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ASYMPTOTIC STABILITY AND INTEGRAL INEQUALITIES FOR

SOLUTIONS OF LINEAR SYSTEMS ON RADON–NIKODÝM SPACES

CONSTANTIN BUŞE, CONSTANTIN P. NICULESCU AND JOSIP PEČARIĆ

Abstract. We consider the mild solution uf (·, 0) of a well-posed nonhomogeneous Cauchy
problem {

u̇(t) = A(t)u(t) + f (t), t � 0

u(0) = 0

on a Radon-Nikodým space X , where A(·) is a linear operator-valued function. Under certain
additional conditions we will prove that if the homogeneous system

u̇(t) = A(t)u(t), t � 0

is exponentially stable, then for each function f belonging to the Sobolev space W0
p1(R+,X),

1 � p < ∞, the solution uf (·, 0) lies in the same space. The converse statement is more
subtle, but it certainly works in the autonomous case. Integral inequalities of Landau type for
the evolution semigroup associated with the system (A(t)) on the space W0

p1(R+, X) are also
derived.
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