,) =

we have

H PI ij
Fi(x;) / / i i Lizi%] dx1 dxi_1dxiiq...dx,.
(> ks )

. o X .
Then, by using the substitution u; = K ,k=1,...n, k#1i,wehave
Xi

1
i x)*

Fi(x;) = ¥~ 1—A+pici—piAii
A,j

J 1#!
dul...dui_lduiﬂ...dun
/ / (14 3 g “k)/1
1

= F(A)-ﬁ71*/1+Piai*PiAiiF(A —n+1—pia; + piAi) H T(piA; + 1),
1A

where we used the well known formula for gamma function (see, for instance, [2],
Lemma 5.1.):

/ / Hz 1”“’ ldul Adug—y Hf:l F(“i).
)Zk ai F(Zf:lai)

Also, we have

n—1 1—¢q
1 —q)(n—1—A1)—qop
h(x,) = Wxsll q)(n—1—1)—qa, <F()Ln+1pnan+pnA,m)HF(p,,A,,jJrl)) ,
P

Then, by using Theorem 1, we obtain the following result
) "1 .
THEOREM 2. Let n > 2 be an integer, Z— =1, p>1,i=1..n,

i=1

= Z — and ZA’J = 0. Then the following inequalities hold and are equivalent

1
4 tlpl i=1
/ / IL lfl Xl N e dx
jl/

n o L
pi
< KH(/ XA ipi(xi)dxi> (7)
i=1 \/0
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and 1
e} " ¢
/ xi(ll—q)(n—l—)t)—qocn </ / Hl 1 fz Xt dx” 1> dxn
0
n—1 o pli
< KqH(/ i 1=A+piai ipi(xi)dxi) , (8)
i=1 \WO0
where
1 n
K = WHF(A_H“FI p1a1+p1 11 H F(pAU )
i—1 ijj=L,i#j

1 —-A -1
Aj>——, i#jand Aj — o 117.
i

i Pi
If pi >0, i€{l,2,...,n}, and py <0, k # i, then the reverse inequality in

1 S 1
(7)is valid for Ay > ——, j £ i, Ai— o > — =" Ay < ——, k #j and
A ! Pi Pi Pk
A — o <AL
Pk
Also, if p; > 0, i € {1,2,...,n— 1}, and py < 0, k # i, then the reverse
1 a1 1
inequality in (8) is valid for Ay > ——, j £ i, Aj— g > ————— Ay < ——,
Pi Pi Pk

—A-1
k#jand Ay — o < "2
Dk
Further, the inequality (8) holds also when p, > 0 and py <0, k # n, for A, >
1 —A-1 1 —-A-1
——,jFn, Apm— 0y > ni, Ay < ——, k#jand Ay — oy < Vli
Pn Pn Pk Pk

REMARK 2. Note that the inequalities in Theorem 2 are strict (under the assumption
that the functions f; are not identically equal to zero). That follows from Remark 1.

REMARK 3. It is very interesting to elaborate why multiple Hilbert-type inequality
(7) generalizes both inequalities given in Theorem B and Theorem C.

i—1 L. .
If we put A; = (n — /l)p >— and A;j = (A —n)—, i # j, then the condition
Pi pibj

ZA,-j = 0 is satisfied (also ZA,-j = 0), and we obtain the result of Theorem C as a
i=1 Jj=1
special case of our result.

On the other hand, if we put A;; = A;, Ajiy1 = —Aiy1, Aj =0, where |i —j| > 1
and the indices are taken modulo 7, then we obtain the result of Theorem B as a special

case (obviously, the condition ZAU = 0 is satisfied).
i=1
REMARK 4. If we put n = 2 and A} = Ay, An = Ay, A;p = —A; and
1 1
Ay; = —A; in Theorem 2 we obtain the result provedin [9]. If A >0, —+ — =1,
P 4q
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p > 1, then the following inequalities hold and are equivalent

[ fxely)
/0 /O 7()( n y)’l dxdy
Ooxl—/wq(ArAz) a(x dx> ‘ ( oox“’HP(AZ*A‘) P(x dx) E, 9
- K( / i) / &) 9)

and - - .
/ y(*—l)(q—l)w(An—Az)(/ f ) /ldx) dy
0 0o (x+y)
< K"(/ xl_AJr‘f(Al_AZ)fq(x)dx) (10)
0
1 1-4 1
where K = B(1 —gA>,A —1+4qA;)7(B(1 —pA;,A —1 +pA1) JAre | ——,— |,
p P
1-1 1 . .
Ay, € | ——, — ] and B is the beta function.
q q

Now we consider some special choices of the parameters A;; to obtain the best
possible constants. More precisely, let the parameters A;; satisfy constraint

A,7l’l+17p,a,+p,A”:pkAk,+l, k#l7 l:172,l’l (11)

It is easy to see that the constant K from the Theorem 2 may be written in the form
= —— [T + 1), 12
oy 117G+ (12)
where gf =ppAni, 1 <i<n-—1 and :4\; = p1Ay,. Further, the inequalities (7) and

(8) take form
[ & H’ .

<K*H(/0 Xl piipp(x ,)dx,-)p%, (13)

i=1

o n—1 q
/ Aa=D)(1+pd) ( / / Iy filx) lf ’ x’ ...dx,,l) dx,
0

(K°) qH( | >d) (14)

In the following theorem we show that, if the parameters A; satisfy condition (11),
then one obtains the best possible constant.

and

THEOREM 3. If the parameters A, 1 < i,j < n satisfy condition (11) and
ZA’J =0, j=1,2,...,n, then the constants K and K? from Theorem 2 are the best

posstble
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Proof. Let us define the functions
_ 0 x€ (0,1)
fi(-xi) = A_k
xTh x € [l,00),

where 0 < € < 11212 {pi + piA;} . Tf we put these functions into the inequality (7) i.e

*

(13), then the right-hand side of the inequality becomes = since

sH(/ x~ i ’fpl(x)dx)pli =1 (15)

Further, let J denote the left-hand side of the inequality (13) multiplied by €, for above
choice of the functions f, By using the substitution u; = il ,i=1,2,...,n—11in
J, we find "

u,A’ i
J:e/ Xn~ / / i, ==L duy .. duy | dx,. (16)
Xn *l u)A

It is easy to see that the following 1nequa11ty holds

u,A’ 3
J>e/ / / Ly =L duy . duy—y | dx,
(142205 w)*

—¢ / x,;lzzj(xn)dxn, (17)
1 j=1

where for j = 1,2,...,n—1, Ii(x,) is defined by
Ty
Ii(x,) == / 1_L:#dul coodup_q,
( +Zt 1 M)

1
satisfying D; = {(u1,u, ..., un—1);0 < u; < —, 0 < ux < 00,k # j}. Without loss

of generality, we only need to estimate the 1ntegra1 I (x,) . For n=2 we have

1

L —-£ L -1

o Uy Al I’l n A— £ ) —~ £ A
Li(x,) = ———du; < w ' rnduyy =(1—-—+A XpPr T
1(%n) /0 0+ ) 1\/0 1 1 < Py 1> n

and for n > 2 we find

n luA, I ﬁ ~
/ / —ai=2 duz N dun_l . / MlAlif’_ldul
1+Zl ) ") 0

n 1 Al ,i
< (1—3+2\T> A 1/ / Hig w77 dus . .. dup_y
P1 +Z )}, 1+I,L1—A1—8

zZu

(1
=(1—3+2\T> x b ! HFA——+ 1).
141 FA -1+ -
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Hence, we have Ij(x,) < x,ll%_Ai_IOj(l), for e — 0Y, j =1,2,...,n—1, and
consequently
0o n—1
/ XY Li(x)dx, < O(1). (18)
1 -
j=1

Since for € — 07 we have

n 1 lA, Pz 1 n _
/ / —Adul...dun_l:mHF(Ai—Fl)—&-o(l)

tlu)

we conclude, by using (17) and (18), that
| QG N
J/WEF(A,-+1) when € — 07, (19)

Now let us suppose that the constant factor K* = ﬁ H?: 1 F(AN, + 1) is not the best
possible. Then, there exists a positive constant C, smaller than K* such that the
inequality (13) is still valid if we replace K* by C. In particular, for the above choice
of the functions f; we obtain, by using (15) and (19), that K* < C when & — 0.
This contradiction shows that the constant factor K* in (13) is the best possible.

We also prove that K* is the best possible in the reverse inequality in (13). B
using the same notation as before, we obtain from (16), the following inequality

n luA, pz
Jge/ Xn~ / / =1 duy ...du,—1 | dx,
llu)/l e

_ Ti g 1Ira *f,- 1), (20)

Now, let us suppose that there exists the constant D, greater than K*, such that the
reverse inequality in (13) is still valid if we replace K* by D. In particular, for above
choice of functions f; we obtain, by using (15) and (20), that K* > D when & — 0.
This contradiction shows that the constant factor K* is the best possible.

Further, since the equivalence keeps the best possible constant, the proof is com-
plete. O

_ A{ n
Now, if we put A; = — — 1, where i = 1,2,...,n and Z— =1, in the
! i=1

inequalities (13) and (14), we obtain the following

COROLLARY 1. Let n > 2 beaninteger, A > 0, Z =1,pi>1, Z

7
zll tll

n—1

1
rp>1,i=1,...,nand — = Z — . Then the following inequalities hold and are
9 TP
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/ / H? lf’ x’ Lt vy
),

12

o0 n—1
/ xyf </ / Hz 1 fz i) o, 1>qun
0
1 n - A 9 n—1 00 pi(1=%)—1,p; d o -
) mg (7,) H(/O T () xi) . (22)

i=1

equivalent
and

If pi>0, i€ {l,2,...,n}, and py <0, k # i, then the reverse inequality in (21)
is valid. Also, if p; > 0, i € {1,2,...,n— 1}, and py < 0, k # i, then the reverse
inequality in (22) is valid. Further, the inequality (22) holds also when p, > 0 and
P < 0, k # n. Also, the constant factors involved in the right-hand sides of the
inequalities (21) and (22) and their’s reverses are the best possible.

REMARK 5. It is interesting to consider the case n = 2 for the choice of the
parameters A; as in Remark 2. The constraint (11) leads to the condition pA; + qA; =
2 — A, and in that case the constant factors in the inequalities (9) and (10) are the best
possible. That result was proved in [15].

4. Further results

Now we present some special cases of multiple Hardy’s inequalities. If we put

Xn)y X13X2y - oy Xn—1 < Xp
K(x1,%2,...,%,) = 8(xn), et
(1, %2, %) 0, otherwise

in Theorem 1, where Q = [a, b], a < b, we obtain following result

n
1
THEOREM 4. Let n > 2 be an integer, Z— =1, pi>1,i=1,..,n,—
7 Pi q
n—1

1
Z — and H 0ij(x;) = 1. Then the following inequalities hold and are equivalent

tlpl ij=1

/ () [Tt (e . ()
[a,b] x [ax, ]! i—1

1

< Hl(/[b] </[-’Ci»b]><[a,.‘6n]n2 ge) H 5 (g)dny( ))fp s (xz)) E

J=1j
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1

([ H o8 )b ) ) o2 ) o)) )23
and

n—1

/[a’b] h(xn)gq(xn)</[a’xn] TG du ()it (x- 1)>qdun(xn)

i=1

n—1 n g
. pi
<H( / ( / <) I] 5’(xj)duj(xj)>f” (5)8 <x,>du,<xl>) ,
i1 la,b] [xi,b] X [axn ]2 =1t
(24)
where
I—q

h(xa) = @ (xa)g" ™ (xn) / H O™ (7t (x7)

If pi >0, i€{1,2,...,n}, and p;y <0, k # i, then the reverse inequality in (23)
is valid. Also, if p; > 0, i € {1,2,...,n— 1}, and py < 0, k # i, then the reverse
inequality in (24) is valid. Further, the inequality (24) holds also when p, > 0 and
P <0, k#n.

We also obtain the result dual to Theorem 3 by putting

g(xn)7 X1, X2y« + 3 Xn—1 >xn
K(xi,x2,...,%,) = .
(1,22, ) 0, otherwise

in Theorem 1.

n

1 1
THEOREM 5. Let n > 2 be an integer, Z— =1, pi>1,i=1,..,n,-
= Di q

n—1

1
Z — and H 0ij(x;) = 1. Then the following inequalities hold and are equivalent

zlpl ij=1

/ ge) [T fiCedun (1)--.dn ()
[a,b] X [xn,b]" 1 i—1
1

n—1 pi
<H</[ b </[ T 8lxn) H )k )fp (o)t (x’)d“’(x’)> *
i=1 a, a.xi] X [xp,b]"

j=Lj#i

(/Eb (/xn H% x;) du,(xj)) () P (x0) OF, (xn)dun(xn))p%l (25)

and

q
n n zzd dn n— dnn
/W, ) (x (/ nlfx 1 ()bt (x o) o)
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n—1 y

. . pi

<II(/[,(/ et [T o) toldus(o) )7 )0 )

i—1 N lab] NS laxi]x fon b]" = =1t
(26)
where
n—1 l—q
i) = 03 s | [ TTon )t
Xn, n— J:1

If pi >0, i€ {l,2,...,n}, and p;y <0, k # i, then the reverse inequality in (25)
is valid. Also, if p; >0, i € {1,2,...,n— 1}, and pr < 0, k # i, then the reverse
inequality in (26) is valid. Further, the inequality (26) holds also when p, > 0 and
P <0, k#n.

REMARK 6. Note that the special cases of Theorems 3 and 4, for n = 2, were
proved in [14].

REMARK 7. The inequalities in this paper are related to general weighted Hardy-
type inequalities as described in the book [16] and the references given there. The
general problems in this connection are fairly completely solved in the one-dimensional
case but this is far from being true in the multidimensional case. Hence the results in this
paper could be helpful to begin to understand how such weight characterizations of mul-
tidimensional Hardy type inequalities could look like in the general multidimensional
case.
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