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Abstract. The main purpose of this paper is first to improve two classical dual Brunn-Minkowski
inequalities, then we generalize another dual Brunn-Minkowski inequality from generic volume
to Quermassintegral.

The setting for this paper is n -dimensional Euclidean space R
n . Let C n denote

the set of non-empty convex figures (compact, convex subsets) and K n denote the
subset of C n consisting of all convex bodies (compact convex subsets with non-empty
interiors) in R

n . We reserve the letter u for unit vectors, and the letter B is reserved
for the unit ball centered at the origin. The surface of B is Sn−1 .

We use V(K) for the n -dimensional volume of convex body K . Let h(K, ·) :
Sn−1 → R, denote the support function of K ∈ K n ; i.e.,

h(K, u) = Max{u · x : x ∈ K}, u ∈ Sn−1, (1)

where u · x denotes the usual inner product of u and x in R
n .

The radial function ρ(K, ·) : Sn−1 → R of a compact subset K of R
n is defined

by the relation
ρ(K, u) = Max{λ � 0 : λu ∈ K}.

If ρ(K, ·) is positive and continuous, K is called a star body. Let ϕn denote the set of
star bodies in R

n .
The polar coordinate formula for volume in R

n is

V(K) =
1
n

∫
Sn−1

ρ(K, u)ndS(u) (2)
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1. Definitions

If Ki ∈ K n (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are nonnegative real
numbers, then of fundamental importance is the fact that the volume of

∑r
i=1 λiKi is a

homogeneous polynomial in λi given by [7]

V(
r∑

i=1

λiKi) =
∑

i1,...,in

λi1 . . . λinVi1...in , (3)

where the sum is taken over all n -tuples (i1, . . . , in) of positive integers not exceeding
r . The coefficient Vi1...in depends only on the bodies Ki1 , . . . , Kin and is uniquely
determined by (3), it is called the mixed volume of Ki, . . . , Kin , and is written as
V(Ki1 , . . . , Kin). Let K1 = . . . = Kn−i = K and Kn−i+1 = . . . = Kn = L , then the
mixed volume V(K1 . . . Kn) is written as Vi(K, L) .

The radialMinkowski linear combination, λ1K1+̃ · · · +̃λrKr, is defined byLutwak
[9]

λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃λrxr : xi ∈ Ki}, (4)

for K1, . . . , Kr ∈ ϕn and λ1, . . . , λr ∈ R .
It has the following important property:

ρ(λK+̃μL, ·) = λρ(K, ·) + μρ(L, ·). (5)

for K, L ∈ ϕn and λ ,μ � 0.
For K1, . . . , Kr ∈ ϕn and λ1, . . . , λr � 0 , the volume of the radial Minkowski

linear combination λ1K1+̃ · · · +̃λrKr is a homogeneous n th polynomial in the λi ,

V(λ1K1+̃ · · · +̃λrKr) =
∑

Ṽi1,...,inλi1 · · · λin , (6)

where the sum is taken over all n -tuples (i1, . . . , in) whose entries are positive in-
tegers not exceeding r . If we require the coefficients of the polynomial in (6) to
be symmetric in their argument, then they are uniquely determined. The coefficient
Ṽi1,...,in is nonnegative and depends only on the bodies Ki1 , . . . , Kin . Here we de-
note Ṽi1,...,in to Ṽ(Ki1 , . . . , Kin) and is called the dual mixed volume of Ki1 , . . . , Kin .
The dual mixed volumes Ṽi(K, B) is written as W̃i(K) , if K1 = · · · = Kn−i = K,
Kn−i+1 = · · · = Kn = B .

For Ki ∈ ϕn , then [9]

W̃i(K) =
1
n

∫
Sn−1

ρ(K, u)n−idS(u). (7)

Lutwak defines the radial Blaschke linear combination [9]. If K, L ∈ ϕn and
λ ,μ � 0 , then λ · K+̆μ · L, is the star body whose radial function is given by:

ρ(λ · K+̆μ · L, ·)n−1 = λρ(K, ·)n−1 + μρ(L, ·)n−1. (8)

We shall call the addition and scalar multiplication radial Blaschke addition and
scalar multiplication.
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A new addition, harmonic Blaschke addition, be defined by Lutwak [8]. Suppose
K, L ∈ ϕn , and λ ,μ � 0 (not both zero). To define the harmonic Blaschke linear
combination, λK+̂μL, first define ξ > 0 by

ξ 1/(n+1) =
1
n

∫
Sn−1

[λV(K)−1ρ(K, u)n+1 + μV(L)−1ρ(L, u)n+1]n/(n+1)dS(u). (9)

The body λK+̂μL ∈ ϕn is defined as the body whose radial function is given by [8]

ξ−1ρ(λK+̂μL, ·)n+1 = λV(K)−1ρ(K, ·)n+1 + μV(L)−1ρ(L, ·)n+1. (10)

From this definition and (2), it follows immediately that ξ = V(λK+̂μL) , and hence

V(λK+̂μL)−1ρ(λK+̂μL, ·)n+1 = λV(K)−1ρ(K, ·)n+1 + μV(L)−1ρ(L, ·)n+1. (11)

2. Main results

In recent years some authors including Ball [1-3], Bourgain [4], Gardner [5-6],
Schneider [7], Lutwak [8-11] and Leng et al [12] have given good-sized attention
to the Brunn-Minkowski theory and Brunn-Minkowski-Firey theory and their various
generalizations. In particular, Lutwak had established the following three important
Brunn-Minkowski type inequalities:

THEOREM A (see [11]) If K, L ∈ K n , then

V(K+̃L)1/n � V(K)1/n + V(L)1/n, (12)

with equality if and only if K and L are homothetic.

THEOREM B (see [9]) If K, L ∈ ϕn , then

V(K+̆L)(n−1)/n � V(K)(n−1)/n + V(L)(n−1)/n, (13)

with equality if and only if K and L are dilates.

THEOREM C (see [8]) If K, L ∈ ϕn, and λ ,μ > 0 , then

V(λK+̂μL)1/n � λV(K)1/n + μV(L)1/n, (14)

with equality if and only if K and L are dilates.
First, in this paper, we prove inequalities (12) and (13), then we generalize in-

equality (14) to Quermassintegral.

THEOREM 1. If K, L ∈ K n , then

V(K+̃L)1/n � V(αK+̃(1 − α)L)1/n + V((1 − α)K+̃αL)1/n

� V(K)1/n + V(L)1/n, for α ∈ [0, 1], (15)

In each case, the sign of equality holds if and only if K and L are homothetic.
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REMARK 1. Taking α = 1 to (15), inequality (15) changes to inequality (12)
which was given by Lutwak [11].

THEOREM 2. If K, L ∈ ϕn , then

V(K+̆L)(n−1)/n � V(αK+̆(1 − α)L)(n−1)/n + V((1 − α)K+̆αL)(n−1)/n

� V(K)(n−1)/n + V(L)(n−1)/n, for α ∈ [0, 1]. (16)

In each case, the sign of equality holds if and only if K and L are dilates.

REMARK 2. Taking α = 1 to (16), inequality (16) changes to inequality (13)
which was given by Lutwak [9].

THEOREM 3. If K, L ∈ ϕn, λ > 0 and μ > 0 , then

W̃i(λK+̂μL)(n+1)/(n−i)

V(λK+̂μL)

� λ W̃i(K)(n+1)/(n−i)

V(K)
+

μW̃i(L)(n+1)/(n−i)

V(L)
, for n > i > −1, (17)

with equality if and only if K is a dilation of L .

REMARK 3. Taking i = 0 to (17), inequality (17) changes to inequality (14)
which was given by Lutwak [8].

Proof of Theorem 1. From (2), (5) and Minkowski inequality for integral, we
obtain that

V(K+̃L)1/n =
(

1
n

∫
Sn−1

ρ(K+̃L, u)ndS(u)
)1/n

=
(

1
n

∫
Sn−1

(ρ(K, u) + ρ(L, u))ndS(u)
)1/n

=
(

1
n

∫
Sn−1

(αρ(K, u) + (1−α)ρ(L, u))

+((1 − α)ρ(K, u) + αρ(L, u)))n dS(u)
)1/n

�
(

1
n

∫
Sn−1

(αρ(K, u) + (1 − α)ρ(L, u))ndS(u)
)1/n

+
(

1
n

∫
Sn−1

((1 − α)ρ(K, u) + αρ(L, u))ndS(u)
)1/n

with equality if and only if K is a dilation of L .
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From (5), it follows that

V(K+̃L)1/n

�
(

1
n

∫
Sn−1

(ρ(αK+̃(1 − α)L, u))ndS(u)
)1/n

+
(

1
n

∫
Sn−1

(ρ((1 − α)K+̃αL, u))ndS(u)
)1/n

= V(αK+̃(1 − α)L)1/n + V((1 − α)K+̃αL)1/n.

On the other hand, from (12), we have

V(αK+̃(1 − α)L)1/n � αV1/n(K) + (1 − α)V1/n(L)

with equality if and only if K is a dilation of L , and

V((1 − α)K+̃αL)1/n � (1 − α)V1/n(K) + αV1/n(L),

with equality if and only if K is a dilation of L . Therefore,

V(αK+̃(1 − α)L)1/n + V((1 − α)K+̃αL)1/n � V(K)1/n + V(L)1/n,

with equality if and only if K is a dilation of L .
The proof is complete.

Proof of Theorem 2. From (2), (8) and in view of Minkowski inequality, we obtain
that

V(K+̆L)(n−1)/n =
(

1
n

∫
Sn−1

ρ(K+̆L, u)ndS(u)
)(n−1)/n

=
(

1
n

∫
Sn−1

(ρ(K, u)n−1 + ρ(L, u)n−1)n/(n−1)dS(u)
)(n−1)/n

=
(

1
n

∫
Sn−1

{[αρ(K, u)n−1 + (1 − α)ρ(L, u)n−1]

+[(1 − α)ρ(K, u) + αρ(L, u)]}(n/n−1)dS(u)
)(n−1)/n

�
(

1
n

∫
Sn−1

[αρ(K, u)n−1 + (1 − α)ρ(L, u)n−1](n/n−1)dS(u)
)(n−1)/n

+
(

1
n

∫
Sn−1

[(1 − α)ρ(K, u)n−1 + αρ(L, u)n−1](n/n−1)dS(u)
)(n−1)/n

(with equality if and only if K is a dilation of L)

=
(

1
n

∫
Sn−1

(ρ(αK+̆(1 − α)L, u))ndS(u)
)(n−1)/n

+
(

1
n

∫
Sn−1

(ρ((1 − α)K+̆αL, u))ndS(u)
)(n−1)/n
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= V(αK+̆(1 − α)L)(n−1)/n + V((1 − α)K+̆αL)(n−1)/n.

On the other hand, by using inequality (13), we have

V(αK+̆(1 − α)L)(n−1)/n � αV(n−1)/n(K) + (1 − α)V(n−1)/n(L),

with equality if and only if K is a dilation of L , and

V((1 − α)K+̆αL)(n−1)/n � (1 − α)V(n−1)/n(K) + αV(n−1)/n(L),

with equality if and only if K is a dilation of L .
The proof is complete.

Proof of Theorem 3. From (7), (11) and in view of inverse Minkowski inequality
for integral [13] , we obtain that for n > i > −1

W̃i(λK+̂μL)(n+1)/(n−i)

=
(

1
n

∫
Sn−1

ρ(λK+̂μL, u)n−idS(u)
)(n+1)/(n−i)

=
(

1
n

∫
Sn−1

((
ξλV(K)−1ρ(K, u)n+1

+ξμV(L)−1ρ(L, u)n+1
)1/(n+1)

)n−i
dS(u)

)(n+1)/(n−i)

�
(

1
n

∫
Sn−1

(
ξλV(K)−1ρ(K, u)n+1

)(n−i)/(n+1)
dS(u)

)(n+1)/(n−i)

+
(

1
n

∫
Sn−1

(
ξμV(L)−1ρ(L, u)n+1

)(n−i)/(n+1)
dS(u)

)(n+1)/(n−i)

= ξλV(K)−1Wi(K)(n+1)/(n−i) + ξμV(L)−1Wi(L)(n+1)/(n−i).

Notice that ξ = V(λK+̂μL) . This proof is complete.
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