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Abstract. Let A and Z be n -by- n matrices. Suppose A � 0 (positive semi-definite) and
Z > 0 with extremal eigenvalues a and b . Then, for each p > 1 , there exist unitary matrices
U and V such that

1
K(a, b, p)

U(AZA)pU∗ � ApZpAp � K(a, b, p)V(AZA)pV∗.

where K(a, b, p) is the Ky Fan constant. The right inequality is both a generalization of Ky
Fan’s inequality

〈 h,Zph〉 � K(a, b, p)〈 h,Zh〉 p,

where h is an arbitrary norm one vector, and a reverse inequality to Araki’s inequality

‖(AZA)p‖ � ‖ApZpAp‖.
for unitarily invariant norms ‖ · ‖ .

1. Statements of results

Capital letters A , B . . .Z mean n -by-n complex matrices, or operators on a
finite dimensional Hilbert space H ; I stands for the identity. When A is positive
semidefinite, resp. positive definite, we write A � 0 , resp. A > 0 . Let ‖ · ‖ be a
general symmetric (or unitarily invariant) norm, i.e. ‖UAV‖ = ‖A‖ for all A and all
unitaries U , V . In [1] (see also [2 pp 258, 285]) Araki showed a trace inequality which
entails the following inequality for symmetric norms:

THEOREM 1. Let A � 0 , Z � 0 and p > 1 . Then, for every symmetric norm,

‖(AZA)p‖ � ‖ApZpAp‖. (1)

For 0 < p < 1 , the above inequality is reversed.
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If we take for A a rank one projection A = h ⊗ h , ‖h‖ = 1 , then (1) reduces to
Jensen’s inequality for t −→ tp ,

〈 h, Zh〉 p � 〈 h, Zph〉 . (2)

This inequality admits a reverse inequality. Ky Fan [7] (see also [5]) introduced the
following constant, for a , b > 0 and integers p > 1 ,

K(a, b, p) =
apb − abp

(p − 1)(a − b)

(
p − 1

p
ap − bp

apb − abp

)p

and Furuta [6] showed the sharp reverse inequality of (2): If Z > 0 have extremal
eigenvalues a and b , then for all p > 1 ,

〈 h, Zph〉 � K(a, b, p)〈 h, Zh〉 p. (3)

Furuta also considered the case p < 0 . It is not difficult to see that it suffices to prove
(3) for 2-by-2matrices Z . This is done in [3] for the case p = 2 , the resulting inequality
can then be read as

‖Zh‖ � a + b

2
√

ab
〈 h, Zh〉 . (4)

In [5], Fujii-Seo-Tominaga extend (3) to an operator norm inequality,

‖ApZpAp‖∞ � K(a, b, p)‖(AZA)p‖∞ (5)

This is a reverse inequality to Araki’s inequality for operator norm and letting
A = h⊗ h we recapture (3). In this note we show that the previous inequality holds for
all symmetric norms. In fact a stronger result holds: we show that (5) can be extended
to all eigenvalues. Given two positive operators X and Y , recall that the eigenvalues
of Y dominates the corresponding eigenvalues of X iff there exists a unitary operator
V such that X � VYV∗ . We have the following reverse inequality for (1) :

THEOREM 2. Let A � 0 and let Z > 0 with extremal eigenvalues a and b . Then,
for every p > 1 , there exist unitary operators U and V such that

1
K(a, b, p)

U(AZA)pU∗ � ApZpAp � K(a, b, p)V(AZA)pV∗. (6)

The Ky Fan constant K(a, b, p) and its inverse are optimal.

If we take p = 2, we get

4ab
(a + b)2

U(AZA)2U∗ � A2Z2A2 � (a + b)2

4ab
V(AZA)2V∗.

Equivalently, there exist unitary operators U0 and V0 such that

2
√

ab
a + b

U0(AZA)U∗
0 � (A2Z2A2)1/2 � a + b

2
√

ab
V0(AZA)V∗

0 .
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Replacing A by A1/2 and denoting by Sing(X) (resp. Eig(X) ) the singular values of X
(resp. the real eigenvalues of X ) arranged in decreasing order, the previous inequalities
can be stated as:

PROPOSITION 1. Let A � 0 and let Z > 0 with extremal eigenvalues a and b .
Then,

2
√

ab
a + b

Eig(AZ) � Sing(AZ) � a + b

2
√

ab
Eig(AZ). (7)

Replacing Ap by A in Theorem 2, we obtain the folowing equivalent statement:

THEOREM 2’. Let A � 0 and let Z > 0 with extremal eigenvalues a and b . Then,
for every 1 > q > 0 , there exist unitary operators U and V such that

1
Kq(a, b, 1/q)

UAqZqAqU∗ � (AZA)q � Kq(a, b, 1/q)VAqZqAqV∗.

The Ky Fan constant K(a, b, 1/q) and its inverse are optimal.

2. Proofs of results

Partial proof of Proposition 1 . Here we give the proof of the right hand side
inequality of (7). It is this result which leads us to research a reverse inequality to (1)
in terms of singular values. For the largest eigenvalue and singular value of AZ , the
right hand side inequality of (7) can be read as

‖AZ‖∞ � a + b

2
√

ab
ρ(AZ). (8)

where ρ(·) stands for the spectral radius. This inequality is proved in [3] as a con-
sequence of (4). We shall derive from (8) the general inequality between the other
singular values μk(AZ) and eigenvalues λk(AZ) . By the minimax principle,

μk(AZ) = μk(ZA) � ‖ZAE‖∞
for every projection E , corankE = k − 1 . Let F be the projection onto the range of
A1/2E . Then, applying (8),

‖ZAE‖∞ = ‖ZA1/2FA1/2E‖∞
� ‖ZA1/2FA1/2‖∞
� a + b

2
√

ab
ρ(ZA1/2FA1/2)

=
a + b

2
√

ab
‖FA1/2ZA1/2F‖∞.

Now, by a limit argument we may assume that A is invertible. Consequently, we may
choose E in such a way that F satisties

‖FA1/2ZA1/2F‖∞ = μk(A1/2ZA1/2)
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so that

μk(AZ) � a + b

2
√

ab
μk(A1/2ZA1/2) =

a + b

2
√

ab
λk(AZ)

establishing the right hand side inequality of (7). �

Proof of Theorem 2 . It is a melding of the above proof and the original proof of
(4). We begin with the right hand side inequality. By the minimax principle, there
exists a subspace F of codimension k − 1 such that

μk((AZA)p) = max
y∈F , ‖y‖=1

〈 y, (AZA)py〉

= max
y∈F , ‖y‖=1

〈 y, AZAy〉 p. (9)

On the other hand, still by the minimax principle, for every subspace E of codimension
k − 1 , we have

μk(ApZpAp) � max
x∈E , ‖x‖=1

〈 x, ApZpApx〉 = max
x∈E , ‖x‖=1

〈Apx, ZpApx〉

� max
x∈E , ‖x‖=1

K(a, b, p)〈 Apx
‖Apx‖ , Z

Apx
‖Apx‖〉

p‖Apx‖2

= max
x∈E , ‖x‖=1

K(a, b, p)〈Apx, ZApx〉 p‖Apx‖2−2p

= max
x∈E , ‖x‖=1

K(a, b, p)〈 Ap−1x
‖Ap−1x‖ , AZA

Ap−1x
‖Ap−1x‖〉

p‖Ap−1x‖2p‖Apx‖2−2p.

Now, observe that

‖Ap−1x‖2p‖Apx‖2−2p = 〈 x, A2p−2x〉 p〈 x, A2px〉 1−p

= 〈 x, (A2p)
2p−2

2p x〉 p〈 x, A2px〉 1−p

� 〈 x, A2px〉 p−1〈 x, A2px〉 1−p = 1

by concavity of t −→ t
2p−2

2p . Therefore

μk(ApZpAp) � max
x∈E , ‖x‖=1

K(a, b, p)〈 Ap−1x
‖Ap−1x‖ , AZA

Ap−1x
‖Ap−1x‖〉

p.

Now we may assume that A is invertible and we may choose E such that{
Ap−1x

‖Ap−1x‖ : x ∈ E , ‖x‖ = 1

}
= {y ∈ F , ‖y‖ = 1}.

Hence
μk(ApZpAp) � max

y∈F , ‖y‖=1
K(a, b, p)〈 y, AZAy〉 p

and comparing with (9) we obtain the result.
To prove the left hand side inequality it then suffices to take the inverse of the right

one (by a limit argument we may assume A invertible) so that

A−pZ−pA−p � K(a, b, p)V(A−1Z−1A−1)pV∗
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Next, we replace A and Z by their inverses and we use

K(a, b, p) = K(a−1, b−1, p)

which follows from K(a, b, p) = K(b, a, p) and K(λa, λb, p) = K(a, b, p) for all
λ > 0 .

It remains to check optimality of the constants. For the right hand side inequality
it is obvious since (3) is sharp. Optimality of the left hand side then follows since these
two inequalities are equivalent. �

3. Related results

The starting point of our investigation was the following result [3] (see also [4,
Chapter 2]) which entails (4) and (8).

THEOREM 3. Let A , B such that AB � 0 and let Z > 0 with extremal eigenvalues
a and b . Then, for every symmetric norm, the following sharp inequality holds

‖ZAB‖ � a + b

2
√

ab
‖BZA‖.

In a forthcomming project we will show the following extension of Proposition 1.

THEOREM 4. Let A � 0 and let Z > 0 with extremal eigenvalues a and b . Then,
for every scalars s, t > 0 , there exist unitary operators U and V such that

2
√

ab
a + b

U|ZAs+t|U∗ � |AsZAt| � a + b

2
√

ab
V|ZAs+t|V∗.

The reverse inequality (2) is connected to some operator operator inequality [6]:

THEOREM 5. (Furuta) Let 0 < A � B , let a and b be the extremal eigenvalues
of A , and let α and β those of B . Then, for every p > 1 ,

Ap � K(a, b, p)Bp

and
Ap � K(α, β , p)Bp

where the Ky Fan constants K(a, b, p) and K(α, β , p) are optimal.
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