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Abstract. In this paper we consider the weighted discrete Hardy’s inequality for different real
power numbers 0 �= r < 1 and obtain some new refinements of its finite sections. For r < −1
our results improve those previously given by Nguyen et al. in [19, 20]. Moreover, we prove
that the constant factors involved in the right-hand sides of the obtained inequalities are the best
possible, that is, they cannot be replaced with any smaller constant.

1. Introduction

Let p > 1 and (an)n∈N be a sequence of non-negative real numbers, such that the
series

∑∞
n=1 an converges. Then the well-known discrete Hardy’s inequality

∞∑
n=1

(
1
n

n∑
k=1

a1/p
k

)p

<

(
p

p − 1

)p ∞∑
n=1

an (1)

holds, unless an = 0 for all n ∈ N . Moreover, the constant [p/(p − 1)]p on its
right-hand side is the best possible, that is, it cannot be replaced with any smaller
constant.

The relation (1) was proved by G. H. Hardy in the paper [8]. In fact, it was known
to him earlier (see [7]), but he had been unable to fix the best possible constant. In his
estimate, he dealt with the constant [p2/(p − 1)]p . Hardy’s main aim in [8] was to find
a new, more elementary proof of Hilbert’s double series theorem and he showed that it
follows from (1). Further remarks concerning the history and properties of Hardy’s and
Hilbert’s inequalities can be found in [9, 15, 17].

Since published in 1925, the inequality (1) and its integral analogue (see [9]) have
been discussed by several authors, who either reproved them using various techniques,
or applied and generalized them in many differentways. The study of Hardy’s inequality
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is also covered by a rich literature. Here, we just emphasize the monographs [14] and
[21], related to this topic, and mention the references [3, 4, 5], [17, Chapter IV], and
[19, 20], all of which to some extent have guided us in the research we present here.

One possible way of generalizing the discrete Hardy’s inequality is to discuss the
related power number p . Rewrite (1) in an equivalent form

∞∑
n=1

(
1
n

n∑
k=1

ar
k

)1/r

< (1 − r)−1/r
∞∑
n=1

an (2)

obtained by substituting p = 1/r , where 0 < r < 1 . First, note that in the limiting
case r = 0 of (2) we have the classical Carleman’s inequality,

∞∑
n=1

(
n∏

k=1

ak

)1/n

< e
∞∑
n=1

an,

proved by T. Carleman in 1922, with the optimal constant factor e (see e.g. the recent
review paper [10] for more details). Moreover, it is not hard to prove that in the case
r � 1 the series on the left-hand side of (2) diverges for all non-trivial sequences
(an)n∈N of non-negative real numbers.

Recently, using the method of indeterminate coefficients, Nguyen and Nguyen,
[19], concluded the analysis of parameters r by extending (2) to negative power num-
bers. They proved that

∞∑
n=1

(
1
n

n∑
k=1

ar
k

)1/r

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − r)−1/r
∞∑
n=1

an, r ∈ [−1, 1〉 , r �= 0,

r
r − 1

21−1/r
∞∑
n=1

an, r < −1

(3)

holds for all real sequences (an)n∈N , such that an > 0 , n ∈ N , and
∑∞

n=1 an < ∞ .
Especially, for r = −1 the relation (3) reads

∞∑
n=1

n
1
a1

+ 1
a2

+ · · · + 1
an

� 2
∞∑
n=1

an. (4)

Unfortunately, the authors in [19, 20] did not determine whether the inequalities (3) and
(4) are sharp or not. The weighted integral Hardy’s inequalities with negative indices
were discussed by Prokhorov, [22], in terms of necessary and sufficient conditions of
Muckenhoupt type (or, more precisely, Stepanov–Persson type) for boundedness of
Hardy’s integral operator (for more information see [23]).

Another interesting way to generalize the discrete Hardy’s inequality is either to
obtain its finite sections, that is, to restrict the infinite series on its both-hand sides to a
finite number of terms, to find its refinements by decreasing the weight coefficients in
the series on its right-hand side, or to combine these two approaches.
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For the case 0 < r < 1 , such result is given in [5], where it was shown that if both
series in (2) are restricted to a finite number of terms, N , then the best possible constant
for (2) can be replaced with a smaller one, dependent on N . Namely, the inequality

N∑
n=1

(
1
n

n∑
k=1

ar
k

)1/r

� N1−1/r

(
N∑

k=1

k−r

)1/r N∑
n=1

(
1 −

∑n−1
k=1 k−r∑N
k=1 k−r

)
an (5)

holds for all sequences (an)n∈N of non-negative real numbers and all N ∈ N . Equality
in (5) holds if and only if N > 1 and a1 = . . . = aN = 0 , or N = 1 .

On the other hand, the case r = −1 was considered in [20], where by using the
same technique as in [19] Nguyen et al. proved the following refinement of the finite
section of (4):

N∑
n=1

n
1
a1

+ 1
a2

+ · · · + 1
an

� 2
N∑

n=1

an

N∑
k=n

2n2

k(k + 1)2

� 2
N∑

n=1

(
1 − 1

3n + 1
− 4n2

N∑
k=n

1
k(k + 1)2(3k + 1)(3k + 4)

)
an

� 2
N∑

n=1

(
1 − 1

3n + 1

)
an. (6)

Finally, for the limiting case r = 0 Kaijser, Persson, and Öberg, [11], proved the
inequalities

N∑
n=1

(
n∏

k=1

ak

)1/n

+
N∑

n=1

1
n(n + 1)

�n/2�∑
k=1

(√
x∗n−k+1 −

√
x∗k
)2

�
N∑

n=1

(
1 − n

N + 1

)(
1 +

1
n

)n

an < e
N∑

n=1

(
1 − n

N + 1

)
an (7)

where (x∗n)N
n=1 denotes the non-increasing rearrangement of the sequence (xn)N

n=1 ,
xn = n(1 + 1/n)nan , n ∈ N .

Our aim in this paper is to state and prove some new generalizations of the relations
(2) and (3) for the case of arbitrary positive weights and to discuss the obtained results
with respect to the power number r ∈ R , r �= 0 . First, for r < 1 , r �= 0 , we
generalize (2) and (3) by putting weights and truncating the range of summation on
their both-hand sides to a finite number of terms. In other words, we obtain finite
sections of the strengthened weighted discrete Hardy’s inequality. Further, for r < −1
we show that the constant on the right-hand side of the obtained relation is smaller than
the corresponding one from [19, 20]. To conclude, we prove that our result is sharp, that
is, the mentioned constant is the best possible for the obtained inequality.
CONVENTIONS. Throughout this paper we set

∑
S = 0 , if S = ∅ , that is, empty sums

are taken to be equal zero.
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2. Weighted discrete Hardy’s inequality and its finite sections

Before presenting our idea, we need to introduce some notation and, for the
reader’s convenience, to recall some definitions and results that will be used in our
proofs. Suppose a = (an)n∈N is a given sequence of non-negative and w = (wn)n∈N

of positive real numbers. Let t ∈ R and n ∈ N . By M[t]
n (a; w) we denote the n -th

weighted power mean of order t , with the weights w , of the sequence a , that is,

M[t]
n (a; w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

Wn

n∑
k=1

wka
r
k

)1/r

, r > 0, or r < 0, ak > 0, k = 1, . . . , n,

(
n∏

k=1

awk
k

)1/Wn

, r = 0,

0, otherwise,

where Wn =
∑n

k=1 wk . We also set W0 = 0 and M[t](a; w) = (M[t]
n (a; w))n∈N .

Observe that in our notation [(
∑n

k=1 wkar
k)/Wn]1/r = 0 holds if r < 0 and there

exists k ∈ {1, . . . , n} such that ak = 0 . Moreover, for t = −1 we have the weighted

harmonicmeans of the sequence a , so, instead of M[−1]
n (a; w) , we shall write Hn(a; w) .

Further, if all weights in w are equal, their value w = w1 = w2 = . . . does
not affect the value of the related means, that is M[t]

n (a; w) = M[t]
n (a; 1) , where 1 =

(1, 1, . . .) . In this case we can without loss of generality assume that w = 1 and denote

M[t]
n (a) = M[t]

n (a; 1) and Hn(a) = Hn(a; 1) .
More information concerning discrete means and their properties one can find

in e.g. [9] and [18]. Here we just state the so-called weighted mixed (t, s) -means
inequality,

M[s]
N

(
M[t](a; w); w

)
� M[t]

N

(
M[s](a; w); w

)
(8)

where N ∈ N is arbitrary, t, s ∈ R , t < s , and the weights w are such that the
sequence (Wn/wn)n∈N is increasing. For positive sequences a , there is equality in (8)
if and only if a1 = . . . = aN .

The relation (8) was proved in 1999, independently by Kedlaya, [13], and Tarnavas
and Tarnavas, [24], although some of its special cases (e.g. the non-weighted mixed-
means inequality and the mixed arithmetic-geometric mean inequality) were known
much earlier. A detailed historical overview related to (8) can be found in [4], while for
different proofs and generalizations of this inequality we refer to [1, 2, 12, 13, 16, 24].

Now, we can state our basic result. The starting point of its proof is an application
of the mixed-means inequality (8).

THEOREM 1. Let a be a sequence of non-negativeand w of positive real numbers,
such that the sequence (Wn/wn)n∈N is increasing. If 0 �= r < 1 , then the inequality
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N∑
n=1

wn

(
1

Wn

n∑
k=1

wka
r
k

)1/r

� W1−1/r
N

(
N∑

k=1

wkW
−r
k

)1/r N∑
n=1

(
1 −

∑n−1
k=1 wkW

−r
k∑N

k=1 wkW
−r
k

)
wnan (9)

holds for all N ∈ N , with equality if and only if N > 1 and a1 = . . . = aN = 0 , or
N = 1 . If r > 1 , then (9) holds with the reversed sign of inequality, while for r = 1 it
becomes an equality regardless a , w , and N .

Proof. First, let 0 < r < 1 . Rewriting (8) for t = 1 , s = 1/r > 1 , and the
sequence ar = (ar

n)n∈N , we have⎡
⎣ 1

WN

N∑
n=1

wn

(
1

Wn

n∑
k=1

wka
r
k

)1/r
⎤
⎦

r

� 1
WN

N∑
n=1

wn

(
1

Wn

n∑
k=1

wkak

)r

,

that is,

N∑
n=1

wn

(
1

Wn

n∑
k=1

wka
r
k

)1/r

� W1−1/r
N

[
N∑

n=1

wn

(
1

Wn

n∑
k=1

wkak

)r]1/r

= W1−1/r
N

[
N∑

n=1

wnW
−r
n

(
n∑

k=1

wkak

)r]1/r

. (10)

Denoting SN =
∑N

n=1 wnW−r
n , the second line of (10) can be written as

W1−1/r
N S1/r

N

[
1
SN

N∑
n=1

wnW
−r
n

(
n∑

k=1

wkak

)r]1/r

� W1−1/r
N S1/r−1

N

N∑
n=1

wnW
−r
n

n∑
k=1

wkak = W1−1/r
N S1/r−1

N

N∑
k=1

wkak

N∑
n=k

wnW
−r
n

= W1−1/r
N

(
N∑

n=1

wnW
−r
n

)1/r N∑
k=1

(
1 −

∑k−1
n=1 wnW−r

n∑N
n=1 wnW

−r
n

)
wkak

so (9) holds for 0 < r < 1 . The last sequence of inequalities follows from Jensen’s
inequality for the convex function x �→ x1/r . Note that for N > 1 equality in (9)
holds if and only if there is equality in Jensen’s and in the corresponding mixed-means
inequality, that is, only if

w1a1 = w1a1 + w2a2 = . . . = w1a1 + w2a2 + . . . + wNaN and a1 = . . . = aN .

Hence, a1 = . . . = aN = 0 . The case N = 1 is trivial since on the both-hand sides
of (9) we have w1a1 . Moreover, for r = 1 and arbitrary a , w , and N , the both-hand
sides of (9) are equal to

∑N
n=1 wn/Wn

∑n
k=1 wkak .
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Now, consider r < 0 . Applying the mixed (1/r, 1) -means inequality to the
sequence ar , we obtain⎡

⎣ 1
WN

N∑
n=1

wn

(
1

Wn

n∑
k=1

wka
r
k

)1/r
⎤
⎦

r

� 1
WN

N∑
n=1

wn

(
1

Wn

n∑
k=1

wkak

)r

,

so (9) follows as in the previous case (the function x �→ x1/r is decreasing and convex).
The case r > 1 is similar ( x �→ x1/r is increasing and concave).

REMARK 1. Observe that the inequality (5) is only a special case of the relation
(9), obtained when 0 < r < 1 and all the weights in w are equal (that is, in the
non-weighted case). Therefore, Theorem 1 may be seen as a weighted generalization
of [5, Theorem 1].

REMARK 2. Unfortunately, we do not know whether the constant involved in the
right-hand side of (9), W1−1/r

N (
∑N

k=1 wkW
−r
k )1/r , is the best possible constant factor

αN for the relation

N∑
n=1

wn

(
1

Wn

n∑
k=1

wka
r
k

)1/r

< αN

N∑
n=1

(
1 −

∑n−1
k=1 wkW

−r
k∑N

k=1 wkW
−r
k

)
wnan

in the case 0 �= r < 1 , or not. However, Theorem 1 provides an explicit upper bound
for αN , dependent on N . The best possible constant γN for the finite section of the
non-weighted discrete Hardy’s inequality,

N∑
n=1

(
1
2

n∑
k=1

a1/2
k

)2

< γN
N∑

n=1

an,

was investigated by H. S. Wilf, [25], but only for r = 1/2 . He obtained the asymptotic
behavior of γN as N → ∞ by proving that

γN = 4 − 16π2

(ln N)2
+ O

(
ln ln N
(ln N)3

)
.

For further details, see [17, Chapter IV].
The following results show the relation between Theorem 1 and finite sections of

the weighted discrete Hardy’s inequality for the power numbers 0 �= r < 1 .

THEOREM 2. Suppose a and w are as in Theorem 1 and 0 �= r < 1 . Then the
inequalities

N∑
n=1

wn

(
1

Wn

n∑
k=1

wka
r
k

)1/r

� W1−1/r
N

(
N∑

k=1

wkW
−r
k

)1/r N∑
n=1

(
1 −

∑n−1
k=1 wkW

−r
k∑N

k=1 wkW
−r
k

)
wnan

� (1 − r)−1/r
N∑

n=1

(
1 −

∑n−1
k=1 wkW

−r
k∑N

k=1 wkW
−r
k

)
wnan � (1 − r)−1/r

N∑
n=1

wnan (11)
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hold for all N ∈ N , with equality if and only if a1 = . . . = aN = 0 .

Proof. The first inequality in (11) is literally the relation (9) from Theorem 1,
while the last one is obvious. To prove the second inequality, note that the estimate

W1−1/r
N

(
N∑

k=1

wkW
−r
k

)1/r

� W1−1/r
N

(∫ WN

0
x−rdx

)1/r

= (1 − r)−1/r

holds since
∑N

k=1 wkW
−r
k is the lower Darboux sum for

∫ WN
0 x−rdx in the case when

0 < r < 1 , and the upper Darboux sum for the same integral when r < 0 .

REMARK 3. Observe that the non-weighted case of (11) reads

N∑
n=1

(
1
n

n∑
k=1

ar
k

)1/r

� N1−1/r

(
N∑

k=1

k−r

)1/r N∑
n=1

(
1 −

∑n−1
k=1 k−r∑N
k=1 k−r

)
an

� (1 − r)−1/r
N∑

n=1

(
1 −

∑n−1
k=1 k−r∑N
k=1 k−r

)
an � (1 − r)−1/r

N∑
n=1

an (12)

so Theorem2 may be regarded as a weighted generalization of [5, Remark 1]. Moreover,
even in the non-weighted case we have a new generalization of the finite section of
the strengthened discrete Hardy’s inequality since the set of the power numbers r is
expanded to include all negative real numbers.

REMARK 4. Especially, for r = −1 the relation (12) becomes

N∑
n=1

Hn(a) � 2
N∑

n=1

N
N + 1

[
1 − (n − 1)n

N(N + 1)

]
an � 2

N∑
n=1

[
1 − (n − 1)n

N(N + 1)

]
an (13)

so we obtained a new refinement of the finite section of (4). Note that the sequence of
the weight factors involved in the right-hand side of (13) is decreasing. Since the cor-
responding sequence from (6) is increasing, the mentioned relations are incomparable.

REMARK 5. The limiting case r = 0 of (11) was considered previously, in [6],
where a weighted generalization of (7) was obtained.

The following step is to replace finite sums in Theorem 2 with infinite series, that
is, to take the limit of (11) as N → ∞ to obtain a strengthened weighted discrete
Hardy’s inequality.

THEOREM 3. Suppose 0 �= r < 1 and the sequences a and w from Theorem 2
are such that the series

∑∞
n=1 wnan converges. Then the inequalities

∞∑
n=1

wn

(
1

Wn

n∑
k=1

wka
r
k

)1/r

< (1 − r)−1/r
∞∑
n=1

(
1 −

∑n−1
k=1 wkW

−r
k∑∞

k=1 wkW
−r
k

)
wnan

< (1 − r)−1/r
∞∑
n=1

wnan (14)

hold, unless an = 0 for all n ∈ N .
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Proof. Directly from Theorem 2 by taking limN→∞ of the relation (11). Observe
that 0 <

∑∞
k=1 wkW

−r
k � ∞ .

REMARK 6. The inequality

∞∑
n=1

wn

(
1

Wn

n∑
k=1

wka
r
k

)1/r

< (1 − r)−1/r
∞∑

n=1

wnan (15)

is known as the weighted discrete Hardy’s inequality (see [9]). Note that the first relation
in (14) is a refinement, and (11) is a finite section of this relation for r < 1 , r �= 0 .

REMARK 7. The identity

N∑
n=1

(
1 −

∑n−1
k=1 wkW

−r
k∑N

k=1 wkW
−r
k

)
wnan =

1∑N
k=1 wkW

−r
k

N∑
k=1

wkW
−r
k

k∑
n=1

wnan

means that the usual partial sum
∑N

n=1 wnan of the series on the right-hand side of the
weighted Hardy’s inequality (15) has been in (14) replaced with the corresponding, but
strictly smaller "weighted Césaro sum", that is, the partial sums of the original sequence
(wnan)n∈N have been arithmetically averaged with the weights (wnW−r

n )n∈N .

REMARK 8. Note that the finite sections and refinements of the weighted Hardy’s
inequality were obtained only for the case 0 �= r < 1 . Now, we consider r � 1 . Let
the sequence w from Theorem 3 be such that the series

∑∞
n=1 wn/Wn diverges. It is

not hard to see that the series on the left-hand side of (14) is divergent, unless an = 0
for all n ∈ N . To prove this, assume that m ∈ N is such that a1 = . . . = am−1 = 0
and am > 0 (if m = 1 , then a1 > 0 ). Then the monotonicity property of the means
yields

∞∑
n=1

wn

(
1

Wn

n∑
k=1

wka
r
k

)1/r

�
∞∑

n=1

wn

(
1

Wn

n∑
k=1

wkak

)

=
∞∑

n=m

wn

Wn

n∑
k=m

wkak � wmam

∞∑
n=m

wn

Wn
= ∞

so the proof is completed.

To conclude this section, we compare our results to Nguyens relation (3). In
particular, in the non-weighted setting (14) reads

∞∑
n=1

(
1
n

n∑
k=1

ar
k

)1/r

< (1 − r)−1/r
∞∑
n=1

(
1 −

∑n−1
k=1 k−r∑∞
k=1 k−r

)
an

< (1 − r)−1/r
∞∑
n=1

an (16)

so we obtained a weighted generalization of (3). Observe that for −1 � r < 1 , r �= 0 ,
the relations (3) and (16) have identical constants involved in their right-hand sides,
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while for r < −1 these constants are different. To determine which one of them is
smaller, we consider the function f : [1,∞〉 → R ,

f (x) = ln x +
(

1 +
1
x

)
ln

2
1 + x

.

Since f (1) = 0 and

f ′(x) =
1
x2

ln
1 + x

2
> 0, x > 1,

the function f is strictly increasing. Hence,

ln x +
(

1 +
1
x

)
ln

2
1 + x

> 0, x > 1,

so straightforward computations yield

x
1 + x

21+ 1
x > (1 + x)

1
x , x > 1.

Substituting x = −r , for r < −1 we have

r
r − 1

2
r−1

r > (1 − r)−
1
r .

Thus, our constant is strictly smaller than the constant from (3).

3. The best possible constants

Finally, we show that the result from Theorem 3 is sharp, that is, the constant
(1 − r)−1/r is the best possible for (14). To prove this, we make use of the following
technical lemma.

LEMMA 1. Let (bn)n∈N be a strictly increasing sequence of non-negative real
numbers and (cn)n∈N a sequence of positive real numbers, such that limn→∞ bn = 1
and

∑∞
n=1 cn = ∞ . Then for each ε ∈ 〈 0, 1− b1〉 there exists N0 ∈ N , such that the

inequality
N∑

n=1

bncn > (1 − ε)
N∑

n=1

cn

holds for all N ∈ N , N � N0 .

Proof. Let ε ∈ 〈 0, 1 − b1〉 be arbitrary. Since b1 < 1 − ε and bn ↗ 1 , there
exists a number n0 = max{n ∈ N : bn � 1 − ε} . More precisely, we have

1−b1− ε > . . . > 1−bn0 − ε � 0, 1− ε < bn0+1 < . . . < 1,

n0∑
n=1

(1−bn− ε)cn > 0.

Moreover, if δ = (1 + ε − bn0+1)/2 , then ε − δ > 0 and

1 − δ < bn0+1 < . . . < 1. (17)



282 ALEKSANDRA ČIŽMEŠIJA

Finally, since the series
∑∞

n=n0+1 cn is divergent, there exists N0 ∈ N such that

N∑
n=n0+1

cn >
1

ε − δ

n0∑
n=1

(1 − bn − ε)cn, N � N0,

or, equivalently,

(1 − ε)
N∑

n=1

cn <

n0∑
n=1

bncn +
N∑

n=n0+1

(1 − δ)cn, N � N0.

Using (17), the right-hand side of the previous inequality is further less than

n0∑
n=1

bncn +
N∑

n=n0+1

bncn =
N∑

n=1

bncn,

so the proof is completed.
Now, we can discuss the best possible constants for (14). Consider the case

0 < r < 1 first.

THEOREM 4. Let 0 < r < 1 , a be a sequence of non-negative real numbers,
and w a decreasing sequence of positive real numbers. If the sequence (wn/Wn)n∈N is
decreasing, the series

∑∞
n=1 wn/Wn diverges, and limn→∞ Wn = ∞ , then the constant

(1 − r)−1/r is the best possible for (14).

Proof. Suppose N ∈ N is fixed and the sequence a is defined by

an =

⎧⎪⎨
⎪⎩

1
Wn

, n � N,

0, n > N.

(18)

Then on the right-hand side of (14) we have

R = (1 − r)−1/r
∞∑
n=1

(
1 −

∑n−1
k=1 wkW

−r
k∑∞

k=1 wkW
−r
k

)
wnan

< (1 − r)−1/r
∞∑
n=1

wnan = (1 − r)−1/r
N∑

n=1

wn

Wn
(19)

while the left-hand side of (14) becomes

L =
∞∑
n=1

wnM
[r]
n (a; w) �

N∑
n=1

wnM
[r]
n (a; w)
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=
N∑

n=1

wn

(
1

Wn

n∑
k=1

wkW
−r
k

)1/r

>

N∑
n=1

wn

[
1

Wn
(1 − r)−1

(
W1−r

n − W1−r
1

)]1/r

= (1 − r)−1/r
N∑

n=1

wn

Wn

[
1 −

(
W1

Wn

)1−r
]1/r

. (20)

The second inequality in (20) was obtained from

n∑
k=1

wkW
−r
k �

n∑
k=1

wk+1W
−r
k �

∫ Wn+1

W1

x−rdx

>

∫ Wn

W1

x−rdx = (1 − r)−1
(
W1−r

n − W1−r
1

)
.

Denote

bn =

[
1 −

(
W1

Wn

)1−r
]1/r

and cn =
wn

Wn
, n ∈ N.

Since b1 = 0 and bn ↗ 1 , the sequences (bn)n∈N and (cn)n∈N fulfill the conditions
of Lemma 1. Hence, for each ε ∈ 〈 0, 1〉 there exists N0 ∈ N such that

N∑
n=1

wn

Wn

[
1 −

(
W1

Wn

)1−r
]1/r

> (1 − ε)
N∑

n=1

wn

Wn
(21)

holds for all N ∈ N , N � N0 . Finally, combining (14), (19), (20), and (21) we obtain

(1 − r)−1/r
N∑

n=1

wn

Wn
= (1 − r)−1/r

∞∑
n=1

wnan

> R > L > (1 − ε)(1 − r)−1/r
N∑

n=1

wn

Wn
(22)

so (1 − r)−1/r cannot be replaced with any smaller constant.

REMARK 9. Theorem 5 obviously covers the non-weighted case w = 1 . Another
such weights w are wn = 1/n , n ∈ N .

In the case r < 0 , the conditions on the weights w are slightly different from
those in Theorem 4.

THEOREM 5. Suppose r < 0 , a is a sequence of non-negative real numbers,
and w an increasing sequence of positive real numbers. If the series

∑∞
n=1 wn/Wn

is divergent, the sequences (Wn/wn)n∈N and (Wn/Wn+1)n∈N are increasing, and
limn→∞ Wn/Wn+1 = 1 , then the constant (1 − r)−1/r is the best possible for (14).
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Proof. For an arbitrary N ∈ N let the sequence a be defined by (18). Then
M[r]

n (a; w) = 0 , n > N , so the left-hand side of (14) reads

L =
∞∑
n=1

wnM
[r]
n (a; w) =

N∑
n=1

wnM
[r]
n (a; w) =

N∑
n=1

wn

(
1

Wn

n∑
k=1

wkW
−r
k

)1/r

>

N∑
n=1

wn

[
1

Wn
(1 − r)−1W1−r

n+1

]1/r

= (1 − r)−1/r
N∑

n=1

wn

Wn

(
Wn

Wn+1

)1−1/r

.(23)

Note that the inequality in (23) follows from

n∑
k=1

wkW
−r
k �

n∑
k=1

wk+1W
−r
k �

∫ Wn+1

W1

x−rdx <

∫ Wn+1

0
x−rdx = (1 − r)−1W1−r

n+1 .

Applying Lemma 1 to bn = (Wn/Wn+1)1−1/r and cn = wn/Wn , we have that for each
ε ∈ 〈 0, w1/W2〉 there exists N0 ∈ N , such that

N∑
n=1

wn

Wn

(
Wn

Wn+1

)1−1/r

> (1 − ε)
N∑

n=1

wn

Wn
, N � N0. (24)

Therefore, (14), (19), (23) and (24) again imply (22), so (1−r)−1/r is the best possible
constant for (14).

REMARK 10. Observe that Theorem 5 covers the non-weighted case w = 1 .
Another example of such weights is wn = n , n ∈ N , since wn/Wn = 2/(n + 1) ↘ 0 ,
Wn/Wn+1 = n/(n + 2) ↗ 1 and the series

∑∞
n=1 2/(n + 1) diverges.
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