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ON APPROXIMATE -CONVEXITY

ATTILA HAZY

(communicated by Z. Daréczy)

Abstract. Areal valued function f defined on an open convex set D is called (&, 3, p, 1) -convex
if it satisfies

flx+(=0y) <@ +A-0f () +5+elx—yP  for xyeD.

The main result of the paper states that if f is locally bounded from above at a point of D
and (&,98,p,1)-convex (where 0 < p < 1 and 7 < 1/2) then it satisfies the convexity-type
inequality

£ (At (1=2)) KA+ (=AY 0)+8/1+29(A)k—yP  for xyeD, Ael0,1],

where ¢ :[0,1] — R is a continuous function satisfying

1 1
P (12— 1/2P — (10 P(1/2— 1P

(p()L):maX{ }(/1(1—/1))P.

In the case p = 1,7 = 1/2 analogous results were obtained in [2].

1. Introduction

In this paper we intend to investigate the following general approximate convexity

concept. A function f : D — R is said to be (&, 8, p, ) -convex if

for every x,y € D, where €,6 > 0,p > 0 and 7 €]0, 1[. If this inequality holds for
every ¢ € [0, 1], then the function f is called (g, d,p)-convex. Some particular cases

[+ (1 =0y) <t () + (1= 0)f (v) + 8 +elx =yl

were investigated in several papers.

In the case € = 0, the following theorem was proved by Pdles in [5]:

THEOREM 1. Let X be a real topological vector space. Let D C X be an open
and convex set and f : D — R be (0,0,p,t)-convex. If f is locally bounded from

above at a point of D, then

fAx+(1=2A)y) </1f(x)+(1—?L)f(y)+ma"{%’%}5

forall x,y € D and 2 € [0,1].
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The case € = 0 and r = 1/2 was investigated by Nikodem and Ng [4], the
specialization € = 6 = 0 yields the theorem of Bernstein and Doetsch [1].

The case p = 1 and ¢ = 1/2 was investigated in Hizy and Péles [2]. In this case
the following theorem was proved:

THEOREM 2. Let D be an open convex subset of a real normed space (X, |-|). Let
€, 0 be nonnegative constants. If f : D — R is locally bounded from above at a point
of D and (g,9,1,1/2) -convex function on D, then

[ Ox+(1=2A)y) SAf(x) + (1= A)f (v) +26 + 2e0(A)|x -y
forall x,y € D and A € [0,1], where @ is the Takagi function is defined by
dist(2"A,Z)
o) =3 o
Since the Takagi function satisfies the inequality @(A) < 1.4¢(A), where ¢ is defined
by

—Alog, A Og/lgg
¢(A):=max(—A log, A, —(1-1)log,(1-1)) = .
therefore —(1-24)log,(1-2) 5 <A<,

fAx+ (1 =A)y) <A () + (1= A)f (v) +28 +2.8e9(A)[x — ]
holds for all x,y € D and A € [0, 1].

The aim of this paper is to extend Theorem 2 for (&, 8, p, t) -convex functions. Due
to the symmetry, we may assume that 0 < ¢ < 1/2 in the sequel.

2. A functional equation and related functional inequalities

For fixed p > 0 and ¢ €]0, 1/2], introduce the operator T, by

wfo-rm(i) ()

o(3)+(3)} °
min{ (1= (2) + (&)p;

() (1)} e
min{io (122) 4 (122)

() () e

VA
>~
VA

(T,.@)(A) =
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In this section we deal with the functional equation

¢(A) = (Tpu@) (A) (A €10, 1]). ()

In our first result we construct a nonnegative bounded solution ¢ : [0,1] — R of the
functional equation (1). This solution will be denoted by @, .

PROPOSITION 1. Let the sequence (¢,) : [0,1] — R be defined by

¢ = 0,
Gur1(A) = (Tp.00) (A). 2)

Then ¢, is an increasing sequence of continuous nonnegative functions and the function
¢ defined by
@A) := lim @,(4) (A €[0,1]), 3)

satisfies (1). Furthermore this function is continuous on [0, 1], and symmetric with
respectto A =1/2,ie, @A) = (1 — ) forall A €[0,1].

In our proof we use the following obvious lemma:
LEMMA 1. Let a,b,c,d be arbitrary real numbers. Then
|min{a, b} — min{c, d}| < max{|a —¢|, |b —d|}.

Proof Proof of Proposition 1..

It is easy to see, by induction, that ¢, is an increasing sequence of functions
indeed, and ¢, is continuous, and symmetric with respectto 1/2.

Applying Lemma 1, we prove, that the function 7, is a contraction on the
space of bounded real-valued functions defined on I := [0, 1] equipped with the usual

supremum norm. If A € [0, 7], then
T, @A) = Tp, ¥(4)]
fnf e (755) + (75) o (5) < (0)
, A A\ AN
Smndoow (55) (7)o (5) - (0) )
< max 4 |(1 —7)® 5 (1-0n¥ T , |1 - — ¥ -
O G N G ORI O

< max {(1 = 0)||® =[], 7]|® =¥} = (1 - 1)[|® —¥]].

~

[a—y

The cases A € [r,1 — ] and A € [1 — ¢, 1] can be dealt with similarly. Hence we get

Ty® = T, ]| = max |T,,®(2) — T, ¥(1)] < (1= 9]je> ]|

where 1 — ¢ < 1, therefore, by the Banach fixed point theorem, there exists a unique
fixed point of the contraction 7),,. Also, by this fixed point theorem, the sequence @,
uniformly tends to the fixed point of 7, ;. Therefore ¢ is also continuous, nonnegative,
and symmetric.
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Now we investigate the functional inequalities
Y4) < (T, ¥)(A) (A €01]), (4)
®(4) = (T,,®) (4) (A €[0,1]). (5)

PROPOSITION 2. Let ¥ : [0,1] — R be an upper bounded solution of the
Sunctional inequality (4) and ® : [0,1] — R be a lower bounded solution of the
functional inequality (5). Then ¥ < @,; < @, where @, is defined in (3).

Proof. Let the sequence () : [0,1] — R be defined by
v = 1/t>
Vur1(A) = (Tpeym) (A)

and
K:= sup W(A), L:= inf ®(A).
A€[0,1] A€[0,1]
Then lim, .o Y, (A) = @(A) because T,, is a contraction and, by (4) and (5), we
have that

A p
tK+<7)$UK+1, 0< A<t
A, p
(1[)K+<ﬁ) <A-nDK+1, 0<A<L1—1¢
Y(4) < PR, <(1—-nNK+1
(1—t)K+<T> <(1-0)K+1, r<A<1
1—-A\’
tK+ | —— | <tK+1, 1—-r<AL1
and
p
tL+(7 > 1L, 0<AKy
p
U_0L+(T_J >(1—-1L, 0<ALl—1¢
DA) > L A? > tL.
(1t)L+(1t) > (1-1)L, r<A<1
1 — P
tL+( p )>tL, 1—-r<AL1
Therefore

K= sup Y(A) < (l—-nNK+1 and L= inf ®(A)>1L,
Ael0,1] A€[0,1]

whence we get that
K< 1/t and L>0.
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That is,

Y <y and Z Q1.
One can easily see, by induction, that ¥ < v, and ® > ¢, for all n. By taking the
limit n — oo, this implies that ® > @,; and ¥ < ¢,,. U

In Proposition 3 below, we will compare ¢, with function ¢, : [0, 1] — R defined by
the following formula:
Op(4) = (A(1 = 2))". ™)

In order to prove this proposition, we need the following lemma.

LEMMA 2. Let 0 < p < 1 be an arbitrary constant and V,; : [0,1] — R be
defined by
Toa(A) = (1 =AY =177 (1 = 2)".

Then v, is a positive, monotone increasing function.

Proof. Since t <1 and 0 < 1 —p < 1, therefore
Ypu(0) =1 -7 >0.

The function ¥, is differentiable and
Vpa(2) = —p(1=2Y " 407 2p (=2~ = p(—(1 = AP - a(=2y ).

Since t~%p > 0, therefore is enough to prove that
tt—=2A)P7 "> (1 =AYt

_a\P!
(i _1) > 2l (8)

8pa(A) = (i_i)p_l, (A € [0,4]).

Then g,,(0) =#~' > =" and g,, is a differentiable function and

i.e.,

p—2 B
G =0-0(1=%) =0

which implies that g, is a monotone increasing function and the inequality (8) holds.
So we get that the function ,, is monotone increasing too, which implies ¥, ,(4) >
1 -7 forall 0 < A <¢t. O

The functions ¢), and @, have the following property:
PROPOSITION 3. I[f 0 <1< 1/2 and 0 < p < 1, then

1
m%(l) < @pi(A) ©)

1 1
<ma"{ﬂ>ﬁ (12— 1/2r — (i ,)1,,(1/2,),;}%(’0
forall A €0,1].
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1
Proof. In the first step we prove that the function ¥ = = ¢ is a solution
of the functional inequality (4). (t(1 = 1))
In this case we need to prove that ¥ (1) < T,,,(¥)(4), i.e.,
A A\
1-0)¥ | — —
mln{( ) (1t + 1t>
P
%) } 0< A<,

p
t‘I’(éL +</—}> , ifO<A <y,
p
(l—t)‘P(%)—ﬁ—(%) ) ifo<A <1l -1y,
Y(A) < 10
1—4 -2\’ . (10
v . + . , ifl—r<A<1,
(1—0)¥ L=2) (=2 ’ ifr<A<1
1—1t 1—t) "’ S
If 0 < A < ¢, then applying the previous lemma, we get that
1 1 1 1
—_ < — =— (1—¢tF =—
G op P S wa g™ = gy T e

which implies

m |:(1—)t)p_tlp (1_%)1’] 3 tlp

Transforming this inequality, we get

‘P(A):mﬂ(l—l)p < tm% (1—)‘7>p M (%) + (%)p

which is the first inequality of (10).
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If 0 < A < 1—1¢t,applying the previous lemma with 1 — ¢ instead of ¢, we get that
1 1 1 1

that iwyp’l_t(k) SEaop T T ey T T

1 » . A P 1
ai—gy A0 (“u”gum’

which implies that
1 1 AP A AP
e AP(1—AP < (1 —1 1 .
U <0 g () Yy
Thus we get the second inequality of (10).
Since ¢, is symmetric with respect to A = 1/2, ie., ¢,(A) = ¢,(1 — A) for all
A € [0,1], therefore W is also symmetric. Therefore in the case t < A < 1 and
1 —r<A <1 weget

A Treeer: (?;) (11,;>p+ (11);>p

and

a0 <y (M) (52) ()

i.e., the third and the fourth inequalities of (10) hold. Thus

1
———— ¢ is abounded
(r(1 = 1))

solution of inequality (4), which, by Lemma 2, implies that

1
(OED A

Now, we prove that the constant

1 1
o= {5 )
is such that the function ® = ¢, ¢, is a solution of the functional inequality (5).
In this case we need to prove that ®(4) > T,,(P)(A), i.e.,

{00 () 4 (1)
(1))} :

. min{(l -1 (%) + (%) ;
(1;)@(11_/}>+(11_/})p} <A <11

min{t@(lz)t)—k(l_t/l)p;
(1—;)@(11_’}>+(11_’})p} 1—1<A <1,

N
~
N
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1

If 0 < A < t, then the functions and are monotone
decreasing and PYpi(A) (1 =1)Pyp1-4(4)
1 1
y,,(0) ¥ —1t’
1 1

(U= 07pama(0) ~ (=0 = (1 =0)’
As t < 1/2, therefore # —t > (1 — t)? — (1 —¢), thus

1 . 1 1
e Z 5y :mm{ﬂ’t; (1 t)l’(lt)}
- . I 1
e {“““ { Ppa ) (U= 07 fpu—i(2) }} '

1 1
Cp; = Mmin ;
n {ﬂ’Vp,t(/l) (1- t)”Yp,lt(/l)}
forall 0 < A < ¢, which implies that either

Thus

patpa(A) = oy [(1 = 2) — 1 (1 — AV =z 17

4
or

CoaYpd—t(A) =y [(L =AY — (1 =)' (1 —1—A)] >

(L—1)p
hold for all 0 < A < r. It means that either

p p p
o AP (1 =AY > tcp,,% (1 - %) + %,

or

AP AN
A (=AY 2 (1= 07— (1— : t) o

forall 0 < A < t. Therefore

which implies

D(A) > min{(l - )P <%) + (%)p;@ (%) + <%)p} , (0<AKy).

. 1 . .
If t <A < 1—1, then the function ————————— is monotone decreasing and

(1 =) ¥pa—(A)
1

(1 — t)p)/pvlft(l — A,) 1S monotone 1ncreasing and

1 1

A= 0Pppud1/2) (12— 120 — (L= (12— 1"
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Therefore
Cpt = !
P12 =12 — (L =)t (1/2 -1
1
, ifr<A<1/2
= (1= 4) /
= max
<AL —¢ 1

- if1/2<A<1—1
A= () /

: 1 . 1
e {“““ { (=0l e (%) (L= 0P o(1— 2) }} '

These inequalities hold if

> min{ ! ! } (t<AL1—0)
Cpt =2 5 X x1—1)
o (L=0Pppa—(A)" (1 = 1)Pppa—i(1 = A)

which implies, for all t < A < 1 — ¢, that either

eptpa—i(A) = [(1 =AY = (L =)' (1= 1) = )] >
or
Cpitpii(l =) = i AP = (1 =)' (A = 1] =

thatis, forall t <A <1 —¢, either

A (A—i=Ap AP
Z‘)Cp,r(l — t)p (1 _ t)p + (1 — I)P>

AP (1= A > (1 —

or

(I=AY A -t (1—=A)p
(I—1p (1 —0)p + (1—rp"

o AP (L =AY = (1 —1t)ep,

Therefore

. A\
cp’,kp(l—)k)p>mm{(l tcp,( )(1 lt) (ﬁ)’
p 1=A p
a0 (75) (-522) + (=2) )
forall t < A < 1—1t,thus

mm{“( )+ () sumoe(22) + (2))

forall r< A <1 —
Since ¢, is symmetrlc with respect to A = 1/2,i.e., ¢,(1)
A €10, 1], therefore @ is also symmetric. Thus in the case 1 — ¢

1 1 1 1
> 1 . fy =
P2 G {m‘“ { e (3) (L= 0Py (1) }} oA { i (1) } =

= ¢,(1 —A) forall
<A <1 we get
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that is

o canfo (2] (2 -on(120) (4}

forall 1 —r< A <1.
Therefore if ¢,; = max{

1 1
; , th
w—1 (1/2—1/2)p — (1 —1)'-r(1/2 — f)p} en
¢p19p is a bounded solution of the inequality (5), which implies that @, < ¢, @), .

In the case ¢+ = 0.2,p = 0.5 the graph of function ¢,, is demonstrated by the
following picture:

| %
3
5

A |

0.5-

3. Regularity properties of (¢, 9, p, 7) -convex functions

In our nextresults, we deal with boundedness and continuity properties of (g, 9, p, 1) -
convex functions. The proofs are analogous to what was followed for (&, §) -midconvexity
in [2].

THEOREM 3. Let D be an open convex subset of a real normed space (X,| - |).
Let €, O, p be nonnegative constants and t €]0,1[. If f : D — R is (€, 0, p, t) -convex
and locally bounded from above at a point of D, then f is locally bounded on D.

The next two theorems essentially weaken the local boundedness assumption if
the underlying space is of finite dimension (that is based on Steinhaus’ and Piccard’s
theorems (cf. [7], [6])).

THEOREM 4. Let D be an open convex subset of R" and f : D — R be an
(g, 0,p, ) -convex function. Assume that there exists a Lebesgue-measurable set S C D
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of positive measure and a Lebesgue-measurable function g : S — R such that f < g
on S. Then f is locally bounded on D.

THEOREM 5. Let D be an open convex subset of R" and f : D — R be an
(g, 0,p, 1) -convex function. Assume that there exists a Baire-measurable set S C D of
second category and a Baire-measurable function g : S — R such that f < g on S.
Then f is locally bounded on D.

Clearly, if f = g+ h where g is a (g,0,p,t)-convex function and |i| < 6/2,
then f is (&,0,p,t)-convex. Therefore, if & > 0 then no continuity properties
of (g,0,p,t)-convex function can be stated. Thus, in order to reach a meaningful
situation, we need to restrict our attention to the case § = 0.

THEOREM 6. Let D be an open convex subset of a real normed space (X, | - |).
Let € and p be nonnegative constants. If f : D — R is (&,0,p,t) -convex and locally
bounded from above at a point of D, then f is continuous.

4. Main Results

The following result offers a generalization of the theorems of Bernstein and
Doetsch [1], Ng and Nikodem [4], Péles [5] and the results of Hizy and Péles [2].

THEOREM 7. Let D be an open convex subset of a real normed space (X, |- |).
Let €,0,p,t be nonnegative constants, where t €]0,1/2]. If f : D — R is (g,8,p,1) -
convex and locally bounded from above at a point of D, then

fAx+ (1 =A)y) <Af(x)+ (1 =A)f (v) + 68/t + e@pi(A)lx — yP (11)
forall x,y € D and A € [0,1], where @y, is the function constructed in Proposition 1.

Proof. If € = 0, then the statement follows from the result of Péles [5] mentioned
as Theorem 1 in the introduction. Therefore, we may assume that € > 0. Let
X,y € D,x # y be fixed and introduce the function g : [0,1] — R by the following
form:

gA):=f Ax+ (1 =A)y) =Af(x) = (1 =A)f(y) (A €]0,1]).

The function g has the following properties
(a) g is bounded from above.
(b) gis (elx—y?,0,p,t)-convex, i.e.,
g(tA + (1 —nu) — (1g(A) + (1 —1)g(u)) < 6 +€lA —ufle —yP.
(c) (0) =g(1)=0.
Using the assumptions on f it is simple to prove these properties. The local
upper boundedness of f implies that g is bounded from above, i.e., (a) holds. Using
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(g, 0,p, ) -convexity of [, we get
g2+ (1 = ) = (1g(A) + (1 = 1)g(w)

=/ (@2 + (= Dux+ (1= (2 + (1= 0w)y)
— (A + (1= D) (x) = (1 = (A + (1= W) ()
—t(f x4 (1= 20) = 2 (¥) = (1= AU ()
— (=) (f k(1= ) = (6) = (1= m)f ()

= £ (10 + (1= 2)9) + (1= 0)f (e + (1 = w)y)
—f (A (1= 2)y) = (1= f (e + (1 = )y)

<5+epx+u—Aw—ux—u—uwr=5+eu—ﬂwz—uw

Thus (b) is proved. The property (c) is trivial.
Define the function @ by the following form:

gA) -4/t

o) = £

We are going to show that @ satisfies the functional inequality (4).
Assume that 0 < A < 7. Then A can be written in the following two ways:

)L:tOJr(l—t)%

and Py

In the first case, using the (glx — y|, 8, p, t) -convexity of g, we obtain

A A
gA) <rg(0)+(1—1g <:) +68+elx fy\”lo — :’p.
Therefore, using g(A) = ®(A)elx — y|’ + 8/t and g(0) = 0, we get

¢uxu—yw+%5

A 1 A\
_ A T (L
<(1 t)(@(l_t)dx ¥ +t5>+5+8|x Vvl (1—t> :

1
Subtracting ?5 from both sides of inequality and dividing by €|x — y[P, we get

@Q)gﬂ—ﬂ®<¥%>+<fiaa

In the second case, using the (g|x — y|’, &, p, ) -convexity of g, we obtain

A A
g(A) < (1-1)g(0) +1g (7) + 8 +¢lx —y\P’0 — 7"’.
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1
Therefore, using g(A) = ®(A)elx — y|P + ?5 and g(0) =0, we get

p
DR Jelx o + 15 <1 <<1> G) elr— P + %5) £+ el— (%) |

We get

1
oorcam()s (T cme) oy

We obtained that if A € [0, 7] then

®(A) < min {(1 —-1H)d <%> + <%)p;t® (%) + ()L?)p }

Similarly, if A € [t,1 — 1] then A enjoys the representations

)L:t()—l-(l—t)i

1—1¢
and Py
—t
A =1l 1 —¢)——
+(1=1)7—

hence arguing similarly as above we get

D) < min{(l —1)® (%) + (%)p;(l —1)® <11_’}> + (11_’})17}.

Finally if A € [1 —¢, 1] then

A—t

/1—t1+(1—t)ﬁ

and A )
l:(l—l‘)l+ti

t
and we similarly get

o <mnf (152) (52 5000 (25) (2]

Since g is bounded from above, hence @ is an upper bounded function, which implies
that @ is a solution of functional inequality (4). Applying Proposition 2, we get, that
® < ¢,,. By the construction of @, we get that g(A) < elx — y[P@,,(A) + (1/1)5.
Thus, using the definition of g, we obtain

fOx+ (1 =A)y) SAf () + (1= A)f () + 8/t + €@pu(A)[x — yP.

Applying the statement of Proposition 3, we immediately get the following result.
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COROLLARY 1. Let D be an open, convex subset of real normed space (X, | - |).
Let €,0 be nonnegative constants, 0 < p < 1. If f : D — R is (g,0,p, ) -convex
(where t € ]0,1/2]) and locally bounded from above at a point of D, then

[ Axt(1=2)y) S Af () +(1=A)f (v)+6/1

1 1 p P
Femax { 1" (1/2—1/2)— (-0 (1)2-1)7) } A=)k

forall x,y € D and A € [0,1].
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