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Abstract. The main objective of this paper is a study of some new generalizations of Hilbert’s
type inequalities. More precisely, we obtain, in some general cases, that the constants involved
in the right-hand sides of such inequalities are the best possible.

1. Introduction

The Hardy-Hilbert’s type inequalities are of some significant weight inequalities
which play an important role in analysis and it’s applications. So, at the beginning let
us recall the famous Hilbert’s theorems for double series: Let {am} and {bn} be two

non-negative sequences and
1
p

+
1
q

= 1, p > 1 . Then the following inequalities hold

∞∑
m=1

∞∑
n=1

ambn

m + n
� π

sin π
p

( ∞∑
m=1

am
p

) 1
p
( ∞∑

n=1

bn
q

) 1
q

(1)

and
∞∑

m=0

∞∑
n=0

ambn

m + n + 1
� π

sin π
p

( ∞∑
m=0

am
p

) 1
p
( ∞∑

n=0

bn
q

) 1
q

, (2)

where the constant factor
π

sin π
p

, contained in (1) and (2), is the best possible. Although

classical, they are field of interest of numerous mathematicians and were generalized in
many different ways. For more details see [14].

Very recently, Brnetić and Pečarić ([12], [13]) gave some further generalizations
of Hardy-Hilbert’s inequality. So we shall state their result that will take our attention.
They considered special case n = 2 ([13]), and obtained the following result in both
equivalent forms
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THEOREM A. If λ > 0 ,
1
p

+
1
q

= 1 , p > 1 , then the following inequalities hold

and are equivalent ∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)λ

dxdy

< L

(∫ ∞

0
x1−λ+p(A1−A2)f p(x)dx

) 1
p
(∫ ∞

0
x1−λ+q(A2−A1)gq(x)dx

) 1
q

, (3)

and ∫ ∞

0
y(λ−1)(p−1)+p(A1−A2)

(∫ ∞

0

f (x)
(x + y)λ

dx

)p

dy

< Lp

(∫ ∞

0
x1−λ+p(A1−A2)f p(x)dx

)
(4)

where L = (B(1−A2p, λ−1+A2p))
1
p (B(1−A1q, λ−1+A1q))

1
q , A1 ∈

(
1−λ

q
,
1
q

)
,

A2 ∈
(

1 − λ
p

,
1
p

)
and B is a beta function. If 0 < p < 1 then the reverse inequalities

in (3) and (4) are valid for any A1 ∈
(

1
q
,
1−λ

q

)
and A2 ∈

(
1−λ

p
,
1
p

)
. The inequality

(4) holds also if p < 0.

In this paper we shall obtain some generalizations of Theorem A and also consider
the constants involved in the right-hand sides of mentioned inequalities. The main
purpose of this paper is to show that, in some cases, the constants are the best possible.
Techniques that will be used in the proofs are mainly based on classical real analysis.
Further, we shall also use, in discrete case, some general results on Hilbert’s inequality
from [19].

2. The best constants

In this section we shall obtain that the constants L and Lp involved in the right-
hand sides of the inequalities (3) and (4) are the best possible for some choices of the
parameters A1 and A2 .

Let’s suppose that the parameters A1 and A2 satisfy condition pA2+qA1 = 2−λ .
We shall prove that for such choice of parameters A1 and A2 , the constant L in the
inequality (3) is the best possible.

THEOREM 1. If the parameters A1 and A2 satisfy condition pA2 + qA1 = 2 − λ ,
then the constant L in Theorem A is the best possible.

Proof. For this purpose, with 0 < ε < 1 , set f (x) = x−qA1 in 〈 ε, 1
ε
〉 , f (x) = 0

elsewhere, and g(y) = y−pA2 in 〈 ε, 1
ε
〉 , g(y) = 0 elsewhere. Then the left-hand side

of the inequality (3) is

I =
∫ 1

ε

ε

∫ 1
ε

ε

x−qA1y−pA2

(x + y)λ
dxdy =

∫ 1
ε

ε

dx
x

∫ 1
εx

ε
x

u−pA2

(1 + u)λ
du.
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Further,

I = 2 ln

(
1
ε

)
L − R1 − R2,

where

R1 =
∫ 1

ε

ε

dx
x

∫ ε
x

0

u−pA2

(1 + u)λ
du <

∫ 1
ε

ε

dx
x

∫ ε
x

0
u−pA2du =

1 − ελ+qA1−pA2

(1 − pA2)2
,

and

R2 =
∫ 1

ε

ε

dx
x

∫ ∞

1
εx

u−pA2

(1 + u)λ
du <

∫ 1
ε

ε

dx
x

∫ ∞

1
εx

u−pA2−λdu =
1 − ελ−qA1+pA2

(1 − qA1)2
,

so we obtain the inequality

I > 2 ln

(
1
ε

)
L − 1 − ελ+qA1−pA2

(1 − pA2)2 − 1 − ελ−qA1+pA2

(1 − qA1)2 .

Now, let us suppose that there exist a smaller constant 0 < C < L such that the
inequality (3) is valid. Then the right-hand side of the inequality (3) is equal to

2 ln

(
1
ε

)
C . It follows that

−1 − ελ+qA1−pA2

(1 − pA2)2
− 1 − ελ−qA1+pA2

(1 − qA1)2
< 2(C − L)2 ln

(
1
ε

)
,

and we obtain contradiction by letting ε ↘ 0 .
It remains to prove that L is also the best possible value in the reverse inequality. By
using the same notation as before, we have

I < 2 ln

(
1
ε

)
L

Now, let us suppose that there exist a greater constant D > L such that the reverse
inequality in (3) is valid. Then the right-hand side of that inequality is equal to

2 ln

(
1
ε

)
D . It follows that

2 ln

(
1
ε

)
L > 2 ln

(
1
ε

)
D,

what is a contradiction, since D > L . That completes the proof. �

REMARK 1. It is easy to see that for the parameters A1 and A2 from the previous
theorem, the constant L becomes L = B(1−A2p, λ − 1 +A2p) = B(1−A1q, λ − 1+

A1q) . Further, if we put A2 −A1 = α , where
2 − λ

p
−1 < α <

λ − 2
q

+1 , then from
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the condition pA2 +qA1 = 2−λ we obtain A1 =
2 − λ − pα

pq
and A2 =

2 − λ + qα
pq

and the constant L is given by

L∗ = B

(
λ − 2 + p

p
+ α,

λ − 2 + q
q

− α
)

. (5)

REMARK 2. If pA2 + qA1 = 2 − λ , then the constant involved in the right-hand
side of the inequality (4) is also the best possible since the inequalities (3) and (4) are
equivalent.

3. The main results

In this section we shall generalize Theorem A in the following way. Let u :
(0,∞) �→ R and v : (0,∞) �→ R be non-negative differentiable functions such that the
functions xu(x) and yv(y) are strictly increasing and lim

x→∞ xu(x) = lim
y→∞ yv(y) = ∞.

Since xu(x) and yv(y) are strictly increasing, it follows that the functions u(x)+xu′(x)
and v(y) + yv′(y) are non-negative.

Now, we generalize TheoremA by using the substitution x = ru(r) and y = sv(s).
Hence, the constants involved in the right-hand sides of inequalities will be the best
possible in some cases (see Theorem 2).

THEOREM 2. Let
1
p

+
1
q

= 1, with p > 1, and f (x) , g(y) be non-negative

functions. Then the following inequalities hold and are equivalent∫ ∞

0

∫ ∞

0

f (x)g(y)

(xu(x) + yv(y))λ
dxdy

� L

(∫ ∞

0
(xu(x))1−λ+p(A1−A2) (u(x) + xu′(x)

)1−p
f p(x)dx

) 1
p

×

×
(∫ ∞

0
(yv(y))1−λ+q(A2−A1) (v(y) + yv′(y)

)1−q
gq(y)dy

) 1
q

(6)

and∫ ∞

0
(yv(y))(λ−1)(p−1)+p(A1−A2) (v(y) + yv′(y)

)(∫ ∞

0

f (x)

(xu(x) + yv(y))λ

)p

dy

� Lp
∫ ∞

0
(xu(x))1−λ+p(A1−A2) (u(x) + xu′(x)

)1−p
f p(x)dx, (7)

for any A1 ∈
(

1 − λ
q

,
1
q

)
, A2 ∈

(
1 − λ

p
,
1
p

)
, where the constant L is defined in

Theorem A. If 0 < p < 1 then the reverse inequalities in (6) and (7) are valid for any

A1 ∈
(

1
q
,
1 − λ

q

)
, A2 ∈

(
1 − λ

p
,
1
p

)
. The inequality (7) holds also if p < 0.
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Further, if the parameters A1 and A2 satisfy condition pA2 + qA1 = 2 − λ then the
constants involved in the right-hand sides of the inequalities (6) and (7) and their’s
reverses are the best possible.

We also give the result in discrete case. If we use the general result from [19], we
obtain

THEOREM 3. Let
1
p

+
1
q

= 1, with p > 1, and {an} , {bn} be non-negative real

sequences. Then the following inequalities hold and are equivalent

∞∑
m=1

∞∑
n=1

ambn

(mu(m) + nv(n))λ

� L

( ∞∑
m=1

(mu(m))1−λ+p(A1−A2) (u(m) + mu′(m)
)1−p

am
p

) 1
p

×

×
( ∞∑

n=1

(nv(n))1−λ+q(A2−A1) (v(n) + nv′(n)
)1−q

bn
q

) 1
q

(8)

and

∞∑
n=1

(nv(n))(λ−1)(p−1)+p(A1−A2) (v(n) + nv′(n)
)( ∞∑

m=1

am

(mu(m) + nv(n))λ

)p

� Lp
∞∑

m=1

(mu(m))1−λ+p(A1−A2) (u(m) + mu′(m)
)1−p

am
p, (9)

for any A1 ∈
(

max

{
1 − λ

q
, 0

}
,
1
q

)
and A2 ∈

(
max

{
1 − λ

p
, 0

}
,
1
p

)
, where the

constant L is defined in Theorem 5. Further, if the parameters A1 and A2 satisfy
condition pA2 + qA1 = 2 − λ then the constants L and Lp are the best possible.

Proof. By using the general result from [19] we obtain the inequality

∞∑
m=1

∞∑
n=1

ambn

(mu(m) + nv(n))λ
�
( ∞∑

m=1

Ωp(m)am
p

) 1
p
( ∞∑

n=1

Ωq(n)bn
q

) 1
q

,

where Ωp(m) =
(
u(m)+mu′(m)

)1−p
∞∑

n=1

v(n)+nv′(n)

(mu(m)+nv(n))λ
× (mu(m))pA1

(nv(n))pA2
and Ωq(n) =

(
v(n)+nv′(n)

)1−q
∞∑

m=1

u(m)+mu′(m)

(mu(m)+nv(n))λ
× (nv(n))qA2

(mu(m))qA1
. Now, since the functions mu(m)

and nv(n) are strictly increasing, one easily obtains that
Ωp(m) � (mu(m))1−λ+p(A1−A2) (u(m)+mu′(m))1−p B(1−pA2, λ−1+pA2), and

Ωq(n) � (nv(n))1−λ+q(A2−A1) (v(n)+nv′(n))1−q B(1−qA1, λ−1+qA1), hence we ob-
tain (8).
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It remains to prove that the constant L is the best possible if pA2 + qA1 = 2− λ .
Let am = (mu(m))−qA1− ε

p (u(m) + mu′(m)) and bn = (nv(n))−pA2− ε
q (v(n) + nv′(n)).

Since the function xu(x) is strictly decreasing in (0,∞) we have

1
ε

=
∫ ∞

1
(xu(x))−1−εd(xu(x)) <

∞∑
m=1

(mu(m))−1−ε(u(m) + mu′(m))

=
∞∑

m=1

(mu(m))1−λ+p(A1−A2)(u(m) + mu′(m))1−pam
p

< ϕ1(1) +
∫ ∞

1
(xu(x))−1−εd(xu(x)) = ϕ1(1) +

1
ε
,

where the function ϕ1 is defined by ϕ1(x) = (xu(x))−1−ε(u(x) + xu′(x)). Hence we

obtain
∞∑

m=1

(mu(m))1−λ+p(A1−A2) (u(m) + mu′(m)
)1−p

am
p =

1
ε

+ O(1) , and similarly

∞∑
n=1

(nv(n))1−λ+q(A2−A1) (v(n) + nv′(n)
)1−q

bn
q =

1
ε

+ O(1).

Now, let us suppose that there exist a smaller constant 0 < C < L such that the
inequality (8) is valid. By putting am and bn in (8) we obtain

∞∑
m=1

∞∑
n=1

ambn

(mu(m) + nv(n))λ
<

1
ε

(C + o(1)) . (10)

On the other hand we have

∞∑
m=1

∞∑
n=1

ambn

(mu(m) + nv(n))λ

>

∫ ∞

1

∫ ∞

1

(xu(x))−qA1− ε
p (yv(y))−pA2− ε

q

(xu(x) + yv(y))λ
d(xu(x))d(yv(y)).

So, the right-hand side is equal to

∫ ∞

1

(∫ ∞

1
xu(x)

t−pA2− ε
q

(1 + t)λ
dt

)
(xu(x))−1−εd(xu(x)).

Now, since

∫ ∞

1
xu(x)

t−pA2− ε
q

(1 + t)λ
dt >

∫ ∞

0

t−pA2− ε
q

(1 + t)λ
dt −

∫ 1
xu(x)

0
t−pA2− ε

q−λdt,
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after computing, we obtain

∞∑
m=1

∞∑
n=1

ambn

(mu(m) + nv(n))λ
>

1
ε

(L + o(1)) . (11)

Clearly, when ε is small enough, the inequality (10) is in contradiction with (11) and
the proof is completed. �
As we already saw, if the parameters A1 and A2 satisfy condition pA2 + qA1 = 2− λ ,
then the constants involved in the right-hand side of our inequalities are the best possible.

Now, we observe the discrete case when A1 = A2 =
2 − λ

pq
and obtain some extensions

of Hilbert’s theorem for double series. Then L = B

(
λ − 2 + p

p
,
λ − 2 + q

q

)
, and we

define B∗ := B

(
λ − 2 + p

p
,
λ − 2 + q

q

)
.

COROLLARY 1. Let {an} and {bn} be two non-negative sequences of real numbers
and 2 − min{p, q} < λ � 2 . Then the following inequalities hold and are equivalent

∞∑
m=1

∞∑
n=1

ambn

(mu(m) + nv(n))λ

� B∗
( ∞∑

m=1

(mu(m))1−λ (u(m) + mu′(m)
)1−p

am
p

) 1
p

×

×
( ∞∑

n=1

(nv(n))1−λ (v(n) + nv′(n)
)1−q

bn
q

) 1
q

and

∞∑
n=1

(nv(n))(λ−1)(p−1) (v(n) + nv′(n)
)( ∞∑

m=1

am

(mu(m) + nv(n))λ

)p

� (B∗)p
∞∑

m=1

(mu(m))1−λ (u(m) + mu′(m)
)1−p

am
p

where the constants B∗ and (B∗)p are the best possible.

REMARK 3. Note that for λ = 1 , B∗ becomes
π

sin π
p

and we obtain generalization

of the inequality (1).
In the Theorems 3 and 4 we didn’t consider the constant factors of the functions

xu(x) , yv(y) , u(x)+ xu′(x) and v(y)+ yv′(y). Now, let the constants factors of xu(x) ,
yv(y) , u(x) + xu′(x) and v(y) + yv′(y) are in turn A, B, C and D . Then they can be
written in form

xu(x) = Aũ(x), yv(y) = Bṽ(y), u(x) + xu′(x) = Cũ′(x) and v(y) + yv′(y) = Dṽ′(y).
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We define

μ =
(

A1−λ

D

) 1
p
(

B1−λ

C

) 1
q
(

A
B

)A1−A2

(12)

and obtain the following important result in the discrete case

THEOREM 4. Let
1
p

+
1
q

= 1, with p > 1, and {an} , {bn} be non-negative real

sequences. Then the following inequalities hold and are equivalent

∞∑
m=1

∞∑
n=1

ambn

(mu(m) + nv(n))λ

� μL

( ∞∑
m=1

(ũ(m))1−λ+p(A1−A2) (ũ′(m)
)1−p

am
p

) 1
p

×

×
( ∞∑

n=1

(ṽ(n))1−λ+q(A2−A1) (ṽ′(n)
)1−q

bn
q

) 1
q

(13)

and
∞∑

n=1

(ṽ(n))(λ−1)(p−1)+p(A1−A2) (ṽ′(n)
)( ∞∑

m=1

am

(mu(m) + nv(n))λ

)p

� μpLp
∞∑

m=1

(ũ(m))1−λ+p(A1−A2) (ũ′(m)
)1−p

am
p, (14)

for any A1 ∈
(

max

{
1 − λ

q
, 0

}
,
1
q

)
and A2 ∈

(
max

{
1 − λ

p
, 0

}
,
1
p

)
.

Further, if the parameters A1 and A2 satisfy condition pA2 + qA1 = 2 − λ then
the constants involved in the right-hand sides of the inequalities (13) and (14) are the
best possible.

REMARK 4. The integral analogue of Theorem 5 can be obtained in the same way,
where the sums are replaced with the integrals and the non-negative real sequences with
the non-negative real functions (see Theorem 3).

Now, we use Theorem 5 to obtain the generalization of the inequality (2), from the
Introduction. For that purpose let’s define two functions by

xu(x) =
{

a(x + c
2a ) x > 0

c
2 x = 0

and yv(y) =
{

b(y + c
2b ) y > 0

c
2 y = 0

, (15)

where a, b and c are greater then zero. So if we put A1 = A2 =
2 − λ

pq
, where

2 − min{p, q} < λ � 2 , the inequality (13) becomes
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∞∑
m=0

∞∑
n=0

ambn

(am + bn + c)λ

� μ∗B∗
( ∞∑

m=0

(
m +

c
2a

)1−λ
am

p

) 1
p
( ∞∑

n=0

(
n +

c
2b

)1−λ
bn

q

) 1
q

, (16)

where μ∗ =
(
a2−λ−p

) 1
p
(
b2−λ−q

) 1
q
. This is obviously a generalization of the inequal-

ity (2). We can also obtain more general inequalities without the constraint A1 = A2 ,
but here they are omitted. It follows from (16) that the result of the paper [7] is yielded
immediately. Actually, the various results in the papers [6]-[11] might be yielded from
the inequalities (8) and (16).

4. Some applications in the discrete case

There are lots of applications of the inequalities from the previous section. In this
section we shall enumerate only the discrete cases for which u(x) and v(y) are power
function, logarithm function, inverse trigonometric function and the exponent function.
We make such specifications in Theorems 4 and 5. We observe only the cases for
which the parameters A1 and A2 satisfy constraint pA2 + qA1 = 2 − λ . So, we put
α = A2 − A1 , where

max

{
1 − λ

p
, 0

}
− 1

q
< α <

1
p
− max

{
1 − λ

q
, 0

}
, (17)

and the constant factor will be given by (5). In all the cases that follows the constant
factors will be the best possible.

Power function

Let u(x) = xa and v(y) = yb where a and b are greater than −1 . Then
xu(x) = xa+1 and yv(y) = yb+1. In according to (12), it is easy to duce that μ =
(b + 1)−

1
p (a + 1)−

1
q . Hence, by Theorem 5, we have the following result

COROLLARY 2. Let
1
p

+
1
q

= 1 , with p > 1, and α be real parameter defined by

(17). Then the following inequalities hold and are equivalent

∞∑
m=1

∞∑
n=1

ambn

(ma+1 + nb+1)λ

� μL∗
( ∞∑

m=1

m(1−λ )(a+1)+a(1−p)−apαam
p

) 1
p
( ∞∑

n=1

n(1−λ )(b+1)+b(1−q)+bqαbn
q

) 1
q
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and
∞∑

n=1

n(b+1)(λ−1)(p−1)+b−pbα

( ∞∑
m=1

am

(ma+1 + nb+1)λ

)p

� μp(L∗)p
∞∑

m=1

m(1−λ )(a+1)+a(1−p)−apαam
p,

where the constants involved in the right-hand sides of the inequalities are the best
possible.

REMARK 5. In particular, if α = 0 , then L∗ = B∗.

Logarithm function

Let xu(x) = ln(1 + x) and yv(y) = ln(1 + y) . Then (xu(x))′ =
1

1 + x
and

(yv(y))′ =
1

1 + y
. It is known from (12) that μ = 1 and according to Theorem 4 we

have

COROLLARY 3. Let
1
p

+
1
q

= 1 , with p > 1, and α be real parameter defined by

(17). Then the following inequalities hold and are equivalent
∞∑

m=1

∞∑
n=1

ambn

(ln(1 + m) + ln(1 + n))λ

� L∗
( ∞∑

m=1

(ln(1+m))1−λ−pα (1+m)p−1am
p

) 1
p
( ∞∑

n=1

(ln(1+n))1−λ+qα (1+n)q−1bn
q

) 1
q

and
∞∑

n=1

(ln(n + 1))(λ−1)(p−1)−pα (1 + n)−1

( ∞∑
m=1

am

(ln(1 + m) + ln(1 + n))λ

)p

� (L∗)p
∞∑

m=1

(ln(1 + m))1−λ−pα (1 + m)p−1am
p,

where the constant factors L∗ and (L∗)p are the best possible.

Inverse trigonometric function

We enumerate here only the cases for which u(x) and v(y) are inverse tangens
function. Let u(x) = arctgx and v(y) = arctgy . Define two functions by

ωp(x) = (xarctgx)1−λ−pα
(

arctgx +
x

1 + x2

)1−p

and

ωq(y) = (yarctgy)1−λ+qα
(

arctgy +
y

1 + y2

)1−q

.
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By Theorem 4 we have

COROLLARY 4. Let
1
p

+
1
q

= 1 , with p > 1, and α be real parameter defined by

(17). Then the following inequalities hold and are equivalent

∞∑
m=1

∞∑
n=1

ambn

(marctgm + narctgn)λ
� L∗

( ∞∑
m=1

ωp(m)am
p

) 1
p
( ∞∑

n=1

ωq(n)bn
q

) 1
q

and

∞∑
n=1

(narctgn)(λ−1)(p−1)−pα
(

arctgn +
n

1 + n2

)( ∞∑
m=1

am

(marctgm + narctgn)λ

)p

� (L∗)p
∞∑

m=1

ωp(m)am
p,

where the constant factors L∗ and (L∗)p are the best possible.

Exponent function

Let u(x) = ax and v(y) = ay where a > 1 . Then xu(x) = xax and yv(y) = yay

and according to Theorem 4 we have the following result

COROLLARY 5. Let
1
p

+
1
q

= 1 , with p > 1, and α be real parameter defined by

(17). Then the following inequalities hold and are equivalent

∞∑
m=1

∞∑
n=1

ambn

(mam + nan)λ
� L∗

( ∞∑
m=1

(mam)1−λ−pα (am + mam ln a)1−p am
p

) 1
p

×

×
( ∞∑

n=1

(nan)1−λ+qα (an + nan ln a)1−p bn
q

) 1
q

and

∞∑
n=1

(nan)(λ−1)(p−1)−pα (an + nan ln a)

( ∞∑
m=1

am

(mam + nan)λ

)p

� (L∗)p
∞∑

m=1

(mam)1−λ−pα (am + mam ln a)1−p am
p,

where the constant factors L∗ and (L∗)p are the best possible.

In a such way, a great deal of important inequalities might be established. Here
they are omitted.
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[14] G. H. HARDY, J. E. LITTLEWOOD AND G. PÓLYA, Inequalities Cambridge Univ.Press, Cambridge 1952.

[15] L. HSU, Y. WANG, A Refinement of Hilbert’s Double Series Theorem, J. Math. Res. Exp., Vol. 11, 1
(1991) 143–144.

[16] L. HSU, On a Refinement of Hilbert’s Inequality, Jishou Univ. Nat Sci. Ed. Vol. 18, 3 (1997). 1–4.

[17] K. JICHANG, L. DEBNATH, On New Generalizations of Hilbert’s Inequality and Their Applications, J.
Math. Anal. Appl. Vol. 245, 1 (2000), 248–265.
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