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Abstract. The aim of this paper is to derive general Euler-Boole’s and dual Euler-Boole’s for-
mulae. More precisely, we derive formulae of Boole type where the integral is approximated not
only with the values of the function in certain points but also with values of its derivatives up
to (2n − 1) -th order in end points of the interval. Our method produces formulae of arbitrary
degree of exactness. Dual Euler-Boole’s formulae are derived by analogy with Simpson’s and
dual Simpson’s rule, and Simpson’s 3/8 and Maclaurin’s rule. Finally, by analogy with Bullen-
Simpson’s and Bullen-Simpson’s 3/8 inequality, general Bullen-Boole’s inequality for a class of
(2k) -convex functions is derived.

1. Introduction

Extended Euler formulae, obtained in [4], extend the well known formula for the
expansion of an arbitrary function in Bernoulli polynomials (cf. [10]). Namely, for
f : [0, 1] → R such that f (n−1) is continuous of bounded variation on [0, 1] , for some
n � 1 , for every x ∈ [0, 1] we have∫ 1

0
f (t)dt = f (x) − Tn(x) +

1
n!

∫ 1

0
B∗

n (x − t) df (n−1)(t) (1.1)

∫ 1

0
f (t)dt = f (x) − Tn−1(x) +

1
n!

∫ 1

0
[B∗

n (x − t) − Bn (x)] df (n−1)(t) (1.2)

where T0(x) = 0 and for 1 � m � n

Tm(x) =
m∑

k=1

Bk(x)
k!

[
f (k−1)(1) − f (k−1)(0)

]
. (1.3)

Using these identities and their appropriate convex combinations one can produce
quadrature formulae of arbitrary high degree of exactness. For example, for f : [0, 1] →
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R such that f (n−1) is continuousof bounded variation on [0, 1] , for some n � 1 , Euler-
Boole’s formulae were derived in [13]:

∫ 1

0
f (t)dt =

1
90

[7f (0) + 32f (1/4) + 12f (1/2) + 32f (3/4) + 7f (1)]

− T̆n(f ) +
1

90n!

∫ 1

0
Ğn(t)df (n−1)(t) (1.4)

∫ 1

0
f (t)dt =

1
90

[7f (0) + 32f (1/4) + 12f (1/2) + 32f (3/4) + 7f (1)]

− T̆n−1(f ) +
1

90n!

∫ 1

0
[Ğn(t) − B̆n]df (n−1)(t), (1.5)

where T̆0(f ) = 0 and for 1 � m � n

T̆m(f ) =
m∑

k=1

B̆k

k!

[
f (k−1)(1) − f (k−1)(0)

]
, (1.6)

and, for k � 1 and t ∈ R ,

B̆k = 7Bk(0) + 32Bk (1/4) + 12Bk (1/2) + 32Bk (3/4) + 7Bk (1)

Ğk(t) = 14B∗
k (1 − t) + 32B∗

k (1/4 − t) + 12B∗
k (1/2 − t) + 32B∗

k (3/4 − t) .

Applying the mean value theorem for integrals (cf. Theorem 2), we can easily
rewrite the remainder in (1.5) and thus obtain classical Boole’s formula (cf. [3]). Notice
that B̆2k−1 = 0 , for k � 1 but also B̆2 = B̆4 = 0 .

The aim of this paper is to derive general Euler-Boole’s and dual Euler-Boole’s
formulae. More precisely, we’ll derive formulae of Boole type such that B̃2n−2 =
B̃2n = 0 (B̃k are defined by (2.3)), achieving an arbitrary degree of exactness. Dual
Euler-Boole’s formulae will be derived by analogy with Simpson’s and dual Simpson’s
rule, and Simpson’s 3/8 and Maclaurin’s rule (cf. [3]).

For details on Bernoulli polynomials and Bernoulli numbers see [10] or [1].

2. General Euler-Boole’s formulae

Let f : [0, 1] → R be such that f (2n) is continuous of bounded variation on [0, 1]
for some n � 1 . Put x = 0, 1/4, 1/2, 3/4, 1 in (1.1), multiply by λ1, λ2, λ3, λ4 =
λ2, λ5 = λ1 , respectively, with 2λ1 + 2λ2 + λ3 = 1 . We obtain:

∫ 1

0
f (t)dt − D(0, 1) + T2n(f ) =

1
(2n + 1)!

∫ 1

0
G2n+1(t)df (2n)(t), (2.1)
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where

D(0, 1) = λ1 · [f (0) + f (1)] + λ2 · [f (1/4) + f (3/4)] + λ3 · f (1/2)

Tm(f ) =
m∑

k=1

B̃k

k!
[f (k−1)(1) − f (k−1)(0)], 1 � m � 2n (2.2)

B̃k = λ1 · [Bk(0) + Bk(1)] + λ2 · [Bk(1/4) + Bk(3/4)] + λ3 · Bk(1/2), (2.3)
Gk(t) = 2λ1 · B∗

k (1 − t) + λ2 · [B∗
k (1/4 − t) + B∗

k (3/4 − t)] + λ3 · B∗
k (1/2 − t).

(2.4)

for k � 1 and t ∈ R .
Since B2k−1(1 − t) = −B2k−1(t) for k � 1 , we have B̃2k−1 = 0 . Thus, applying

(1.2) instead of (1.1), we would get identity (2.1) again.
Analogously, assuming we have f : [0, 1] → R such that f (2n−1) is continuous of

bounded variation on [0, 1] for some n � 1 from (1.1) we would get:∫ 1

0
f (t)dt − D(0, 1) + T2n(f ) =

1
(2n)!

∫ 1

0
G2n(t)df (2n−1)(t), (2.5)

and if f (2n+1) was continuous of bounded variation on [0, 1] , from (1.2) we would get:∫ 1

0
f (t)dt − D(0, 1) + T2n(f ) =

1
(2n + 2)!

∫ 1

0
F2n+2(t)df (2n+1)(t), (2.6)

where Fk(t) = Gk(t) − B̃k, k � 1 . We shall call formulae (2.1), (2.5) and (2.6)
general Euler-Boole’s formulae.

Next, for n � 2 , consider the following linear system:

2λ1 + 2λ2 + λ3 = 1, B̃2n−2 = 0, B̃2n = 0.

Using the fact that B2k(1− t) = B2k(t), B2k(1/2) = −(1− 21−2k)B2k and B2k(1/4) =
2−2kB2k(1/2), one can easily find the solution of this system:

λ1 =
16 − 10 · 4n + 42n

8(4n − 1)(4n − 4)
, λ2 =

42n−1

(4n − 1)(4n − 4)
, λ3 =

(4n − 10) · 4n−1

(4n − 1)(4n − 4)
.

These are the coefficients we will work with. Interval [0, 1] is used for simplicity and
involves no loss in generality.

What follows is a lemma that is a key step for all the results in this paper. To prove
it, we will need an analogue of the Multiplication Theorem, stated for periodic functions
B∗

n . The Multiplication Theorem for Bernoulli polynomials Bn states (cf. [1]):

Bn(mx) = mn−1
m−1∑
k=0

Bn

(
x +

k
m

)
, n � 0, m � 1 (2.7)

That (2.7) is true for B∗
n(x) and x ∈ [0, 1/m) is obvious. For x ∈ [j/m, (j+1)/m), 1 �

j � m − 1 :

B∗
n (mx) = B∗

n (m (x − j/m)) = mn−1
m−1∑
k=0

B∗
n

(
x +

k − j
m

)
= mn−1

m−1∑
k=0

B∗
n

(
x +

k
m

)
,
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so the statement is true again. Thus, we have

B∗
n(mx) = mn−1

m−1∑
k=0

B∗
n

(
x +

k
m

)
, n � 0, m � 1 (2.8)

LEMMA 1. For n � 2 , G2n+1(t) has no zeros in the interval (0, 1/2) . The sign
of the function is determined by

(−1)nG2n+1(t) > 0, 0 < t < 1/2.

Proof. Applying (2.8), we can rewrite G2n+1(t) as

G2n+1(t) =
−1

4(4n − 1)(4n − 4)
[B∗

2n+1(4t) − 10B∗
2n+1(2t) + 16B∗

2n+1(t)]. (2.9)

There cannot exist t ∈ (1/4, 3/8) such that G2n+1(t) = 0 because B∗
2n+1(t), −B∗

2n+1(2t)
and B∗

2n+1(4t) have the same sign on (1/4, 3/8) .
Let us assume there exists t1 ∈ (0, 1/4] such that G2n+1(t1) = 0 . Since

G2n+1(0) = 0 , we conclude there must exist t2 ∈ (0, t1) such that G′
2n+1(t2) = 0 .

So, we must have
B∗

2n(4t2) − 5B∗
2n(2t2) + 4B∗

2n(t2) = 0,

which is equivalent to
B∗

2n(4t2) − B∗
2n(2t2)

B∗
2n(2t2) − B∗

2n(t2)
= 4

since for z ∈ (0, 1/2) , B∗
2n(2z) = B∗

2n(z) iff z = 1/3 and that cannot be the case.
Define functions

f (x) = B∗
2n(2xt2), g(x) = B∗

2n(xt2), x ∈ [1, 2].

Note that g′(x) �= 0 for x ∈ [1, 2] , since 0 < xt2 < 1/2 . From Cauchy’s mean value
theorem we know there exists x1 ∈ (1, 2) such that

B∗
2n(4t2) − B∗

2n(2t2)
B∗

2n(2t2) − B∗
2n(t2)

=
f ′(x1)
g′(x1)

= 4,

and from there

B∗
2n−1(2x1t2)

B∗
2n−1(x1t2)

= 2, for some 0 < x1t2 < 1/2. (2.10)

Next, define a function
h(t) = 2B∗

2n−1(t) − B∗
2n−1(2t).

From (2.10) it follows that h(x1t2) = 0 . To obtain a contradiction,we will prove h(t) �=
0 for t ∈ (0, 1/2) . First, assume t ∈ (0, 1/4] . Suppose there exists t3 ∈ (0, 1/4] such
that h(t3) = 0 . Since h(0) = 0 , we conclude there must exist t4 ∈ (0, t3) such that
h′(t4) = 0 . But from there it would follow that B∗

2n−2(t4) = B∗
2n−2(2t4) which cannot
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be the case. When t ∈ (1/4, 1/2) , B∗
2n−1(t) and −B∗

2n−1(2t) have the same sign, so
our statement follows easily.

Finally, consider the case t ∈ [3/8, 1/2) . We have

B∗
2n+1(4t) − 10B∗

2n+1(2t) + 16B∗
2n+1(t) = k(t) − 8B∗

2n+1(2t) + 16B∗
2n+1(t),

where

k(t) = B∗
2n+1(4t) − 2B∗

2n+1(2t) = 2B∗
2n+1(1 − 2t) − B∗

2n+1[2(1 − 2t)].

It follows from the previous proof for the function h(t) , that k(t) doesn’t have zeros on
[3/8, 1/2) . Furthermore, k(t), −B∗

2n+1(2t) and B∗
2n+1(t) have the same sign on this

interval. So, in conclusion, the function G2n+1(t) doesn’t have zeros on (0, 1/2) .
It is clear now that G2n+1(t) doesn’t change sign on (0, 1/2) . To determine the

sign, it is enough to calculate the value of that function in any point from the interval
(0, 1/2) , e.g. t = 1/4 . �

The proof of the previous Lemma, compared to the proof of Lemma 2 in [13],
is much more difficult, since we cannot reduce it to the case where we can explicitly
calculate zeros of the function.

COROLLARY 1. For n � 2 , (−1)n+1F2n+2(t) is strictly increasing on the interval
(0, 1/2) and strictly decreasing on the interval (1/2, 1) and

max
t∈[0,1]

|F2n+2(t)| =
2(4 − 4−n)

(4n − 1)(4n − 4)
|B2n+2|.

Also, ∫ 1

0
|G2n+1(t)| dt =

∫ 1

0
|F2n+1(t)| dt =

2(4 − 4−n)
(n + 1)(4n − 1)(4n − 4)

|B2n+2|,∫ 1

0
|F2n+2(t)| dt = |B̃2n+2| =

45 · |B2n+2|
16(4n − 1)(4n − 4)

.

Proof. Using Lemma 1, from F′
2n+2(t) = −(2n + 2)G2n+1(t) and F2n+2(t) =

F2n+2(1 − t) , we conclude that (−1)n+1F2n+2(t) is strictly increasing on (0, 1/2) and
strictly decreasing on (1/2, 1) . Moreover, we have F2n+2(0) = F2n+2(1) = 0 , so
maxt∈[0,1] |F2n+2(t)| = |F2n+2 (1/2)| .

Further, using Lemma 1 again and the fact that G′
2n+2(t) = F′

2n+2(t) , we get

∫ 1

0
|G2n+1(t)| dt = 2

∣∣∣∣∣
∫ 1/2

0
G2n+1(t)dt

∣∣∣∣∣ =
1

n + 1

∣∣∣∣F2n+2

(
1
2

)∣∣∣∣ .
Since (−1)n+1F2n+2(t) > 0 for each t ∈ (0, 1), we have

∫ 1

0
|F2n+2(t)| dt =

∣∣∣∣∣
∫ 1

0
G2n+2(t)dt − B̃2n+2

∣∣∣∣∣ = |B̃2n+2|.

�
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THEOREM 1. Assume (p, q) is a pair of conjugate exponents, that is 1 � p, q �
∞, 1/p + 1/q = 1 . If |f (2n)|p : [0, 1] → R is R -integrable for some n � 2 , then we
have ∣∣∣∣∣

∫ 1

0
f (t)dt − D(0, 1) + T2n(f )

∣∣∣∣∣ � K(2n, q) · ‖f (2n)‖p, (2.11)

if |f (2n+1)|p : [0, 1] → R is R -integrable for some n � 2 , then we have∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T2n(f )

∣∣∣∣∣ � K(2n + 1, q) · ‖f (2n+1)‖p, (2.12)

if |f (2n+2)|p : [0, 1] → R is R -integrable for some n � 2 , then we have∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T2n(f )

∣∣∣∣∣ � K∗(2n + 2, q) · ‖f (2n+2)‖p, (2.13)

where

K(m, q) =
1
m!

[∫ 1

0
|Gm(t)|q dt

] 1
q

and K∗(m, q) =
1
m!

[∫ 1

0
|Fm(t)|q dt

] 1
q

.

These inequalities are sharp for 1 < p � ∞ and best possible for p = 1 .

Proof. Inequalities (2.11), (2.12) and (2.13) follow immediately after applying
Hölder’s inequality to the remainders in formulae (2.5), (2.1) and (2.6). To prove
inequalities are sharp, put

f (m)(t) = sgnGm(t) · |Gm(t)|1/(p−1) for 1 < p < ∞ and

f (m)(t) = sgnGm(t) for p = ∞ in (2.11) and (2.12),

f (m)(t) = sgnFm(t) · |Fm(t)|1/(p−1) for 1 < p < ∞ and

f (m)(t) = sgnFm(t) for p = ∞ in (2.13).

The proof that these inequalities are best possible for p = 1 is the same as the proof of
Theorem 2 in [14]. �

REMARK 1. For p = ∞ , applying Corollary 1, (2.12) and (2.13) turn to:∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T2n(f )

∣∣∣∣∣ � |B2n+2|
(2n + 2)!

· 4(4 − 4−n)
(4n − 1)(4n − 4)

· ‖f (2n+1)‖∞,

∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T2n(f )

∣∣∣∣∣ � |B2n+2|
(2n + 2)!

· 45
16(4n − 1)(4n − 4)

· ‖f (2n+2)‖∞.

For p = 1 , applying Corollary 1 again, (2.13) becomes:∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T2n(f )

∣∣∣∣∣ � |B2n+2|
(2n + 2)!

· 2(4 − 4−n)
(4n − 1)(4n − 4)

· ‖f (2n+2)‖1.
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Using integration by parts and Lemma 1 from [4], for p = 2 we obtain∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T2n(f )

∣∣∣∣∣
� ‖f (2n)‖2

(4n − 1)(4n − 4)

[ |B4n|
(4n)!

(23−4n − 25 · 21−2n + 42)
]1/2

,∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T2n(f )

∣∣∣∣∣
� ‖f (2n+1)‖2

4(4n − 1)(4n − 4)

[
B4n+2

(4n + 2)!
(
23−4n − 85 · 21−2n + 357

)]1/2

,∣∣∣∣∣
∫ 1

0
f (t)dt − D(0, 1) + T2n(f )

∣∣∣∣∣
� ‖f (2n+2)‖2

16(2n + 2)!(4n − 1)(4n − 4)
[
2025B2

2n+2

+
[(2n + 2)!]2

(4n + 4)!
(
23−4n − 325 · 21−2n + 4497

) |B4n+4|
]1/2

Next, denote:

R2n+2(f ) =
1

(2n + 2)!

∫ 1

0
F2n+2(t)f (2n+2)(t)dt. (2.14)

THEOREM 2. If f : [0, 1] → R is such that f (2n+2) is continuous on [0, 1] for
some n � 2 , then there exists a point η ∈ [0, 1] such that

R2n+2(f ) = − 45 · B2n+2

16(2n + 2)!(4n − 1)(4n − 4)
· f (2n+2)(η). (2.15)

Proof. We can rewrite R2n+2(f ) as

R2n+2(f ) =
(−1)n+1

(2n + 2)!
J2n+2,

where

J2n+2 =
∫ 1

0
(−1)n+1F2n+2(t)f (2n+2)(t)dt. (2.16)

The claim follows from Corollary 1 and the mean value theorem for integrals. �

THEOREM 3. If f : [0, 1] → R is such that f (2n+2) is a continuous function on
[0, 1] , for some n � 2 , and does not change sign on [0, 1] , then there exists a point
θ ∈ [0, 1] such that

R2n+2(f ) = −θ 2(4 − 4−n) · B2n+2

(2n + 2)!(4n − 1)(4n − 4)

[
f (2n+1)(1) − f (2n+1)(0)

]
. (2.17)
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Proof. Suppose f (2n+2)(t) � 0, 0 � t � 1 . If J2n+2 is given by (2.16), using
Corollary 1, we obtain

0 � J2n+2 � (−1)n+1F2n+2 (1/2) ·
∫ 1

0
f (2n+2)(t)dt.

which means that there must exist a point θ ∈ [0, 1] such that

J2n+2 = θ · (−1)n+1F2n+2 (1/2)
[
f (2n+1)(1) − f (2n+1)(0)

]
.

When f (2n+2)(t) � 0, 0 � t � 1, the statement follows similarly. �

REMARK 2. Using Theorem 2 and (2.6), for n = 2 we obtain

∫ 1

0
f (t)dt − 1

90
[7f (0) + 32f (1/4) + 12f (1/2) + 32f (3/4) + 7f (1)]

= − 1
1935360

f (6)(η), 0 < η < 1

which is the classical Boole’s formula. For n = 3 we obtain∫ 1

0
f (t)dt − 1

1890
[217f (0) + 512f (1/4) + 432f (1/2) + 512f (3/4) + 217f (1)]

+
1

252
[f ′(1) − f ′(0)] =

1
1625702400

f (8)(η), 0 < η < 1

The second formula obviously has a higher degree of exactness. We call it corrected
Boole’s formula. Term "corrected" was first introduced in [16], where corrected Simp-
son’s formula was derived. We shall call "corrected" every quadrature formula where
in the approximation of the integral, values of the first derivative in the end points of
the interval are involved as well. Notice that

1
1625702400

≈ 6.15119 · 10−10.

3. General dual Euler-Boole’s formulae

Boole’s formula is a quadrature formula of closed type, and so are the general
Euler-Boole’s formulae. When the value of the function at the end point of the interval
cannot be computed, formulae of closed type cannot be applied. For such functions,
open formulae are much more effective. That is why quadrature formulae are usually
considered in pairs: a closed and a corresponding open one, both with the same degree
of exactness. For example, the well-known Simpson’s rule

∫ 1

0
f (t)dt − 1

6

[
f (0) + 4f

(
1
2

)
+ f (1)

]
= − 1

2880
f (4)(ξ), 0 < ξ < 1 (3.1)
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is sometimes studied in pair with the following formula, also known as dual Simpson’s
formula: ∫ 1

0
f (t)dt − 1

3

[
2f

(
1
4

)
− f

(
1
2

)
+ 2f

(
3
4

)]

=
7

23040
f (4)(η), 0 < η < 1. (3.2)

Another such pair of formulae is Simpson’s 3/8 formula:

∫ 1

0
f (t)dt − 1

8

[
f (0) + 3f

(
1
3

)
+ 3f

(
2
3

)
+ f (1)

]

= − 1
6480

f (4)(ζ), 0 < ζ < 1 (3.3)

and Maclaurin’s formula, also known as dual 3/8 Simpson’s formula:

∫ 1

0
f (t)dt − 1

8

[
3f

(
1
6

)
+ 2f

(
1
2

)
+ 3f

(
5
6

)]

=
7

51840
f (4)(ϑ), 0 < ϑ < 1. (3.4)

Formulae (3.1)-(3.4) are valid for any function f for which f (4) is continuous and are
exact for all polynomials of order � 3 .

So, now the idea is to derive a formula of open type that will be dual to Boole’s
formula in this sense, or, more generally, open formulae dual to general Euler-Boole’s
formulae. We shall call those formulae general dual Euler-Boole’s formulae.

Using a similar technique as in this paper, formulae (3.1)-(3.4) were considered
and generalized in [5], [6], [8] and [7], respectively. One can easily check that in both of
these cases we have

GD
k (t) = 21−kGk(2t) − Gk(t), (3.5)

where Gk is obtained in case when a closed quadrature formula is considered and GD
k

in case of the corresponding dual quadrature formula. We will use this identity as a
definition of dual formula, since from the function Gk we can deduce the quadrature
formula. So, using (2.8) and (3.5), we obtain

GD
k (t) =

1
4(4n − 1)(4n − 4)

[
42nB∗

k (1/8 − t) − 10 · 4nB∗
k (1/4 − t)

+ 42nB∗
k (3/8 − t) + 16B∗

k (1/2 − t) + 42nB∗
k (5/8 − t)

− 10 · 4nB∗
k (3/4 − t) + 42nB∗

k (7/8 − t)
]
, (3.6)

for k � 1 and t ∈ R .
Similarly as in the previous section, take f : [0, 1] → R such that f (2n) is contin-

uous of bounded variation on [0, 1] for some n � 2 ; put x = 1/8, 1/4, 3/8, 1/2,
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5/8, 3/4, 7/8 in (1.1) and multiply by 42n, −10 · 4n, 42n, 16, 42n, −10 · 4n, 42n ,
respectively. Add those formulae and then divide by 4(4n − 1)(4n − 4) . We obtain:∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f ) =
1

(2n + 1)!

∫ 1

0
GD

2n+1(t)df (2n)(t), (3.7)

where

D̃(0, 1) =
1

4(4n − 1)(4n − 4)
[
42nf (1/8)− 10 · 4nf (1/4) + 42nf (3/8)

+ 16f (1/2) + 42nf (5/8)− 10 · 4nf (3/4) + 42nf (7/8)
]

TD
m (f ) =

m∑
k=1

B̃D
k

k!
[f (k−1)(1) − f (k−1)(0)], 1 � m � 2n (3.8)

B̃D
k = GD

k (0), k � 1. (3.9)

Once more, B̃D
2k−1 = 0 for k � 1 , so the identity (3.7) is produced again if (1.2) is

used instead of (1.1).
Assuming we have f : [0, 1] → R such that f (2n−1) is continuous of bounded

variation on [0, 1] for some n � 2 , from (1.1) we would get:∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f ) =
1

(2n)!

∫ 1

0
GD

2n(t)df (2n−1)(t), (3.10)

and if f (2n+1) was continuous of bounded variation on [0, 1] , from (1.2) we would get:∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f ) =
1

(2n + 2)!

∫ 1

0
FD

2n+2(t)df (2n+1)(t), (3.11)

where FD
k (t) = GD

k (t) − B̃D
k , k � 2 . Formulae (3.7), (3.10) and (3.11) are general

dual Euler-Boole’s formulae.

LEMMA 2. For n � 2 , GD
2n+1(t) has no zeros in the interval (0, 1/2) . The sign

of the function is determined by

(−1)n−1GD
2n+1(t) > 0, 0 < t < 1/2.

Proof. We have G2n+1(1 − t) = −G2n+1(t) , so from Lemma 1 it follows that
G2n+1(2t) and −G2n+1(t) have the same sign on (1/4, 1/2) and from (3.5)we conclude
GD

2n+1(t) cannot have any zeros there.
Next, we can rewrite GD

2n+1(t) as

GD
2n+1(t) =

−1
4(4n − 1)(4n − 4)

[
B∗

2n+1 (4t − 1/2)

− 10B∗
2n+1 (2t − 1/2) + 16B∗

2n+1 (t − 1/2)
]
. (3.12)

Using this in the case when t ∈ (0, 1/4] , the proof is completely analogous to the
same part of the proof of Lemma 1. As for the sign of the function, again it is
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enough to calculate the value of the function in any point of the interval (0, 1/2) , e.g.
t = 1/4 . �

Notice the analogy of the form of the dual function GD
2n+1 in (3.12) with the form

of the function G2n+1 in (2.9). One can easily be obtained from the other having this
connection in mind. Therefore, (3.12) can also be used as a definition of the dual
function GD

2n+1 .

COROLLARY 2. For n � 2 , (−1)nFD
2n+2(t) is strictly increasing on the interval

(0, 1/2) and strictly decreasing on the interval (1/2, 1) and

max
t∈[0,1]

∣∣FD
2n+2(t)

∣∣ =
2(4 − 4−n)

(4n − 1)(4n − 4)
|B2n+2|.

Also,

∫ 1

0

∣∣GD
2n+1(t)

∣∣ dt =
∫ 1

0

∣∣FD
2n+1(t)

∣∣ dt =
2(4 − 4−n)

(n + 1)(4n − 1)(4n − 4)
|B2n+2|,∫ 1

0

∣∣FD
2n+2(t)

∣∣ dt = |B̃D
2n+2| =

45(1 − 2−2n−1)
16(4n − 1)(4n − 4)

|B2n+2|.

Proof. Analogous to the proof of Corollary 1. �

THEOREM 4. Assume (p, q) is a pair of conjugate exponents, that is 1 � p, q �
∞, 1/p + 1/q = 1 . If |f (2n)|p : [0, 1] → R is R -integrable for some n � 2 , then we
have ∣∣∣∣∣

∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f )

∣∣∣∣∣ � KD(2n, q) · ‖f (2n)‖p, (3.13)

if |f (2n+1)|p : [0, 1] → R is R -integrable for some n � 2 , then we have∣∣∣∣∣
∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f )

∣∣∣∣∣ � KD(2n + 1, q) · ‖f (2n+1)‖p, (3.14)

if |f (2n+2)|p : [0, 1] → R is R -integrable for some n � 2 , then we have∣∣∣∣∣
∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f )

∣∣∣∣∣ � K∗
D(2n + 2, q) · ‖f (2n+2)‖p, (3.15)

where

KD(m, q) =
1
m!

[∫ 1

0

∣∣GD
m(t)

∣∣q dt

] 1
q

and K∗
D(m, q) =

1
m!

[∫ 1

0

∣∣FD
m(t)

∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p � ∞ and best possible for p = 1 .
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Proof. Analogous to the proof of Theorem 1. �

REMARK 3. For p = ∞ , applying Corollary 2, (3.14) and (3.15) turn to:∣∣∣∣∣
∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f )

∣∣∣∣∣ � |B2n+2|
(2n + 2)!

· 4(4 − 4−n)
(4n − 1)(4n − 4)

· ‖f (2n+1)‖∞,

∣∣∣∣∣
∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f )

∣∣∣∣∣ � |B2n+2|
(2n + 2)!

· 45(1 − 2−2n−1)
16(4n − 1)(4n − 4)

· ‖f (2n+2)‖∞.

For p = 1 , applying Corollary 2 again, (3.15) becomes:∣∣∣∣∣
∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f )

∣∣∣∣∣ � |B2n+2|
(2n + 2)!

· 2(4 − 4−n)
(4n − 1)(4n − 4)

· ‖f (2n+2)‖1.

Analogously as in the previous section, for p = 2 we obtain∣∣∣∣∣
∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f )

∣∣∣∣∣
� ‖f (2n)‖2

(4n−1)(4n−4)

[ |B4n|
(4n)!

(24−8n − 25 · 22−6n−23−4n + 25 · 21−2n + 42)
]1/2

,∣∣∣∣∣
∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f )

∣∣∣∣∣
� ‖f (2n+1)‖2

4(4n−1)(4n−4)

[
B4n+2

(4n+2)!
(
22−8n−85 · 2−6n−23−4n+85 · 21−2n+357

)]1/2

,∣∣∣∣∣
∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f )

∣∣∣∣∣
� ‖f (2n+2)‖2

16(2n + 2)!(4n − 1)(4n − 4)
[
2025(1− 2−2n−1)2B2

2n+2

+
[(2n+2)!]2

(4n+4)!
(
2−8n − 325 · 2−2−6n − 23−4n + 325 · 21−2n + 4497

) |B4n+4|
]1/2

.

Denote:

RD
2n+2(f ) =

1
(2n + 2)!

∫ 1

0
FD

2n+2(t)f
(2n+2)(t)dt. (3.16)

THEOREM 5. If f : [0, 1] → R is such that f (2n+2) is continuous on [0, 1] for
some n � 2 , then there exists a point η ∈ [0, 1] such that

RD
2n+2(f ) =

45(1 − 2−2n−1) · B2n+2

16(2n + 2)!(4n − 1)(4n − 4)
· f (2n+2)(η). (3.17)
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Proof. Analogous to the proof of Theorem 2. �

THEOREM 6. If f : [0, 1] → R is such that f (2n+2) is a continuous function on
[0, 1] , for some n � 2 , and does not change sign on [0, 1] , then there exists a point
θ ∈ [0, 1] such that

RD
2n+2(f ) = θ

2(4 − 4−n) · B2n+2

(2n + 2)!(4n − 1)(4n − 4)

[
f (2n+1)(1) − f (2n+1)(0)

]
. (3.18)

Proof. Analogous to the proof of Theorem 3. �

REMARK 4. Using Theorem 5 and (3.11), for n = 2 we obtain∫ 1

0
f (t)dt− 1

45
[16 (f (1/8)+f (3/8)+f (5/8) + f (7/8)) − 10 (f (1/4) + f (3/4))

+ f (1/2)] =
31

61931520
f (6)(η), 0 < η < 1

This is the dual formula for the classical Boole’s formula. For n = 3 we obtain∫ 1

0
f (t)dt− 1

945
[256 (f (1/8)+f (3/8)+f (5/8)+f (7/8))−40 (f (1/4)+f (3/4))

+ f (1/2)]− 1
504

[f ′(1)−f ′(0)] = − 127
208089907200

f (8)(η), 0 < η < 1

This formula is the dual formula for the corrected Boole’s formula. Notice that

31
61931520

≈ 5.00553 · 10−7 and
127

208089907200
≈ 6.10313 · 10−10.

4. General Bullen-Boole’s inequality

The following pair of inequalities is usually referred to in literature as Hadamard’s
inequalities:

f

(
1
2

)
�

∫ 1

0
f (t)dt � f (0) + f (1)

2
. (4.1)

It holds for any convex function f : [0, 1] → R . If f is concave, inequalities are
reversed.

In [9], it was shown by a simple geometric argument that for a convex function f
the following inequality is valid :

0 �
∫ 1

0
f (t)dt − f

(
1
2

)
� f (0) + f (1)

2
−

∫ 1

0
f (t)dt. (4.2)

An elementary analytic proof of (4.1) and (4.2), but stated on the interval [−1, 1] ,
was given in [2]. Some other interesting results of similar type were given in that same
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paper. Namely, provided f is 4-convex, we have:

0 �
∫ 1

0
f (t)dt − 1

3

[
2f

(
1
4

)
− f

(
1
2

)
+ 2f

(
3
4

)]

� 1
6

[
f (0) + 4f

(
1
2

)
+ f (1)

]
−

∫ 1

0
f (t)dt (4.3)

This implies that dual Simpson’s quadrature rule is more accurate than Simpson’s quad-
rature rule. The inequality (4.3) is sometimes called Bullen-Simpson’s inequality and
was generalized for a class of (2k) -convex functions in [12]. Under same assumptions
it was also proved that:

0 �
∫ 1

0
f (t)dt − 1

8

[
3f

(
1
6

)
+ 2f

(
1
2

)
+ 3f

(
5
6

)]

� 1
8

[
f (0) + 3f

(
1
3

)
+ 3f

(
2
3

)
+ f (1)

]
−

∫ 1

0
f (t)dt, (4.4)

which implies Maclaurin’s quadrature rule is more accurate than Simpson’s 3/8 quad-
rature rule. The inequality (4.4) is sometimes called Bullen-Simpson’s 3/8 inequality
and was generalized for a class of (2k) -convex functions in [11].

In this section we will derive an inequality of similar type, only this time starting
from general Boole’s formula and its dual formula. We call it general Bullen-Boole’s
inequality.

First, add (2.6) and (3.11) then divide by 2. We get:

∫ 1

0
f (t)dt − D̂(0, 1) + T̂2n(f ) = R̂2n+2(f ), (4.5)

where

D̂(0, 1) =
1

8(4n − 1)(4n − 4)

[
(24n−1 − 5 · 4n + 8)f (0) + 42nf

(
1
8

)

+ 4n(4n − 10)f
(

1
4

)
+ 42nf

(
3
8

)
+ (42n − 10 · 4n + 16)f

(
1
2

)

+ 42nf

(
5
8

)
+ 4n(4n − 10)f

(
3
4

)
+ 42nf

(
7
8

)
+ (24n−1 − 5 · 4n + 8)f (1)

]

T̂m(f ) =
m∑

k=1

B̂k

k!
[f (k−1)(1) − f (k−1)(0)], 1 � m � 2n

Ĝk(t) =
1

8(4n − 1)(4n − 4)
[
(42n − 10 · 4n + 16)B∗

k (1 − t) + 42nB∗
k (1/8 − t)

+ 4n(4n−10)B∗
k (1/4−t) +42nB∗

k (3/8 − t) +(42n−10 · 4n+16)B∗
k (1/2−t)

+ 42nB∗
k (5/8 − t) + 4n(4n − 10)B∗

k (3/4 − t) + 42nB∗
k (7/8 − t)

]
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B̂1 = 0, B̂k = Ĝk(0), k � 2

F̂k(t) = Ĝk(t) − B̂k, k � 1

R̂2n+2(f ) =
1

(2n + 2)!

∫ 1

0
F̂2n+2(t)df (2n+1)(t)

The function Ĝk has the property Ĝk(t + 1/2) = Ĝk(t) so it is enough to study that
function on the interval (0, 1/4) .

LEMMA 3. For n � 2 , Ĝ2n+1(t) has no zeros in the interval (0, 1/4) . The sign
of the function is determined by

(−1)nĜ2n+1(t) > 0, 0 < t < 1/4.

Proof. As (3.5) implies that Ĝ2n+1(t) = 2−2n−1G2n+1(2t) , the statement follows
immediately from Lemma 1. �

THEOREM 7. If f : [0, 1] → R is such that f (2n+2) is continuous on [0, 1] for
some n � 2 , then there exists a point η ∈ [0, 1] such that

R̂2n+2(f ) = − 45 · 4−n−3 · B2n+2

(2n + 2)!(4n − 1)(4n − 4)
· f (2n+2)(η). (4.6)

Proof. Analogous to the proof of Theorem 2. �
Recall that a function f : [a, b] → R is said to be n -convex, n � 0 , on [a, b] iff

for all choices of (n + 1) distinct points in [a, b] the n th order divided difference

[x0, . . . , xn]f � 0.

If this inequality is reversed, then f is said to be n -concave on [a, b] . Also, if f (n)

exists, then f is n -convex iff f (n) � 0. For further details on n -convex functions see
[15].

THEOREM 8. Let f : [0, 1] → R be such that f (2n+2) is continuous on [0, 1] for
some n � 2 . If f is a (2n + 2)− convex function, then for even n we have

0 �
∫ 1

0
f (t)dt − D̃(0, 1) + TD

2n(f ) � D(0, 1) − T2n(f ) −
∫ 1

0
f (t)dt. (4.7)

For odd n inequalities are reversed.

Proof. Denote the middle part of (4.7) by LHS and the right-hand side by RHS .
Then

LHS = RD
2n+2(f ) and RHS − LHS = −2R̂2n+2(f ).

Now, applying (3.17) and (4.6), we conclude

LHS � 0, RHS − LHS � 0, for even n

LHS � 0, RHS − LHS � 0, for odd n
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and thus the proof is complete. �
REMARK 5. For n = 2 , (4.7) becomes

0 �
∫ 1

0
f (t)dt − 1

45
[16 (f (1/8) + f (3/8) + f (5/8) + f (7/8))

− 10 (f (1/4) + f (3/4)) + f (1/2)]

� 1
90

[7f (0) + 32f (1/4) + 12f (1/2) + 32f (3/4) + 7f (1)] −
∫ 1

0
f (t)dt

which implies dual Boole’s formula is more accurate than classical Boole’s formula.
For n = 3 , (4.7) becomes

0 � 1
945

[256 (f (1/8) + f (3/8) + f (5/8) + f (7/8)) − 40 (f (1/4) + f (3/4))

+f (1/2)] +
1

504
[f ′(1) − f ′(0)] −

∫ 1

0
f (t)dt

�
∫ 1

0
f (t)dt− 1

1890
[217f (0)+512f (1/4)+432f (1/2)+512f (3/4)+217f (1)]

+
1

252
[f ′(1) − f ′(0)].

Therefore, dual corrected Boole’s formula is more accurate than corrected Boole’s
formula.

For this new quadrature formula (4.5), similar results as those obtained in Section
2 for general Euler-Boole’s and Section 3 for general dual Euler-Boole’s formulae, can
be derived analogously.
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