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Abstract. This paper is concerned with the existence and uniqueness of solutions to the boundary
value problem associated with the general first-order linear/nonlinear Sylvester system

R′(t) = A(t)R(t) + R(t)B(t) + F(t, R(t)),

where the matrices involved are of appropriate dimensions and are continuous on some interval
[0, T], and F ∈ C[[0, T]× Rn×n, Rn×n] . The boundary conditions considered are of the form

UR = α,

where U : C[0, T] �→ Rn×n , and C[0, T] is the space of all continuous bounded functions
f : [0, T] �→ Rn×n .

1. Introduction

In this paper, we shall be concerned with the existence and uniqueness of solutions
to the boundary value problem associated with the general first-order linear/nonlinear
Sylvester system

R′(t) = A(t)R(t) + R(t)B(t) + F(t, R(t)), (1.1)

where A and B are (n × n) continuous matrices on some interval [0, T], and F ∈
C[[0, T] × Rn×n, Rn×n] . We assume for the sake of convenience that F(t, 0) ≡ 0 , so
that the system (1.1) admits a zero solution. We seek a solution of (1.1) satisfying the
general boundary conditions

UR = α, (1.2)

where U : C[0, T] �→ Rn×n , and C[0, T] is the space of all continuous bounded
functions f : [0, T] �→ Rn×n .

The consideration of general boundary value problems for the Sylvester equation
is motivated by applications to such important areas as convection-diffusion problems,
augmented regulator problems, nonlinear control problems, and pole assignment prob-
lems for descriptor systems. The significance of this formulation is its integral equation
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representation as given in equation (1.5), and its straight-forward solution procedure as
indicated in section 2.

We shall use the notation ‖f ‖∞ = supt∈[0,T] ‖f (t)‖ . Let Φ(t) and Ψ(t) denote
fundamental matrix solutions of the systems R′(t) = A(t)R(t) and R′(t) = B∗(t)R(t) ,
respectively. Then any solution of the homogeneous system

R′(t) = A(t)R(t) + R(t)B(t) (1.3)

is of the form R(t) = Φ(t)ζΨ∗(t) [4], where ζ ∈ Rn×n is a constant matrix. If R(t) is
any solution of (1.1) and R̄(t) is a particular solution of (1.1) , then R(t) − R̄(t) is a
solution of (1.3) . Thus

R(t) = R̄(t) + Φ(t)ζΨ∗(t).

A particular solution R̄(t) of (1.1) is given by [4]

R̄(t) = Φ(t)[
∫ t

t0

Φ−1(s)F(s, R(s)))Ψ∗−1(s)ds ] Ψ∗(t).

Thus the general solution of (1.1) is given by

R(t) = Φ(t)ζΨ∗(t) + Φ(t)[
∫ t

t0

Φ−1(s)F(s, R(s)))Ψ∗−1(s)ds ] Ψ∗(t). (1.4)

It may be noted that when B∗ = A and F is Hermetian, the system (1.1) is called
a Lyapunov system; and then Ψ∗ = Φ∗ in the solution (1.4) .

The general solution of the homogeneous equation (1.3) satisfies the general
boundary condition matrix (1.2) if and only if

U(Φ(·)ζΨ∗(·)) = χζϑ∗

for every ζ ∈ Rn×n , where χ is the matrix whose columns are the values of U on the
corresponding columns of Φ and ϑ∗ is the matrix whose rows are the values of U on
the corresponding rows of Ψ∗ . Therefore the general solution of (1.1) can be written
as

R(t) = Φ(t)ζΨ∗(t) + P(t, R), (1.5)

where

P(t, R) = Φ(t)[
∫ t

t0

Φ−1(s)F(s, R(s)))Ψ∗−1(s)ds ] Ψ∗(t).

This solution satisfies the boundary condition matrix (1.2) if and only if

UR = α = χζϑ∗ + UP(·, R).

This equation in ζ has a unique solution for some α ∈ Rn×n if and only if

ζ = χ−1[α − UP(·, R)]ϑ∗−1. (1.6)

Thus the boundary value problem (1.1), (1.2) will have a solution on [0, T] , in view
of (1.5) and (1.6) , if a function R(t) can be found that satisfies the integral equation

R(t) = Φ(t)χ−1[α − UP(·, R)]ϑ∗−1Ψ∗(t) + P(t, R). (1.7)
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We are now in a position to prove the following existence theorem for the boundary
value problem (1.1), (1.2) using the Schauder-Tychonov fixed point theorem.

THEOREM 1.1. Define Q : [0, T] �→ Rn×n by

Q(t) = max
‖R(t)‖�β

{‖Φ−1(t)F(t, R(t)))Ψ∗−1(t)‖},

and define the operator κ by

κ f = χ−1[α − UP(·, R)]ϑ∗−1

for every f ∈ Bβ , where Bβ is the closed ball of C[0, T] centered at the origin with
radius β > 0 . Now let

L1 = max
t∈[0,T]

‖Φ(t)‖, L2 = max
t∈[0,T]

‖Ψ(t)‖, M = sup
f ∈Bβ

‖κ f ‖, and N = max
t∈[0,T]

∫ t

0
Q(s)ds.

Then the boundary value problem (1.1), (1.2) will have at least one solution on [0, T]
if L1(M + N)L2 � β .

Proof. We first show that the operator T : Bβ �→ C[0, T] , defined by

(TR)(t) = Φ(t)[κ f +
∫ t

t0

Φ−1(s)F(s, R(s)))Ψ∗−1(s)ds ] Ψ∗(t),

has a unique fixed point in Bβ . For this purpose, let t, t1 ∈ [0, T] be given. Then
consider

‖(TR(t) − (TR)(t1)‖ = ‖Φ(t)[κ f +
∫ t

0
Φ−1(s)F(s, R(s)))Ψ∗−1(s)ds ] Ψ∗(t)

−Φ(t1)[κ f +
∫ t1

0
Φ−1(s)F(s, R(s)))Ψ∗−1(s)ds ] Ψ∗(t1)‖

� (M + N)‖Φ(t) −Φ(t1)‖ + L1‖
∫ t1

t
Q(s)ds‖L2

� (M + N)‖Φ(t) −Φ(t1)‖ + L‖
∫ t1

t
Q(s)ds‖,

where L = L1L2.
Let ε > 0 be given. Then there exists a δ(ε) > 0 satisfying

‖Φ(t) −Φ(t1)‖ <
ε

2(M + N)
(1.8)

and

‖
∫ t1

0
Q(s)ds‖ <

ε

2L
, (1.9)

for every t, t1 ∈ [0, T] with |t − t1| < δ(ε) . This is clear because Φ and Ψ are
uniformly continuous on Rn×n , and the function

H(t) ≡
∫ t

0
Q(s)ds
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is uniformly continuous on the interval [0, T] . Inequalities (1.8) and (1.9) imply
the equicontinuity of the set TBβ . The inclusion relation TBβ ⊂ Bβ follows from
L(M + N) � β . Hence TBβ is relatively compact.

Next, we show that T is continuous on Bβ . Let {Rm}∞m=1 ⊂ Bβ and R ∈ Bβ be
such that

‖Rm − R‖∞ −→ 0 as m −→ ∞.

It follows that

‖TRm − TR‖∞ � L‖κRm − κR‖

+ ‖
∫ t

0
Φ−1(s)[F(s, Rm(s)) − F(s, R(s))]Ψ∗−1(s)ds‖

� L(L(‖Φ−1‖ ‖Ψ∗−1‖ ‖R‖ + 1))×

× ‖
∫ t

0
χ−1[F(s, Rm(s)) − F(s, R(s))]ϑ∗−1ds‖.

The second integral in (1.10) converges uniformly to zero. Hence

‖TRm − TR‖∞ −→ 0 as m −→ ∞.

By the Schauder-Tychonov fixed point theorem, there exists a fixed point ξ ∈ Bβ of
the operator T . This fixed point ξ(t) , t ∈ [0, T] , is a solution of the boundary value
problem (1.1), (1.2) . �

Under alternate hypotheses, we use Brouwer’s fixed point theorem to establish
another existence and uniqueness result for the boundary value problem (1.1), (1.2) .

THEOREM 1.2. Let Bβ be the closed ball of C[0, T] centered at the origin with
radius β > 0 . Assume that there exists a constant K > 0 such that for every R0 ∈ Bβ ,
the solution R(t, 0, ζ) of (1.1) with R(0) = ζ exists on [0, T] , is unique, and satisfies

sup
t∈[0,T]

‖R(t, 0, ζ)‖ � K.

Let Q(t), N, and L = L1L2 be as in Theorem 1.1, and assume that

‖χ−1‖(‖α‖ + ‖U‖LN) � β .

Then the boundary value problem (1.1), (1.2) has a unique solution on any interval
[0, T] .

Proof. Consider the operator T defined by

TR = χ−1(α − UP1(·, R0)]ϑ∗−1,

where

P1(t, R) =
∫ t

0
Φ(t)Φ−1(s)F(s, R(s, 0, R0))Ψ∗−1(s)Ψ∗(t)ds.
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We first note that TBβ ⊂ Bβ . To prove the continuity of T , we show the continuity of
R(t, 0, R0) with respect to R0 . Let {Rm}∞m=1 ⊂ Bβ and R ∈ Bβ be such that

‖Rm − R‖∞ −→ 0 as m −→ ∞,

and let Φm and Φ be solutions of the system of equations

R′(t) = A(t)R(t) + R(t)B(t) + F(t, R(t)), R(0) = Rm,

R′(t) = A(t)R(t) + R(t)B(t) + F(t, R(t)), R(0) = R,

respectively. Our assumptions imply that there exists a K > 0 such that ‖Rm(t)‖∞ � K
(for m = 1, 2, 3, . . . ) and ‖R(t)‖∞ � K for all t ∈ [0, T] . Now consideration of the
inequality

‖R′
m(t)‖∞ � K sup

t∈[0,T]
{‖A(t)‖ + ‖B(t)‖} + sup

‖R(t)‖∞�K, t∈[0,T],
‖F(t, R(t))‖

proves that the sequence of functions {Rm(t)} is equicontinuous and uniformly bounded,
because by Ascoli’s Theorem, there exists a subsequence {Rmj(t)}∞j=1 of {Rm(t)}∞m=1

such that Rmj(t) −→ R̄(t) as j −→ ∞ , uniformly on [0, T] , where R̄(t) ∈ C[0, T] .
Taking the limit as j −→ ∞ in

Rmj(t) = Rmj(0) +
∫ t

0
A(s)Rmj(s)ds +

∫ t

0
Rmj(s)B(s)ds +

∫ t

0
F(s, Rmj(s))ds,

we obtain

R̄(t) = R0 +
∫ t

0
A(s)R̄(s)ds +

∫ t

0
R̄(s)B(s)ds +

∫ t

0
F(s, R̄(s))ds.

Therefore we have that R̄(t) ≡ R(t) , by the uniqueness of solutions of initial value
problems.

Hence we have actually shown the following. Since we could have started with
any subsequence of {Rm(t)} instead of {Rm(t)} itself, we have that every subsequence
of {Rm(t)} contains a subsequence which converges uniformly to R(t) on [0, T] . Thus
the convergence of {Rm(t)} to R(t) is uniform on [0, T] .

Note that if Rm ∈ Bβ (for m = 1, 2, 3, . . . ) and R ∈ Bβ satisfy ‖Rm−R‖∞ −→ 0
as m −→ ∞ , then

‖R(t, 0, Rm) − R(t, 0, R0)‖ −→ ∞ uniformly on [0, T].

This proves the continuity of the function R(t, 0, R0) with respect to R0 ∈ Bβ , and the
uniform continuity of R(t, 0, R0) with respect to t ∈ [0, T] .

Let {Rm} and R be as above. Then

‖TRm − TR‖∞ � ‖χ−1‖‖U‖L‖ϑ ∗−1 ‖×

×
∫ T

0
‖Φ−1(s)‖‖F(s, R(s, 0, Rm)) − F(s, R(s, 0, R0))‖ds.
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The above integrand tends to zero uniformly as m −→ ∞ . Therefore ‖TRm −
TR‖∞ −→ 0 as m −→ ∞ , which proves the continuity of T on Bβ . Now Brower’s
fixed point theorem implies the existence of some R0 ∈ Bβ such that TR0 = R0 . This
vector R0 is the solution of the boundary value problem (1.1), (1.2) , which completes
the proof of the theorem. �

2. Applications to Classical Two-Point Boundary Value Problems

In this section, we consider the classical two-point boundary value problem

R′(t) = A(t)R(t) + R(t)B(t) + F(t, R(t)), a � t � b, (2.1)

and
MR(a)M1 + NR(b)N1 = α, (2.2)

where M, M1, N, and N1 are constant square matrices of order n , and all scalars are
assumed to be real. Any solution of (2.1) can be written in the form

R(t) = Y(t)[
∫ t

a
Y−1(s)F(s, R(s)))Z∗−1(s)ds]Z∗(t) + Y(t)ζZ∗(t),

where Y(t) and Z(t) are fundamental matrix solutions of the systems R′(t) = A(t)R(t)
and R′(t) = B∗(t)R(t) , respectively, and ζ ∈ Rn×n is a constant matrix. Substituting
this general solution into the boundary condition matrix (2.2) , we obtain

MY(a)ζZ∗(a)M1 + NY(b)ζZ∗(b)N1

+ NY(b)[
∫ b

a
Y−1(s)F(s, R(s)))Z∗−1(s)ds]Z∗(b)N1 = α,

which is equivalent to
A1ζB1 + A2ζB2 = X, (2.3)

where

A1 = MY(a), A2 = NY(b), B1 = Z∗(a)M1, B2 = Z∗(b)N1,

and

X = α − NY(b)[
∫ b

a
Y−1(s)F(s, R(s))Z∗−1(s)ds]Z∗(b)N1

are all known matrices of order (n × n) . We use the Kronecker product representation
to solve the symplectic system (2.3) .

If A ∈ Cp×q and B ∈ Cm×n , then the Kronecker product (or tensor product) of A
and B , denoted by A ⊗ B , is defined by

(A ⊗ B) = (aijB) ∈ Cpm×qn (i = 1, . . . , p; j = 1, . . . , q).

With this in mind, if G = (A1 ⊗BT
1 + A2 ⊗BT

2 ) , then we can easily verify that equation
(2.3) is equivalent to the system

Gc = x, (2.4)
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where c ∈ Cn2×1 is defined by c = vec(ζT) , and x = vec(XT) . In fact, equation
(2.4) corresponds to a system of n2 scalar equations for the elements of ζ . If G is
nonsingular, then c = G−1x . In general, if G is not invertible, in order to determine
existence and uniqueness of the solution of the hybrid system (2.4) , we need information
about the eigenvalues of G . We denote the set of all eigenvalues of G by σ(G) , the
spectrum of G .

Case 1: Suppose that A1 and B1 are both nonsingular, then

ζ − AζB = Y, (2.5)

where A = −A−1
1 A2, B = B2B

−1
1 , and Y = A−1

1 XB−1
1 . Using properties of the

Kronecker product as above, we see that equation (2.5) is equivalent to

[(I ⊗ I) − (A ⊗ BT)]c = y ⇐⇒ Ic − Hc = y,

where y = vec(YT) and H = (A ⊗ BT) . Now, we can substitute ζ = Y + AζB in the
second term of (2.5) , or c = y + Hc in the second term of the equivalent expression
c − Hc = y , to obtain

ζ − A(Y + AζB)B = Y ⇐⇒ c − H(y + Hc) = y,

or
ζ − A2ζB2 = Y + AYB ⇐⇒ c − H2c = y + Hy.

Proceeding in a similar manner, we see that in general,

ζ−AnζBn = Y+AYB+A2YB2+· · ·+AnYBn ⇐⇒ c−Hnc = y+Hy+H2y+· · ·+Hny.

If the spectral radii of A and B , denoted by ρ(A) and ρ(B) , are such that ρ(A)ρ(B) <
1 , then we have that AnζBn −→ 0 as n −→ ∞ . In such a case,

ζ =
∞∑
j=0

AjYBj = A−1
1 XB−1

1 +
∞∑
j=1

(A−1
1 A2)j(A−1

1 XB−1
1 )(B2B

−1
1 )j.

Substituting this expression for ζ into the general solution of (2.1) , we obtain the
iterative relationship

R(i)(t) = Y(t)(A−1
1 XB−1

1 )Z∗(t) + Y(t)[
∞∑
j=1

(A−1
1 A2)j(A−1

1 XB−1
1 )(B2B

−1
1 )j]Z∗(t)

+ Y(t)[
∫ t

a
Y−1(s)F(s, R(i−1)(s))Z∗−1(s)ds]Z∗(t).

Nowwe assume that F satisfies a Lipschitz conditionwith respect to the second variable,
with Lipschitz constant Λ > 0 . Using the expression for X following equation (2.3) ,
and the condition numbers of Y and Z∗ , denoted by κ(Y) and κ(Z∗) , and defined by

κ(Y) = sup
a�t�b

‖Y(t)‖ sup
a�t�b

‖Y−1(t)‖ and κ(Z∗) = sup
a�t�b

‖Z∗(t)‖ sup
a�t�b

‖Z∗−1(t)‖,
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we have that

‖R(i)(t) − R(i−1)(t)‖ � Λκ(Y)κ(Z∗)(
∫ b

a
‖R(i−1)(s) − R(i−2)(s)‖ds)

×
{
‖A−1

1 ‖‖B−1
1 ‖‖NY(b)N1‖‖Z∗(b)‖

× [
1 +

∞∑
j=1

‖(A−1
1 A2)j‖‖(B2B

−1
1 )j‖] + 1

}

� δ(b − a)‖R(i−1) − R(i−2)‖,

where

δ = Λκ(Y)κ(Z∗)
{
‖A−1

1 ‖‖B−1
1 ‖‖NY(b)N1‖‖Z∗(b)‖×

× [
1 +

∞∑
j=1

‖(A−1
1 A2)j‖‖(B2B

−1
1 )j‖] + 1

}
.

By repeating this process, we obtain the relationship at the i − th stage of iteration as

‖R(i)(t) − R(i−1)(t)‖ � δ i−1(b − a)i−1‖R(1) − R(0)‖.

Thus we have that R is a contraction mapping whenever δ(b − a) < 1 , and hence,
R has a unique fixed point by the Banach fixed point theorem. This fixed point is the
unique solution of the two point boundary value problem (2.1), (2.2) . This approach
can be generalized to multipoint boundary value problems.

Case 2: Suppose that A1 and B2 are both nonsingular, then (2.3) takes the form

Kζ + ζL = Y, (2.6)

where K = A−1
1 A2 , L = B1B

−1
2 , and Y = A−1

1 XB−1
2 . One of the most effective

methods of solving the matrix equation (2.6) is the Bartels-Stewart algorithm [6]. Key
to this technique is the orthogonal reduction of K and L to triangular form using
the QR algorithm. The method for finding the general solution for ζ is as follows.
Let K ∈ Rn×n and L ∈ Rn×n be given matrices and define the linear transformation
η : Rn×n �→ Rn×n by

η(ζ) = Kζ + ζL. (2.7)

This linear transformation is nonsingular if and only if K and −L have no eigenvalues
in common; i.e., if λ is an eigenvalue of K with corresponding eigenvector u and μ
is an eigenvector of L with corresponding eigenvector v , then

KuvT + uvTLT = (λ + μ)uvT .

Thus λ + μ is an eigenvalue of the system (2.6) , which can be solved if and only if

λi + μj = 0
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for all i, j ∈ {1, 2, ..., n} . When K and L are reduced to diagonal form by similarity
transformations; i.e., when there exist matrices U and V such that

U−1KU = diag(λ1, λ2, ..., λn) ≡ K1,

V−1LV = diag(μ1,μ2, ...,μn) ≡ L1,

then (2.6) is equivalent to

(U−1KU)(U−1ζV) + (U−1ζV)(V−1LV) = U−1YV.

This system can be solved via the following four-step procedure.
Step 1 : Use similarity transformations to obtain the diagonal matrices K1 and

L1 .
Step 2 : Solve UE = YV for E .
Step 3 : Solve the transformed system K1ζ1 + ζ1L1 = E for ζ1 .
Step 4 : Solve the system ζV = UX for ζ .
Using these results, the solution of system (2.6) is obtained as

ζ = Uζ1V
−1,

where (ζ1)ij = eij
(λi+μj)

and E = (eij) = U−1YV . Now, substituting the general form

of ζ in the variation of parameters formula (1.4) , we obtain

R(t) = Φ(t)Uζ1V
−1Ψ∗(t) + Φ(t)[

∫ t

t0

Φ−1(s)F(s, R(s)))Ψ∗−1(s)ds ] Ψ∗(t).

Assuming that F satisfies a Lipschitz condition with respect to the second variable,
with Lipschitz constant Λ > 0 , as before we have that

‖R(i)(t) − R(i−1)(t)‖ � Λκ(Φ)κ(Ψ∗)(
∫ b

a
‖R(i−1)(s) − R(i−2)(s)‖ds)

� Λκ(Φ)κ(Ψ∗)(b − a)‖R(i−1) − R(i−2)‖
...

� Λi−1κ i−1(Φ)κ i−1(Ψ∗)(b − a)i−1‖R(1) − R(0)‖.
Again we have that R is a contraction mapping whenever δ(b − a) < 1 , where
δ = Λκ(Φ)κ(Ψ∗) . Hence by the Banach fixed point theorem, R has a unique fixed
point which is the solution to the two point boundary value problem (2.1), (2.2) .
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