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Abstract. Convexity is a key property for a class of functions arising in telecommunications. We
derive sufficient conditions for this to hold.

1. Introduction and Background

Acentral and long-standing problem in themodelling and dimensioning of telecom-
munications networks was to find the worst-possible time congestion in a GI/M/N/N
loss network with given mean arrival rate and mean holding time. In this system there
are individual arrivals (calls) and interarrival times are identically and independently
distributed with distribution function F(·) , say, with fixed mean m . The service facil-
ity consists of N homogeneous servers (channels) in parallel, each with exponential
services (holding times) occurring at rate μ . An arrival finding all channels occupied
is lost. The time congestion is the equilibrium proportion of the time that all the chan-
nels are occupied. The classical problem is as follows: given m , μ , N , what is the
corresponding maximal value of the time congestion?

This nonlinear optimisation problem has been addressed inter alia by Coyle [1],
who solved the problem for the case N = 1 and conjectured the solution for general
N . A difficulty with the methodology was in showing that a local maximum obtained
is also a global maximum, and Coyle was unable to do this for N > 1 . The problem
was finally resolved by Peake and Pearce [3], who gave an analytical treatment holding
for general N . This treatment showed incidentally that Coyle’s conjecture is false for
N > 1 . A detailed bibliography of relevant work is also provided in [3].

The argument in [3] was based on a stochastic analysis of Takács [6, Chapter 4].
It follows from his analysis that if the inter–arrival time distribution function F of
the G/M/N/N system is non–lattice with mean m < ∞ , then there is a well–defined
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steady–state limiting value P∗
N for the continuous time congestion. This is given by

P∗
N =

1
Nμm

·
1−φ(Nμ)
φ(Nμ)

1 +
∑N

j=1

(N
j

)∏j
i=1

1−φ(iμ)
φ(iμ)

,

where

φ(s) :=
∫ ∞

0
e−stdF(t) (Re.s � 0)

is the Laplace–Stieltjes transform of F .
Peake and Pearce [3] used a tight double–sided inequality of Eckberg [2] for

the Laplace–Stieltjes transform to reduce the variational maximisation problem to a
technical question involving the polynomial function

α(z) := 1 +
N∑

n=1

(
N
n

) n∏
j=1

(zj − 1). (1)

Their preliminary reduction converted the problem to showing, for N > 1 and z > 1 ,
that α(z)/(zN − 1) is strictly convex in z . This was established in [3] using somewhat
delicate and lengthy analysis. It is worth noting that (zN − 1)/α(z) is not concave for
z > 1 .

A generalisation of this technical question is of interest in connection with some
equilibrium–point problems in electromagnetism [4]. Let ai , bi (1 � i � N ) and M
be positive numbers and define

α(z) = 1 +
N∑

n=1

n∏
j=1

[
bj

aj
(zaj − 1)

]
. (2)

The corresponding task for solving the equilibrium–point problems is to find sufficient
conditions (on ai , bi , M ) for the strict convexity in z of α(z)/(zM − 1) for z > 1 .
Physical intuition suggests that convexity might hold under very general conditions.
However counterexamples are given in [4], so that finding sufficient conditions is a
non–vacuous task.

This problem is also of interest in fractional programming [5], since for α given
by (1), α(z)/(zN − 1) can be viewed as the quotient of two convex functions. The
library of nontrivial such quotients which are themselves convex is quite small.

In this paper we present a considerably streamlined approach to giving sufficient
conditions for the convexity of α(z)/(zM − 1) for α defined by (2). This is based on
a matrix formulation. The problem is a nice example of the power of inequality–based
techniques.

In Section 2 we present some preliminaries and in Section 3 two key lemmata. We
give our main result in Section 4.
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2. Preliminaries

Let ai , bi (1 � i � N ) and M be positive numbers and put

s0 = 0, si =
i∑

j=1

aj (1 � i � N).

For z � 1 we define

p0(z) := 1, pi(z) := zai − 1 (1 � i � N)

and for z > 1
f i := ai/pi (1 � i � N),

so
gi := −zdf i/dz = f 2

i + ai for 1 � i � N and z > 1. (3)

It is convenient to encapsulate these quantities in matrix–vector form. Put

B :=
(

1,
b1

a1
,

b1b2

a1a2
, . . . ,

b1b2 . . . bN

a1a2 . . . aN

)
,

P := (1, p1, p1p2, . . . , p1p2 · · · pN)T ,

T := diag (0, 0, f 1, f 1 + f 2, . . . , f 1 + · · · + f N−1).

By (3) we have

U := − zdT/dz

= diag (0, 0, g1, g1 + g2, . . . , g1 + · · · + gN−1).

We put

α(z) := BP, β(z) := z
dα
dz

, γ (z) := z2 d2α
dz2

, (4)

G =

⎡
⎢⎢⎢⎢⎢⎣

s0 0 0 . . . 0 0
a1 s1 0 . . . 0 0
0 a2 s2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . aN sN

⎤
⎥⎥⎥⎥⎥⎦ .

For 1 � m � N we have

z
d
dz

(p1 . . . pm) = p1 . . . pmz
d
dz

ln(p1 . . . pm)

= p1 . . . pmz
d
dz

m∑
i=1

ln pi

= p1 . . . pm

m∑
i=1

(ai + f i)

= p1 . . . pm[sm + f 1 + . . . + f m].
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For m > 1 this gives

z
d
dz

(p1 . . . pm) = p1 . . . pm[sm + f 1 + . . . + f m−1] + p1 . . . pm−1am,

whilst for m = 1 we have

z
dp1

dz
= p1s1 + p0a1.

Combining these rsults provides

z
dP
dz

= (G + T)P (5)

and so
β(z) = B(G + T)P. (6)

If
H := diag (b1 + s0, b2 + s1, . . . , bN−1 + sN),

then we have that
BG = BH (7)

and so
β(z) = B(H + T)P. (8)

We shall make use also of the auxiliary matrices

K := diag (b1(a1 + b2 − b1), b2(a2 + b3 − b2), . . . , bN+1(aN+1 + bN+2 − BN+1)),
L := diag (b1b2, b2b3, . . . , bN+1bN+2),

where aN+1 = bN+1 = bN+2 = 0 . It is readily verified that

B(G2 − H2) = BK and B(TG − GT)P = BLP. (9)

We have from (4) and (6) that

β + γ = z
d
dz

(
z
dα
dz

)

= z
dβ
dz

= z
d
dz

[B(G + T)P]

= B[(G + T)2 − U]P, (10)

by (5).
Define

δ(z) := B(H + T)2P (11)

and put
Ωi = (H + T)i,i, (B)i = Bi, (P)i = Pi (0 � i � N).
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Then by (4), (8) and (11) we have

α =
N∑

i=0

BiPi, β =
N∑

i=0

BiΩiPi, δ =
N∑

i=0

BiΩ2
i Pi.

Since Bi, Pi � 0 for 0 � i � N and z � 1 , we deduce from Jensen’s inequality that

αδ − β2 � 0. (12)

3. Lemmata

Define

C := 2diag (0, 0, s1, s2/2, s3/3, . . . , sN−1/(N − 1))

and let D be the diagonal matrix given by Di,i = 0 (2 < i � N ) and

D0,0 = b1b2

D1,1 =
{

0, if a2 � a1

b2(a2 − a1)/2, if a2 > a1

and

D2,2 =
{

0 if a2 � 2a1

(a2 − a1)(a2 − 2a1)/6 if a2 > 2a1 .

LEMMA 1. For z > 1 we have

B[2U − T2 − CT − D]P � 0.

Proof. It suffices to show that

2Um − T2
m − CmTm � 0 for m > 2 (13)

and
B2(2U2 − T2

2 − C2U2)P2 � BDP. (14)

For the former, note first that the functions

x
zx − 1

and x +
x

zx − 1

are respectively strictly decreasing and strictly increasing for x > 0 . Since f i =
ai/(zai − 1) , we thus have for z > 1 that f i > f j and f i + ai − (f j + aj) are either both
zero or are of opposite sign. Hence

(f i − f j)(f i + ai − f j − aj) � 0

and so
(f i − f j)2 � (f i − f j)(aj − ai).
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Summation over i and j from 1 to m − 1 provides

(m − 1)
m−1∑
i=1

f 2
i −

(
m−1∑
i=1

f i

)2

�
(

m−1∑
i=1

ai

)
m−1∑
j=1

f j − (m − 1)
m−1∑
i=1

aif i

and so

(m − 1)

[
m−1∑
i=1

(
f 2
i + aif i

)]
�
(

m−1∑
i=1

f i

)2

+

(
m−1∑
i=1

ai

)
m−1∑
j=1

f j.

The left- and righthand sides of the last relation are respectively (m − 1)Um and
T2

m + sm−1Tm , whence (13) follows by the definition of the matrix C.
For (14), consider the difference

X = 2U2 − T2
2 − C2T2 = T2

2 = a2
1/(za

1 − 1)2.

Pre– and post–multiplying respectively by B2 and P2 yields

B2XP2 = b1b2
a1

a2

za2 − 1
za1 − 1

= b1b2
f 1

f 2
.

We distinguish three cases. First, if a2 � a1 , then

B2XP2 � b1b2 = B0D0,0P0 � BDP,

as required.
Secondly, suppose a1 < a2 < 2a1 . All the derivatives of F(x) := (zx − 1)/x are

positive, so for c1, . . . , ck all different and k > 1 , the finite differences

F[c1, c2, . . . , ck] :=
k∑

i=1

F(ci)∏
j�=i(ci − cj)

are likewise all positive. In particular, for a , b , c distinct

F[a, b, c] =
F(a)

(a − b)(a − c)
+

F(b)
(b − a)(b − c)

+
F(c)

(c − a)(c − b)
> 0.

If we expand the inequality F[a1, a2, 2a1] > 0 , and recall that f 1 = 1/F(a1) and
f 2 = 1/F(a2) , we find that

B2XP2 = b1b2
f 1

f 2
< b1b2 + B1P1b2(a2 − a1)/2

= B0D0,0P0 + B1D1,1P1

< BDP.

Finally, suppose that a2 � 2a1 . Under equality the required result follows in the limit
from the second case, so without loss of generality we may suppose that a2 > 2a1 . The
finite difference result

F[a1, a2, a1 + a2, 2a1 + a2] + 2F[a1, 2a1, a2, a2 + 2a1] > 0
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rearranges to provide

b1b2
f 1

f 2
� b1b2 + B1P1

b2(a2 − a1)
2

+ B2P2
(a2 − a1)(a2 − 2a1)

6

= BDP,

completing the proof. �

LEMMA 2. Suppose

V := 2K + H2 − D + 2L,

R := 2H − C.

Then for z > 1
2[β(z) + γ (z)] − δ(z) � B[V + RT]P.

Proof. From (10) and (11) we have

2(β + γ ) − δ = B[2(G + T)2 − 2U − (H + T)2]P

= B[2(G2 − H2) + 2(TG − GT) + 4GT + H2 − 2U − 2HT + T2]P

= B[2K + 2L + 2HT + H2 + T2 − 2U]P,

by (9) and (7). Hence by the definitions of V and R we obtain

2(β + γ ) − δ = B[V + RT + {D − 2U + CT + T2}]P
� B[V + RT]P

by Lemma 1, completing the proof. �

4. The Main Result

We now draw together our preliminary results and Lemma 2 to establish our
convexity result.

THEOREM 1. Suppose the diagonal entries of the matrices

W := 4V − 4(M + 1)H − (M − 1)2I,

Z := R − (M + 1)I

are all nonnegative and that either at least one diagonal element of W is positive or
Zj,j > 0 for at least one value of j with 2 � j � N . Then α(z)/(zM − 1) is strictly
convex for all z > 1 .

Proof. We have that

z2 d2

dz2

(
α(z)

zM − 1

)
=

Q(zM)
(zM − 1)3

,
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where Q(x) is the quadratic form

Q(x) := x2 [−2Mβ + γ + M(M + 1)α] + x [−2γ + 2Mβ + M(M − 1)α] + γ

in x . This quadratic has discriminant

M2
[
4β2 − 8αγ + 4(M − 1)αβ + (M − 1)2α2

]
,

which by (12) is less than or equal to

M2α
[−4(2β + 2γ − δ) + 4(M + 1)β + (M − 1)2α

]
.

From Lemma 2, (8) and the first relation in (4), this in turn is less than or equal to

M2αB[−4(V + RT) + 4(M + 1)(H + T) + (M − 1)2I]P

= M2αB[−4W − 4ZT]P .

Since B and P have all positive entries and Ti,i > 0 for 2 � i � N , the conditions
of the enunciation suffice to ensure that the discriminant is negative. Hence Q(x) > 0
for all real x and in particular Q(zM) > 0 for all z > 1 . Thus the second derivative of
α(z)/(zM − 1) is positive for z > 1 and the theorem is established. �
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