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Abstract. We give the maximum of the difference

Dp(a, b;w) :=

⎛⎝ n∑
k=1

wka
p
k
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p
⎛⎝ n∑
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wkbq
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⎞⎠
1
q

−
n∑

k=1

wkakbk

derived from a weighted Hölder’s inequality for p, q > 1 , p−1 + q−1 = 1 and for positive
n -tuples a := (a1, . . . , an) , b := (b1, . . . , bn) and a weight w := (w1, . . . , wn) under certain
conditions. The discussion in this note is simpler than our previous ones. It comes from the
arrangement of a given weight and a linearization of Dp(a, b; w) via Young’s inequality. As a
consequence, we give a , b and w which attain the maximum.

1. Introduction

Throughout this note, let a := (a1, . . . , an) and b := (b1, . . . , bn) be n -tuples of
positive numbers, and w := (w1, . . . , wn) be a weight. Suppose that

0 < m1 � ak � M1 and 0 < m2 � bk � M2 (k = 1, . . . , n).

Then we give the maximum of the difference

Dp(a, b; w) :=

(
n∑

k=1

wka
p
k

) 1
p
(

n∑
k=1

wkb
q
k

) 1
q

−
n∑

k=1

wkakbk

for p, q > 1 with p−1 + q−1 = 1 , derived from a weighted Hölder’s inequality, i.e.,
Dp(a, b; w) � 0 .

In [1], an upper bound of Dp(a, b; w) for w =
(

1
n , . . . ,

1
n

)
was given by using

Ozeki’s technique ([1], [2], [4], [5]). Moreover in [3] the estimation was shown to be
the best possible in a reasonable sense by the minimax theorem which is implicitly
discussed the maximum of Dp(a, b; w) .

In this note, we give the maximum of Dp(a, b; w) by a simpler argument than
previous ones in [1] and [3]. This simplification is based on a linearization of Dp(a, b; w)
via Young’s inequality, see Lemma 1 in the next section.
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2. Maximum of the difference Dp(a, b; w)

Without loss of generality we may assume M1 = M2 = 1 . Conveniently we write
m1 = α and m2 = β with α, β ∈ (0, 1) . Then Dp(a, b; w) is considered as a function
defined on the product of two n -dimensional cubes [α, 1]n and [β , 1]n . It follows from
[3, Lemma 2.2] that Dp(a, b; w) is convex in both a and b for a fixed weight w . Hence
its maximum is attained at an extreme point of the definition domain [α, 1]n × [β , 1]n .
So to compute the maximum, we only pay an attention to the extreme points (a, b) ,
that is, a, b such that ai = α, 1 and bi = β , 1 for i, j ∈ In := {1, 2, . . . , n} . Denote
by Ja and Jb (⊂ In) the sets

Ja := {i ∈ In; ai = 1} and Jb := {i ∈ In; bi = 1}.
Moreover we define a reformed weight w̃ := (w̃1, w̃2, w̃3, w̃4) for a given weight
w = (w1, w2, . . . , wn) by

w̃1 = w̃1(a, b) :=
∑

i∈Ja∩Jb

wi, w̃2 = w̃2(a, b) :=
∑

i∈Ja∩Jc
b

wi,

w̃3 = w̃3(a, b) :=
∑

i∈Jc
a∩Jb

wi and w̃4 = w̃4(a, b) :=
∑

i∈Jc
a∩Jc

b

wi.

We put W̃ the set of all reformed weights w̃ for a weight w . Then it follows from
wi � 0 ( i ∈ In ) and

∑
i∈In

wi = 1 that

w̃1, w̃2, w̃3, w̃4 � 0 and w̃1 + w̃2 + w̃3 + w̃4 = 1.

Using the reformed weight, we can rewrite Dp(a, b; w) as follows:

Dp(a, b; w) = {w̃1 + w̃2 + αp(w̃3 + w̃4)}
1
p {w̃1 + w̃3 + βq(w̃2 + w̃4)}

1
q

− (w̃1 + βw̃2 + αw̃3 + αβw̃4). (1)

Now we here introduce D̃(w̃, τ) for τ > 0 , as a linearization of Dp(a, b; w) in a sense

D̃(w̃, τ) : =
1
p
{w̃1 + w̃2 + αp(w̃3 + w̃4)}τp +

1
q
{w̃1 + w̃3 + βq(w̃2 + w̃4)}τ−q

− (w̃1 + βw̃2 + αw̃3 + αβw̃4). (2)

Then, recalling Young’s inequality that h
1
p k

1
q � 1

ph + 1
q k for h, k � 0 , we have

Dp(a, b; w) � D̃(w̃, τ) by (1) and (2). Further the following lemma ensures that Dp

is given by using D̃(w̃, τ) as a substitute for Dp(a, b; w) :

LEMMA 1. The maximum Dp of Dp(a, b; w) for a, b, w is represented as follows :

Dp

(
:= max

a,b,w
Dp(a, b; w)

)
= max

w̃∈W̃
min
τ>0

D̃(w̃, τ) = min
τ>0

max
w̃∈W̃

D̃(w̃, τ).
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Proof. The equality holds in h
1
p k

1
q � 1

ph + 1
q k for all h, k � 0 if h = k . So we

see that
Dp(a, b; w) = min

τ>0
D̃(w̃, τ). (3)

Indeed, it is attained at τ = τ
w̃

such that

{w̃1 + w̃2 + αp(w̃3 + w̃4)}τp

w̃
= {w̃1 + w̃3 + βq(w̃2 + w̃4)}τ−q

w̃
. (4)

So we have maxa,b,w Dp(a, b; w) = max
w̃∈W̃

minτ>0 D̃(w̃, τ) .

Nextwe see that w̃ → D̃(w̃, τ) is linear (hence concave) on W̃ and τ → D̃(w̃, τ) is
convex on (0,∞) . So the identity max

w̃∈W̃
minτ>0 D̃(w̃, τ) = minτ>0 max

w̃∈W̃
D̃(w̃, τ)

holds by the mini-max theorem [6, pp.75-76], [3, Theorem S]. �

In the below, we give some properties for D̃(w̃, τ) . Since W̃ is a convex set with
four extreme points ẽ1 = (1, 0, 0, 0), . . . , ẽ4 = (0, 0, 0, 1) , we see that

max
w̃∈W̃

D̃(w̃, τ) = max
i∈{1,2,3,4}

D̃(ẽi, τ).

In addition, each D̃(ẽi, τ) is calculated by (2) :

D̃(ẽ1, τ) =
1
p
τp +

1
q
τ−q − 1, D̃(ẽ2, τ) =

1
p
τp +

1
q
βqτ−q − β ,

D̃(ẽ3, τ) =
1
p
αpτp +

1
q
τ−q − α and D̃(ẽ4, τ) =

1
p
αpτp +

1
q
βqτ−q − αβ .

(5)

Now let us state some elementary facts about these functions for τ > 0 .

LEMMA 2.
(i) D̃(w̃, τ) = D̃(ẽ1, τ)w̃1 + D̃(ẽ2, τ)w̃2 + D̃(ẽ3, τ)w̃3 + D̃(ẽ4, τ)w̃4 .

(ii) Put τ1 = 1 , τ2 = β
1
p , τ3 = α− 1

q and τ4 = α− 1
q β

1
p . Then all functions

D̃(ẽk, τ) ( k = 1, 2, 3, 4 ) are strictly decreasing on 0 < τ � τk , strictly
increasing on τk � τ and strictly convex on τ > 0 . Moreover we have
D̃(ẽk, τk) = 0 and limτ→0 D̃(ẽk, τ) = limτ→∞ D̃(ẽk, τ) = ∞ .

There exist θp,α ∈ (α, 1) and θq,β ∈ (β , 1) such that

1 − αp

p(1 − α)
= θp−1

p,α

(
= θ

p
q
p,α

)
and

1 − βq

q(1 − β)
= θq−1

q,β

(
= θ

q
p
q,β

)
(6)

by applying the mean-value theorem to functions tp and tq respectively. Related to the
notations θp,α and θq,β , we have some properties for functions D̃(ẽi, τ) (1 � i, j � 4 ):

LEMMA 3. Let D̃i,j(τ) := D̃(ẽi, τ)−D̃(ẽj, τ) ( 1 � i, j � 4 ) . Then the following
facts hold :

(i) D̃1,2(τ) is strictly decreasing and D̃1,2(τ) = 0 has a (unique ) solution

τ = θ
1
p
q,β (∈ (β

1
p , 1)) .
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(ii) D̃1,3(τ) is strictly increasing and D̃1,3(τ) = 0 has a solution τ = θ
− 1

q
p,α (∈

(1,α− 1
q )) .

(iii) D̃2,3(τ) is strictly increasing and D̃2,3(τ) = 0 has a solution τ = τ∗(∈
(θ

1
p
q,β , θ

− 1
q

p,α ) ⊂ (β
1
p ,α− 1

q )) .

(iv) D̃2,4(τ) is strictly increasing and D̃2,4(τ) = 0 has a solution τ = β
1
p θ

− 1
q

p,α (∈
(β

1
p , θ

− 1
q

p,α )) .

(v) D̃3,4(τ) is strictly decreasing and D̃3,4(τ) = 0 has a solution τ = α− 1
q θ

1
p
q,β(∈

(θ
1
p
q,β ,α

− 1
q )) .

Proof. We only prove (i) since (ii) – (v) are similarly shown. It follows from
D̃1,2(τ) = 1

q (1 − βq)τ−q − (1 − β) that D̃′
1,2(τ) = −(1 − βq)τ−q−1 < 0 . Moreover

D̃1,2(τ) = 0 has a unique solution τ =
{

1−βq

q(1−β)

} 1
q

= θ
1
p
q,β and the solution is included

in (β
1
p , 1) by (6). �

Now we express the maximum Dp of Dp(a, b; w) by using D̃(w̃, τ) :

LEMMA 4. The maximum value Dp is given as follows :

Dp = D̃(ẽ2, τ∗) = D̃(ẽ3, τ∗) = (1 − t)D̃(ẽ2, τ∗) + tD̃(ẽ3, τ∗) = D̃(w̃t, τ∗) (7)

for all t ∈ [0, 1] where w̃t := (0, 1− t, t, 0) , ẽ2 = (0, 1, 0, 0) , ẽ3 = (0, 0, 1, 0) and τ∗
is defined by Lemma 3 (iii) .

Proof. First of all we show that for each τ > 0

max
w̃∈W̃

D̃(w̃, τ)
(

= max
i∈{1,2,3,4}

D̃(ẽi, τ)
)

= max{D̃(ẽ2, τ), D̃(ẽ3, τ)}, (8)

or

D̃(ẽ1, τ) < max{D̃(ẽ2, τ), D̃(ẽ3, τ)} and D̃(ẽ4, τ) < max{D̃(ẽ2, τ), D̃(ẽ3, τ)}.
(9)

Note that D̃(ẽ1, τ) < D̃(ẽ2, τ) for θ
1
p
q,β < τ and D̃(ẽ1, τ) < D̃(ẽ3, τ) for 0 < τ < θ

− 1
q

p,α

by Lemma 3 (i) and (ii) , respectively. Hence since θ
1
p
q,β < θ

− 1
q

p,α , the first inequality
of (9) holds for all τ > 0 . Similarly it follows from Lemma 3 (iv) and (v) that the

second inequality holds for all τ > 0 by β
1
p θ

− 1
q

p,α < α− 1
q θ

1
p
q,β .

Moreover we see from (8), Lemmas 2 (ii) and 3 (iii) that max
w̃∈W̃

D̃(w̃, τ) is
a convex function of τ > 0 and its minimum attains at τ = τ∗ , i.e.,

min
τ>0

max
w̃∈W̃

D̃(w̃, τ)=D̃(ẽ2, τ∗)=D̃(ẽ3, τ∗)
(
=(1−t)D̃(ẽ2, τ∗)+tD̃(ẽ3, τ∗)=D̃(w̃t, τ∗)

)
by Lemma 2 (i) . The first inequality of (7) holds by Lemma 1. �
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From the above lemmas we have the following theorem:

THEOREM 5. Let α, β ∈ (0, 1) and p, q > 1 with 1
p + 1

q = 1 be given, and

τ = τ∗ be a unique solution of the equation 1
pτ

p + 1
qβ

qτ−q − β = 1
pα

pτp + 1
qτ

−q − α
which appears in Lemma 3 (iii) . Then

max
a,b,w

Dp(a, b; w) = (w̃2∗ + αpw̃3∗)
1
p (w̃3∗ + βqw̃2∗)

1
q − (βw̃2∗ + αw̃3∗)

=
1
p
τp
∗ +

1
q
βqτ−q

∗ − β =
1
p
αpτp

∗ +
1
q
τ−q
∗ − α (10)

where a = (a1, . . . , an) and b = (b1, . . . , bn) are n -tuples of positive numbers [α, 1]n

and [β , 1]n respectively, w = (w1, . . . , wn) is a weight, and the constants w̃2∗ and w̃3∗
are defined by

w̃2∗ :=
1 − αpτpq

∗
1 − αpτpq

∗ + τpq
∗ − βq

, w̃3∗ :=
τpq
∗ − βq

1 − αpτpq
∗ + τpq

∗ − βq
∈ (0, 1). (11)

The maximum is attained at (a, b) in the left side of (10) if and only if ai = 1,α ,
bi = 1, β and a reformed weight w̃ generated by a given weight w is (0, w̃2∗, w̃3∗, 0) .

Proof. Since Dp(a, b; w) is convex in both a and b , its maximum is attained at an
extreme point (a, b) of the product [α, 1]n×[β , 1]n , that is, ai = α, 1 and bi = β , 1 for
i, j ∈ {1, 2, . . . , n} . By Lemma 4 we see that the maximum Dp of Dp(a, b; w) is given
by D̃(w̃∗, τ∗) where w̃∗ = (0, w̃2∗, w̃3∗, 0) with w̃2∗ + w̃3∗ = 1 , w̃2∗, w̃3∗ � 0 . Since
this reformed weight w̃∗ satisfies (4) for τw̃ = τ∗ , we obtain (11). Here Lemma 3
(iii) implies that the constants w̃2∗ and w̃3∗ are included in (0, 1) . Taking any weight
w = w∗ which generates w̃∗ , we have Dp(a, b; w∗) = D̃(w̃∗, τ∗) by (3). Moreover

by (1) we have Dp(a, b, w∗) = (w̃2∗ + αpw̃3∗)
1
p (w̃3∗ + βqw̃2∗)

1
q − (βw̃2∗ + αw̃3∗) .

So we obtain the first equality of (10) . Further since Dp = D(ẽ2, τ∗) (= D(ẽ3, τ∗)) by
Lemma 4, the second equality of (10) holds. �

EXAMPLE 6. Let α = β = 1
2 , p = q = 2 and n = 4 in Theorem 5. Then since

the equality D(ẽ2, τ∗) = D(ẽ3, τ∗) implies τ∗ = 1 , we have by (10)

1
p
τp
∗ +

1
q
βqτ−q

∗ − β
(

=
1
p
αpτp

∗ +
1
q
τ−q
∗ − α

)
=

1
8
.

Moreover we have w̃2∗ = w̃3∗ = 1
2 ∈ (0, 1) , so that

(w̃2∗ + αpw̃3∗)
1
p (w̃3∗ + βqw̃2∗)

1
q − (βw̃2∗ + αw̃3∗) =

1
8
.

On the other hand, the maximum of Dp(a, b; w) is given by (ai, bi) = (1, β) or (α, 1)
for i ∈ I4 := {1, 2, 3, 4} . We consider three cases |Ja| = 1, 2 and 3 where |Ja|
expresses the cardinal number of Ja :
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Let |Ja| = 1 (or |Jb| = |I4 \ Ja| = 3 ) . Then we may suppose that Ja = {i1} and
Jb = {i2, i3, i4} for i1, i2, i3, i4 ∈ I4 . Hence we have wi1 = 1

2 and wi2 , wi3 , wi4 ∈ [0, 1
2 ]

with wi2 + wi3 + wi4 = 1
2 , so that

Dp(a, b; w)

=

{
wi1 · 12 + (wi2 + wi3 + wi4) ·

(
1
2

)2
} 1

2
{

wi1 ·
(

1
2

)2

+ (wi2 + wi3 + wi4) · 12

} 1
2

−
(

wi1 · 1 · 1
2

+ (wi2 + wi3 + wi4) ·
1
2
· 1
)

=

{
1
2
· 12 +

1
2
·
(

1
2

)2
} 1

2
{

1
2
·
(

1
2

)2

+
1
2
· 12

} 1
2

−
(

1
2
· 1 · 1

2
+

1
2
· 1
2
· 1
)

=
1
8
.

Let |Ja| = 2 (or |Jb| = |I4 \ Ja| = 2 ) . Then we may suppose that Ja = {i1, i2}
and Jb = {i3, i4} . Hence we have wi1 , wi2 , wi3 , wi4 ∈ [0, 1

2 ] with wi1 + wi2 = 1
2 and

wi3 + wi4 = 1
2 , so that

Dp(a, b; w)

=

{
(wi1 + wi2) · 12 + (wi3 + wi4) ·

(
1
2

)2
} 1

2
{

(wi1 + wi2) ·
(

1
2

)2

+ (wi3 + wi4) · 12

} 1
2

−
{

(wi1 + wi2) · 1 · 1
2

+ (wi3 + wi4) ·
1
2
· 1
}

=
1
8
.

Let |Ja| = 3 . Then similarly we have Dp(a, b; w) = 1
8 . Therefore we have (10).

3. Variational expression of the maximum Dp

We first recall an upper bound D0 in our previous note [1, p.46]. For convenience,
we put, for fixed p, q > 1 with 1

p + 1
q = 1 and α, β ∈ (0, 1) ,

K :=
{

1 − αp

p(1 − α)

} 1
p
{

1 − βq

q(1 − β)

} 1
q

.

Moreover we need that the equation

(1 − α)(1 − Kτ
1
q ) = (1 − β)(1 − Kτ−

1
p ) (≡ c) (12)

has a unique solution τ = τ0 , by which the upper bound D0 of Dp(a, b; w0) for the
weight w0 = ( 1

n , . . . ,
1
n ) was given by

D0 :=
1 − α
1 − αp

+
1 − β
1 − βq

− 1 − c

(
1

1 − αp
+

1
1 − βq

− 1

)
. (13)

In this section, we show the correspondence of the maximum Dp and D0 . The
following lemma is technically essential:



DIFFERENCE DERIVED FROM WEIGHTED HÖLDER’S INEQUALITY 343

LEMMA 7. Let τ0 be as in above. Then the unique solution τ∗ in Lemma 3 (iii)
is expressed as

τ∗ =
{

p(1 − α)
1 − αp

· 1 − βq

q(1 − β)
τ0

} 1
pq

.

Proof. For convenience, we put

τ� =
{

p(1 − α)
1 − αp

· 1 − βq

q(1 − β)
τ0

} 1
pq

.

Since 1 − c
1−α = Kτ

1
q
0 and 1 − c

1−β = Kτ
− 1

p
0 by (12), it follows from (13) that

D0 =
1 − α
1 − αp

+
1 − β
1 − βq

−1− c
1 − αp

− c
1 − βq

+c =
1 − α
1 − αp

Kτ
1
q
0 +

1 − β
1 − βq

Kτ
− 1

p
0 −1+c.

Here, using c = (1 − α)(1 − Kτ
1
q
0 ) , we have

D0 =
1 − α
1 − αp

Kτ
1
q
0 +

1 − β
1 − βq

Kτ
− 1

p
0 − (1 − α)Kτ

1
q
0 − α

= αp 1 − α
1 − αp

Kτ
1
q
0 +

1 − β
1 − βq

Kτ
− 1

p
0 − α

=
αp

p

{
1−αp

p(1−α)

}− 1
q
{

1−βq

q(1−β)

} 1
q

τ
1
q
0 +

1
q

{
1−αp

p(1−α)

} 1
p
{

1−βq

q(1−β)

}− 1
p

τ
− 1

p
0 −α

=
1
p
αpτ�

p +
1
q
τ�

−q − α = D̃(ẽ3, τ�) (by (5)).

Similarly, using c = (1 − β)(1 − Kτ
− 1

p
0 ) , we obtain

D0 =
1
p
τ�

p +
1
q
βqτ�

−q − β = D̃(ẽ2, τ�).

Namely we have D̃2,3(τ�) = D̃(ẽ2, τ�) − D̃(ẽ3, τ�) = 0 . Since the solution τ = τ∗ of
D̃2,3(τ�) = 0 is unique by Lemma 3 (iii) , we have τ∗ = τ� . �

THEOREM 8. The maximum Dp (of Dp(a, b, ; w) ) coincides with the upper
bound D0 .

Proof. Let τ� be as in the proof of Lemma 7. Then D0 = D̃(ẽi, τ�) for i = 2, 3
and τ� = τ∗ are proved in Lemma 7. On the other hand we have Dp = D̃(ẽi, τ∗) for
i = 2, 3 by Lemma 4 and so Dp = D0 . �

Incidentally, the proof of Theorem 8 says that Lemmas 4 and 7 play a role to
combine Theorem 5 with the previous result.

Now to calculate Dp given by (7) directly, we have the following:

COROLLARY 9. The maximum value Dp is a unique solution of the equation

p
1
p q

1
q

1 − αpβq
{(1 − βq)t + β − αβq} 1

p {(1 − αp)t + α − αpβ} 1
q = 1 (t > 0). (14)
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Proof. Let ξ = τp
∗ and η = τ−q

∗ . It follows from D̃(ẽ2, τ∗) = D̃(ẽ3, τ∗) = Dp

that
1
p
ξ +

1
q
βqη − β =

1
p
αpξ +

1
q
η− α = Dp.

So we have

ξ =
p

1 − αpβq
{(1−βq)Dp+β−αβq} and η =

q
1 − αpβq

{(1−αp)Dp+α−αpβ}.

Since ξ
1
pη

1
q = 1 , we see that Dp is a solution of (14). Next let f (t) be the function

defined by the left side of (14). Then f (t) is strictly increasing and ran f (t) =
(f (0),∞) . Moreover we have

(0 <) {p(β − αβq)} 1
p {q(α − αpβ)} 1

q

� 1
p
· p(β − αβq) +

1
q
· q(α − αpβ)

= β(1 − αp) + α(1 − βq)

�
(

1
p

+
1
q
βq

)
(1 − αp) +

(
1
q

+
1
p
αp

)
(1 − βq)

= 1 − αpβq

by Young’s inequality, so that f (0) = 1
1−αpβq {p(β −αβq)} 1

p {q(α−αpβ)} 1
q ∈ (0, 1) .

Hence (14) has a unique solution t = Dp . �
One of the authors introduced the following constant in [1, Theorem 3.2]:

C(u, v; γ ) =
1
u

{
1 − γ v

v(1 − γ )

}u−1

− γ − γ v

1 − γ v

for u > 1 , v > 1 with 1
u + 1

v = 1 and 0 < γ < 1 . Incidentally we consider the
maximum of Dp(a, b; w) in the following restriction for a and b :

1 � a1 � · · · � an � α and 1 � b1 � · · · � bn � β (0 < α, β < 1).

Then it is given by

max
a,b,w

Dp(a, b; w) = max {C(p, q; β), C(q, p;α)} .
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