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Abstract. Refinements of generalizedHermite-Hadamard’s inequalities formultivariate g -convex
functions are given. Since special instances of the g -convex functions include the r -convex and
the logarithmically convex functions, those inequalities also give refinements of the Hermite-
Hadamard’s ineqalities for these families of functions.

1. Introduction and preliminaries

Among numerous inequalities obeyed by convex functions the ones discovered by
C. Hermite and J. Hadamard are considered to be of great importance (see, e.g., [11, p.
137], [4]). These inequalities state that if f : [a, b] → R is convex function, then

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (t) dt � f (a) + f (b)

2
. (1)

Many generalizations and refinements of this inequality have been obtained in recent
years. The interested reader is referred to the monograph [4].

In order to present one of these results let us introduce more notation.
By

En =

{
uuu = (u0, ..., un) : ui � 0 (0 � i � n) ,

n∑
i=0

ui = 1

}
, n ∈ N

we will denote Euclidean simplex. In what follows we will always choose u0 =
1−(u1 + ... + un) . By μ we will denote a probability measure on En. Natural weights
wi of the measure μ are defined by

wi =
∫

En

uidμ (uuu) , (i = 0, ..., n) . (2)
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It is obvious that all weights wi are nonnegative and that
∑n

i=0 wi = 1 .

Let U be an open subset of R
k (k ∈ N) and let xxx(0), xxx(1), ..., xxx(n) ∈ U (n � k) .

Further, let X be an k by n+1 matrix whose columns are the vectors xxx(0), xxx(1), ..., xxx(n) .
Let σ denote the convex hull of the columns of matrix X , i.e.,

σ =

{
yyy ∈ R

k : yyy =
n∑

i=0

uixxx
(i) = Xuuu, uuu ∈ En

}
. (3)

We will always assume that the columns of X span a proper simplex in R
k, i.e., that

vol (σ) �= 0 .

Weighted logarithmic mean L (xxx;μ) of a positive n + 1− tuple xxx is defined as
[6]

L (xxx;μ) =
∫

En

n∏
i=0

xui
i dμ (uuu) =

∫
En

exp (uuu · ln (xxx)) dμ (uuu) ,

where uuu·ln (xxx) denotes the inner product of vectors uuu and ln (xxx) = (ln (x0) , ..., ln (xn)) ∈
R

n+1. It is well known that logarithmic mean interpolates the inequality for the arith-
metic and geometric means, i.e.,

n∏
i=0

xwi
i � L (xxx;μ) �

n∑
i=0

wixi. (4)

By Mr (xxx, uuu) we will denote power mean of order r of a positive n + 1 -tuple xxx
with weights uuu , i.e.

Mr (xxx, uuu) =

{ (∑n
i=0 uixr

i

) 1
r , r �= 0∏n

i=0 xui
i , r = 0

(5)

It is well known that Mr is strictly increasing function of r .

The integral power mean of a positive real function F on En with a probability
measure μ on En is defined as

Mr (F;μ) =

⎧⎪⎨
⎪⎩
(∫

En
(F (u))r dμ (u)

) 1
r
, r �= 0

exp
[∫

En
ln (F (u)) dμ (u)

]
, r = 0

(6)

In [12] J. Pečarić and V. Šimić have considered weighted Stolarsky-Tobey mean of
several variables. For xxx = (x0, ..., xn) ∈ R

n+1
+ and r, p ∈ R, the Stolarsky-Tobey mean
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is defined as

Er,p+r (xxx;μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ∫
En

(
n∑

i=0
uixr

i

) p
r

dμ (uuu)
] 1

p

, if rp �= 0,

exp

( ∫
En

ln

(
n∑

i=0
uixr

i

) 1
r

dμ (uuu)
)

, if p = 0, r �= 0,

[ ∫
En

(
n∏

i=0
xui
i

)p

dμ (uuu)
] 1

p

, if r = 0, p �= 0,

exp

( ∫
En

ln

(
n∏

i=0
xui
i

)
dμ (uuu)

)
, if p = r = 0.

(7)

It is easy to see that this mean includes both the logarithmic mean and the power mean.
We have

E0,1 (xxx;μ) = L (xxx;μ) and Er,2r (xxx;μ) = Mr (xxx, www) .

In [10] C. Pearce, J. Pečarić and V. Šimić considered a functional generalization
of the Stolarsky-Tobey mean. For two strictly monotonic continuous functions h and
g defined on a real interval I , a probability measure μ and an n + 1 -tuple xxx in In+1 ,
the functional Stolarsky-Tobey mean is defined as

mh,g (xxx;μ) = h−1

{∫
En

h

[
g−1

(
n∑

i=0

uig (xi)

)]
dμ (uuu)

}
. (8)

It follows from (8) and (2) that

mg,g (xxx;μ) = g−1

(
n∑

i=0

wig (xi)

)
. (9)

There are many important special cases of the above means, and among them is
also Stolarsky-Tobey mean (7) , which can be obtained from (8) and (9) by letting

h (x) =
{

xp, p �= 0

ln x, p = 0,
(1.10)

g (x) =
{

xr, r �= 0

ln x, r = 0,
(1.11)

x ∈ (0,∞) . With h and g as defined above we have

mh,g(x;μ) =
{

Er,p+r(x;μ), h �= g

Mr(x; w), h = g.
(12)

Logarithmically convex functions are important subfamily of the class of convex
functions. We say that a function f : I → (0,∞) is log-convex if

f [(1 − λ ) x + λy] � [f (x)]1−λ [f (y)]λ
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holds for all x, y ∈ I and 0 � λ � 1. Any log-convex function f also satisfies the
inequality

f (xxx·uuu) �
n∏

i=0

[f (xi)]
ui , (13)

where uuu ∈ En and xxx ∈ In+1 . Logarithmically convex functions are of interest in the
mathematical statistics [11], theory of special functions [1], and theory of means [7], to
name a few areas.

The log-convex functions belong to a class of functions called the r-convex func-
tions. A function f : I → (0,∞) is said to be r-convex if the inequality

f [(1 − λ )x + λy] �
{

[(1 − λ )[f (x)]r + λ [f (y)]r]
1
r , r �= 0

[f (x)]1−λ [f (y)]λ , r = 0

holds for all x, y ∈ I and 0 � λ � 1.
Finally, we recall the definition of a more general class of functions called the g-

convex functions. Let f : I → R and let g be a strictly monotone continuous function
defined on the range of f . The function f is said to be g-convex if the inequality

f [(1 − λ ) x + λy] � g−1 [(1 − λ ) (g ◦ f ) (x) + λ (g ◦ f ) (y)]

holds for all x, y ∈ I and 0 � λ � 1. The function f is said to be g -concave if the
reverse inequality holds. For g(x) as defined in (1.11) the definition of g -convexity
becomes the definition of r -convexity.

The functional Stolarsky-Tobey means and g -convexity are discussed in [8].

2. Refinements of the Hermite-Hadamard’s inequalities for the multivariate
log-convex functions

Some refinements of the Hermite-Hadamard’s inequalities (1) have been obtained
by S. Dragomir and B. Mond in [3]. They have proven that any log-convex function g
satisfies the inequalities

g

(
a + b

2

)
� exp

[
1

b − a

∫ b

a
ln [g (x)] dx

]

� 1
b − a

∫ b

a

√
g (x) g (a + b − x)dx

� 1
b − a

∫ b

a
g (x) dx � L [g (a) , g (b)]

� g (a) + g (b)
2

,

(14)

where

L (p, q) =
p − q

ln p − ln q
, p �= q

L (p, p) = p,
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is the logarithmic mean of positive real numbers p and q .
Another refinement of the first inequality in (1) appears in [2, Theorem 1]. Let

A = a+b
2 . If the function g is log-convex and differentiable on Int (I) , then

1
b − a

∫ b

a
g (x) dx/g (A)

� L

(
exp

[
g′ (A)
g (A)

(
b − a

2

)]
, exp

[
−g′ (A)

g (A)

(
b − a

2

)])
� 1.

(2.2)

In this section we shall give generalizations of the inequalities (14) and (2.2) for
the log-convex functions of several variables.

In what follows we will always assume that X is a k by n + 1 matrix whose
columns are the vectors xxx(0), xxx(1), ..., xxx(n) ∈ U, w0, ..., wn are the natural weights, and
uuu ∈ En.

In the proof of our main results, we will also make use of the following result ([5],
Theorem 4.2):

THEOREM 1. If φ : σ → R is a convex function, then

φ

(
n∑

i=0

wixxx
(i)

)
�
∫

En

φ(Xuuu)dμ (uuu) �
n∑

i=0

wiφ
(
xxx(i)
)

. (16)

Inequalities (16) are reversed if φ is a concave function.

THEOREM 2. Let f : σ → (0,∞) be a log -convex function. Then

f

(
n∑

i=0

wixxx
(i)

)
� exp

[∫
En

ln f (Xuuu) dμ (uuu)
]

�
∫

En

f (Xuuu) dμ (uuu)

� L
(
f
(
xxx(0)
)

, ..., f
(
xxx(n)
)

;μ
)

�
n∑

i=0

wif
(
xxx(i)
)

.

(17)

Proof. In order to prove the first inequality in (17) we utilize the first inequality
in (16) with h = ln f to obtain

(ln f )

(
n∑

i=0

wixxx
(i)

)
�
∫

En

(ln f ) (Xuuu) dμ (uuu) ,

from which we get

f

(
n∑

i=0

wixxx
(i)

)
� exp

[∫
En

(ln f ) (Xuuu) dμ (uuu)
]

.
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Since the function exp is convex, application of Jensen’s inequality for integrals gives

exp

[∫
En

(ln f ) (Xuuu) dμ (uuu)
]

�
∫

En

f (Xuuu) dμ (uuu) ,

which is the second inequality in (17) . The third inequality in (17) can be established
using (13). We have

∫
En

f (Xuuu) dμ (uuu) �
∫

En

n∏
i=0

[
f
(
xxx(i)
)]ui

dμ (uuu)

= L
(
f
(
xxx(0)
)

, ..., f
(
xxx(n)
)

;μ
)

.

The last inequality in (17) follows from the second inequality in (4) . This completes
the proof.

REMARK 1. The inequalities (14) , without the third member, now follow from
(17) by letting n = 1, xxx(0) = a and xxx(1) = b (a �= b) .

Before we will state and prove the next result, let us introduce more notation. For
yyy ∈ σ let ccc = ∇ ln f (yyy) be the gradient of the function ln f . Also, let

zi =
(
xxx(i) − yyy

)
· ccc, i = 0, ..., n,

let zzz = (z0, ..., zn) , and let exp (zzz) = (exp (z0) , ..., exp (zn)) .

THEOREM 3. Let f : σ → (0,∞) be a log -convex function. If f has continuous
partial derivations of order one on Int (σ) , then∫

En

f (Xuuu) dμ (uuu) � f (yyy)L (exp (zzz) ;μ) (18)

holds for any yyy ∈ Int (σ) . If yyy =
∑n

i=0 wixxx(i), then

L (exp (zzz) ;μ) � 1. (19)

Proof. Logarithmic convexity of function f implies the following inequality

ln f (xxx) − ln f (yyy) � (xxx − yyy) · ∇ ln f (yyy) ,

which is valid for all xxx, yyy ∈ Int (σ) . Hence

f (xxx) � f (yyy) exp [(xxx − yyy) · ccc] .
Letting xxx = Xuuu above, and next integrating both sides against a probability measure
μ , we obtain ∫

En

f (Xuuu) dμ (uuu) � f (yyy)
∫

En

exp [(Xuuu − yyy) · ccc] dμ (uuu) .
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Since

(Xuuu − yyy) · ccc===
(

n∑
i=0

uixxx
(i) −

n∑
i=0

uiyyy

)
· ccc

=

(
n∑

i=0

ui

(
xxx(i) − yyy

))
· ccc

=
n∑

i=0

uizi = uuu · zzz,

the last inequality together with the definition of logarithmic mean imply∫
En

f (Xuuu) dμ (uuu) � f (yyy)
∫

En

exp (uuu · zzz) dμ (uuu)

= f (yyy)L (exp (zzz) ;μ) .

For the proof of (19) we utilize the first inequality in (4) to obtain

L (exp (zzz) ;μ) � exp (www · zzz) = exp

[
n∑

i=0

wi

(
xxx(i) − yyy

)
· ccc
]

= exp

[(
n∑

i=0

wixxx
(i) − yyy

)
· ccc
]

= exp (0 · ccc) = 1,

where 0 stands for the origin in R
k. The proof is complete.

COROLLARY 1. Let k = n. Then under the assumptions of Theorem3, the following
inequality

1
|vol (σ)|

∫
σ

f (xxx) dxxx � f (yyy) (n! [z0, ..., zn] et) (20)

holds true for any yyy ∈ Int (σ) , where [z0, ..., zn] et stands for the divided difference of
order n of the function et , xxx = (x1, . . . , xn) and dxxx = dx1 . . . dxn .

Proof. We let μ (uuu) = n! (the Lebesgue measure on En ) in (18) . In that case we
have

L (exp (zzz) ;μ) = n! [z0, ..., zn] et (21)

(see [6, (4.21)]). To complete the proof of (20) we let xxx = Xuuu (uuu ∈ En ) in the integral
on the left side of (18). Then

xxx = xxx(0) +
n∑

i=1

vi

(
xxx(i) − xxx(0)

)
,

where vi = ui for 1 � i � n . Hence

xxx − xxx(0) = Avvv, (22)
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where A =
[
xxx(1) − xxx(0), . . . , xxx(n) − xxx(0)

]
and vvv = (v1, . . . , vn) . Since the vectors xxx(i)

(0 � i � n ) span a proper simplex σ in R
n , the matrix A is nonsingular. Thus

vvv = A−1
(
xxx − xxx(0)

)
and the Jacobian of the transformation (22) is equal to det (A−1) .

It is clear that the first member of (18) is equal to

n!| det(A−1)|
∫
σ

f (xxx) dxxx.

Since vol (σ) = 1
n! det(A) ,

n!
∫

En

f (Xuuu) duuu =
1

|vol(σ)|
∫
σ

f (xxx) dxxx.

Combining this with (18) and (21) gives the assertion (20).

REMARK 2. Let us note that the inequalities (2.2) follow from (20) , (21) and
(19) by letting n = 1, xxx(0) = a , xxx(1) = b (a �= b) and yyy = a+b

2 .

3. Refinements of the Hermite-Hadamard’s inequalities for the multivariate
g -convex functions

In this section we shall give a generalization of Theorem 2 to the case of g -convex
functions. Since r -convex functions are a special case of g -convex functions, the
obtained results are applicable to these functions.

We need the following result.

LEMMA 1. Let f : σ → (0,∞) be a g -convex function on σ . Then for any
xxx(0), ..., xxx(n) ∈ U and uuu ∈ En we have

f

(
n∑

i=0

uixxx
(i)

)
� g−1

(
n∑

i=0

ui (g ◦ f )
(
xxx(i)
))

with the inequality reversed if f is g -concave.

Proof. This follows immediately from the definition of g -convexity.

THEOREM 4. Let f : σ → R and let g and h be strictly monotone continuous
functions defined on the range of f . If f is g -convex, h ◦ g−1 is convex (concave)
and h is increasing (decreasing), then for any probability measure μ on En

f

(∫
En

(Xuuu)dμ(uuu)
)

� g−1

{∫
En

(g ◦ f )(Xuuu)dμ (uuu)
}

� h−1

{∫
En

(h ◦ f )(Xuuu)dμ (uuu)
}

� mh,g (yyy;μ) � mh,h (yyy;μ) ,

(23)

where X = [xxx(0) · · · xxx(n)] is a k by n + 1 matrix ( n � k ), uuu ∈ En , and yyy =(
f
(
xxx(0)
)
, ..., f

(
xxx(n)
))

. If f is g -concave, h ◦ g−1 is convex (concave) and h is
decreasing (increasing), then the inequalities (23) are reversed.
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Proof. We shall establish inequalities (23) when f is a g -convex function, h is
increasing, and h ◦ g−1 is convex. Since the remaining cases can be proven using the
argument presented below, their proofs are not included here. Suppose that the function
g is increasing. It follows from Lemma 1 that the function g ◦ f is convex. Making
use of the first inequality in (16), with φ replaced by g ◦ f , we obtain

(g ◦ f )
(∫

En

(Xuuu)dμ(u)
)

�
∫

En

(g ◦ f )(Xuuu)dμ(uuu).

Hence the first inequality in (23) follows. For the proof of the second inequality in (23)
we use Jensen’s inequality for integrals. Since h ◦ g−1 is convex, the latter give,

(h ◦ g−1)
[ ∫

En

(g ◦ f )(Xuuu)dμ(uuu)
]

�
∫

En

(h ◦ f )(Xuuu)dμ(uuu).

Since h is an increasing function, the assertion follows. In order to establish the third
inequality in (23) we use the fact that h is increasing together with Lemma 1 and (8)
to obtain

h−1

[∫
En

(h ◦ f )(Xuuu)dμ(uuu)
]

= h−1

[ ∫
En

h (f (Xuuu)) dμ(uuu)
]

� h−1

[∫
En

h

(
g−1

( n∑
i=0

ui(g ◦ f )
(
xxx(i)))) dμ(uuu)

]
= mh,g(yyy;μ).

The last inequality in (23) can be proven as follows. We use the fact that h ◦ g−1

is convex and apply Jensen’s inequality for sums to obtain

(h ◦ g−1)
[ n∑

i=0

ui(g ◦ f )
(
xxx(i))] �

n∑
i=0

ui(h ◦ f )
(
xxx(i)).

Integrating both sides of the last inequality against the probability measure μ and next
using (2) we obtain

∫
En

(h ◦ g−1)
[ n∑

i=0

ui(g ◦ f )
(
xxx(i))]dμ(uuu) �

∫
En

n∑
i=0

ui(h ◦ f )(xxx(i))dμ(uuu)

=
n∑

i=0

wi(h ◦ f )
(
xxx(i)) = h

(
mh,h(yyy;μ)

)
.

Since h is an increasing function, the assertion follows. This completes the proof.

Before we will state and prove a corollary of Theorem 4, let us introduce more
notation. Let www = (w0, . . . , wn) denote a vector of natural weights defined in (2) and
let Xwww =

∑n
i=0 wix(i) . For uuu ∈ En , let F(uuu) = f (Xuuu) and let yyy have the same

meaning as in Theorem 4.
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COROLLARY 2. Let f : σ → (0,∞) be an r -convex function and let p and r
be real numbers. If p � r , then for any probability measure μ on En the following
inequalities

f (Xwww) � Mr(F;μ) � Mp(F;μ)
� Er,p+r(yyy;μ) � Mp(yyy; www)

(24)

hold true. If f is r -concave and p � r , then the inequalities (24) are reversed.

Proof. Let the functions h and g be the same as in (1.10) and (1.11), respectively.
If p �= 0 , then

(h ◦ g−1)(x) =
{

x
p
r , if r �= 0

epx, if r = 0.
(25)

When p = 0 , then

(h ◦ g−1)(x) =
{ 1

r ln x, if r �= 0

x, if r = 0.
(26)

We shall establish the inequalities (24) when the function f is r -convex and p � r .
The case when f is r -concave and p � r can be proven in a similar way. First,
consider the case when r > 0 . Taking into account that∫

En

(Xuuu)dμ(uuu) = Xwww

we obtain from (23), (8), and (7)

f (Xwww) �
[∫

En

f r(Xuuu)dμ(uuu)
]1/r

�
[ ∫

En

f p(Xuuu)dμ(uuu)
]1/p

� Er,p+r(yyy;μ) � Mp(yyy; www).

Application of (6) to the second and third members in the above chain of inequalities
completes the proof of (24) in the case under discussion. Assume now that r < 0 . It
follows from (1.11) that the function g is decreasing. If p < 0 , then the function h
is decreasing on (0,∞) and h ◦ g−1 is concave. Inequalities (24) follow immediately
from Theorem 4. Similarly, if p > 0 , then the function h is increasing and h ◦ g−1

is convex. Again, we invoke Theorem 4 to obtain inequalities (24). Finally, if p = 0 ,
then h is strictly increasing and h ◦ g−1 is convex. The latter statement follows easily
from (26). Making use of Theorem 4 we obtain

f (Xwww) �
[∫

En

f r(Xuuu)dμ(uuu)
]1/r

� exp

[∫
En

ln f (Xuuu)dμ(uuu)
]

� Er,r(yyy;μ) � M0(yyy; www).

Application of (6) to the second and third members completes the proof of (24) when
r < 0 and p = 0 . Consider now the case when r = 0 . This implies that p � 0 . If
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p > 0 , then both functions h and g are strictly increasing and h ◦ g−1 is convex (see
(25)). In this case the inequalities (23) of Theorem 4 become

f (Xwww) � exp

[ ∫
En

ln f (Xuuu)dμ(uuu)
]

�
[∫

En

f p(Xuuu)dμ(uuu)
]1/p

� E0,p(yyy;μ) � Mp(yyy; www).

To complete the proof it suffices to consider the case when p = 0 . It follows from
(1.10), (1.11), and (26) that the functions h and g are both strictly increasing and
h ◦ g−1 is convex. Making use of Theorem 4 we obtain

f (Xwww) � exp

[ ∫
En

ln f (Xuuu)dμ(uuu)
]

� E0,0(yyy;μ) = M0(yyy; www).

This completes the proof.

REMARK 3. If in Corollary 2 we let r = 0 and p = 1 , then the inequalities (24)
become the inequalities (17) of Theorem 2.
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