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ASYMPTOTIC STABILITY AND INTEGRAL INEQUALITIES FOR
SOLUTIONS OF LINEAR SYSTEMS ON RADON-NIKODYM SPACES

CONSTANTIN BUSE, CONSTANTIN P. NICULESCU AND JOSIP PECARIC

Abstract. We consider the mild solution uf(-,O) of a well-posed nonhomogeneous Cauchy
problem

it) = AWu() +1(0), 120

u(0) = 0
on a Radon-Nikodym space X, where A(-) is a linear operator-valued function. Under certain
additional conditions we will prove that if the homogeneous system

u(t) =A(tu(t), t>=0

is exponentially stable, then for each function f belonging to the Sobolev space W]?l (R4+,X),
1 < p < o0, the solution uf(-,()) lies in the same space. The converse statement is more
subtle, but it certainly works in the autonomous case. Integral inequalities of Landau type for
the evolution semigroup associated with the system (A(7)) on the space WI(,)1 (R4, X) are also
derived.
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