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HARDY–TYPE INEQUALITIES VIA CONVEXITY

STEN KAIJSER, LUDMILA NIKOLOVA, LARS-ERIK PERSSON AND ANNA WEDESTIG

(communicated by S. Saitoh)

Abstract. A recently discovered Hardy-Pólya type inequality described by a convex function is
considered and further developed both in weighted and unweighted cases. Also some corre-
sponding multidimensional and reversed inequalities are pointed out. In particular, some new
multidimensional Hardy and Pólya-Knopp type inequalities and some new integral inequalities
with general integral operators (without additional restrictions on the kernel) are derived.

1. Introduction

The classical Hardy inequality reads

∞∫
0

⎛⎝1
x

x∫
0

f (t)dt

⎞⎠p

dx �
(

p
p − 1

)p ∞∫
0

f p(x)dx, p > 1. (1.1)

It was proved in 1925 by G. H. Hardy in [7] but it has also an interesting prehistory, e.g.

it was formulated almost in the paper [6]. By replacing f with f
1
p in (1.1) and letting

p → ∞ we obtain the limiting inequality

∞∫
0

exp

⎛⎝1
x

x∫
0

ln f (t)dt

⎞⎠ dx � e

∞∫
0

f (x)dx. (1.2)

This inequality is many times referred to as Knopp’s inequality, with the reference to
the paper [11]. However, inequality (1.2) was known before and Hardy himself (see
[7, p. 156]) claimed that it was G. Pólya who pointed it out to him (probably by using
just the limit argument above). Note that the discrete version of (1.1) is surely due to

T. Carleman [2]. We also remark that the constants
(

p
p−1

)p
and e in (1.1) and (1.2)

are sharp. The inequalities (1.1) and (1.2) have been investigated and generalized in
several directions, e.g. one chapter of the book [14] is devoted to this subject. Moreover,
there are two books ([12] and [17]) completely devoted to this subject. We also refer
to the references in these books and the classical book [8]. For some complementary
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historical remarks connected to this development we also refer to [13]. Concerning
several proofs, generalizations and the history of Carleman’s inequality we refer to [9]
and the references given there. Recently it was pointed out by S. Kaijser et al. in [10] that
both (1.1) and (1.2) are just special cases of the much more general (Hardy-Knopp
type) inequality

∞∫
0

Φ

⎛⎝1
x

x∫
0

f (t)dt

⎞⎠ dx
x

�
∞∫
0

Φ (f (x))
dx
x

, (1.3)

where Φ is a convex function on (0,∞). And obviously, (1.3) just follows by using a
standard application of Jensen’s inequality and the Fubini theorem. This idea was further
developed and applied in the thesis [18] and [5]. Concerning some new developments
in the theory of convex functions in this connection we also refer to the book [15].

In this paper we generalize the crucial inequality (1.3) in various ways and point
out some corresponding applications. In Section 2 we prove some multidimensional
versions of (1.3) and also some corresponding reversed inequalities for concave func-
tions. Moreover, we point out that these results imply new multidimensional versions
of (1.1) and (1.2) and the corresponding reversed inequalities. In Section 3 we prove
some weighted versions of the results in Section 2 and derive the corresponding gen-
eralizations of Hardy and Pólya-Knopp type inequalities. Finally, in Section 4 we
prove some new results of the type (1.3), where the Hardy operator H defined by

Hf (x) = 1
x

x∫
0

f (t)dt is replaced by the more general integral operator HK defined by

HKf (x) =
1

K(x)

x∫
0

k(x, y)f (y)dy,

where K(x) =
x∫
0

k(x, y)dy and k(x, y) � 0 without any further (e.g. Oinarov type)

restrictions on the kernel. Also results for the dual operator of HK are proved and
it is pointed out that most of the results in [5] follow by just using our results with
k(x, y) = 1. Hence our results unify, generalize and complement also several other
recent results e.g. some results in [3], [4], [19] and [20].

Conventions. Throughout this paper all functions are assumed to be positive and
measurable and expressions on the form 0 · ∞, ∞

∞ and 0
0 are taken to be equal to zero.

Moreover, by a weight u = u(x) we mean a non-negative measurable function on the
actual interval or more general set.

2. A multidimensional Hardy-type inequality

In this Section we prove and discuss the following Hardy-type inequality:

THEOREM 2.1. Let 0 < bi � ∞, i = 1, 2, . . . , n (n ∈ Z+), −∞ � a < c � ∞
and let Φ be a positive function on [a, c].
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(a) If Φ is convex, then

b1∫
0

. . .

bn∫
0

Φ

⎛⎝ 1
x1 . . . xn

x1∫
0

. . .

xn∫
0

f (t1, . . . , tn)dt1 . . . dtn

⎞⎠ dx1 . . . dxn

x1 . . . xn
(2.1)

�
b1∫

0

. . .

bn∫
0

Φ (f (x1, . . . , xn))
(

1 − x1

b1

)
. . .

(
1 − xn

bn

)
dx1 . . . dxn

x1 . . . xn
,

for every function f on (0, b) such that a < f (x) < c.
(b) If Φ is concave, then

b1∫
0

. . .

bn∫
0

Φ

⎛⎝ 1
x1 . . . xn

x1∫
0

. . .

xn∫
0

f (t1, . . . , tn)dt1 . . . dtn

⎞⎠ dx1 . . . dxn

x1 . . . xn
(2.2)

�
b1∫

0

. . .

bn∫
0

Φ (f (x1, . . . , xn))
(

1 − x1

b1

)
. . .

(
1 − xn

bn

)
dx1 . . . dxn

x1 . . . xn
,

for every function f on (0, b) such that a < f (x) < c.

Here and in the sequel the notations b, x, etc. as usual means b = (b1, b2, . . . , bn),
x = (x1, x2, . . . , xn), . . . and b < x means that bi < xi, i = 1, 2, . . . , n.

Proof. Let Φ be convex. Then, according to Jensen’s inequality and the Fubini
theorem, we have

b1∫
0

. . .

bn∫
0

Φ

⎛⎝ 1
x1 . . . xn

x1∫
0

. . .

xn∫
0

f (t1, . . . , tn)dt1 . . . dtn

⎞⎠ dx1 . . . dxn

x1 . . . xn

�
b1∫

0

. . .

bn∫
0

⎛⎝ x1∫
0

. . .

xn∫
0

Φ (f (t1, . . . , tn)) dt1 . . . dtn

⎞⎠ x−2
1 . . . x−2

n dx1 . . . dxn

=

b1∫
0

. . .

bn∫
0

Φ (f (t1, . . . , tn))

⎛⎝ b1∫
t1

. . .

bn∫
tn

x−2
1 . . . x−2

n dx1 . . . dxn

⎞⎠ dt1 . . . dtn

=

b1∫
0

. . .

bn∫
0

Φ (f (t1, . . . , tn))
(

1 − t1
b1

)
. . .

(
1 − tn

bn

)
dt1 . . . dtn
t1 . . . tn

.

By making the same calculation with Φ concave we see that only the inequality sign
will be reversed and the proof is complete. �

By choosing Φ(t) = tp in Theorem 2.1. we obtain some natural multidimensional
forms of the classical Hardy and reversed Hardy inequalities.

COROLLARY 2.2. Let 0 < di � ∞, i = 1, 2, . . . , n (n ∈ Z+).
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(a) If p > 1 or p < 0, then

d1∫
0

. . .

dn∫
0

⎛⎝ 1
y1 . . . yn

y1∫
0

. . .

yn∫
0

g(s1, . . . , sn)ds1 . . . dsn

⎞⎠p

dy1 . . . dyn (2.3)

�
(

p
p − 1

)pn d1∫
0

. . .

dn∫
0

gp(y1, . . . , yn)

⎛⎝1 −
(

y1

d1

) p−1
p

⎞⎠
· . . . ·

⎛⎝1 −
(

yn

dn

) p−1
p

⎞⎠ dy1 . . . .dyn,

for each positive function g on (0, d).
(b) If 0 < p < 1, then

∞∫
d1

. . .

∞∫
dn

⎛⎝ 1
y1 . . . yn

∞∫
y1

. . .

∞∫
yn

g(s1, . . . , sn)ds1 . . . dsn

⎞⎠ dy1 . . . dyn (2.4)

�
(

p
1 − p

)pn ∞∫
d1

. . .

∞∫
dn

gp(y1, . . . , yn)

⎛⎝1 −
(

d1

y1

) 1−p
p

⎞⎠
· . . . ·

⎛⎝1 −
(

dn

yn

) 1−p
p

⎞⎠ dy1 . . . dyn,

for each positive function g on (0, d).

REMARK 2.1. For the case n = 1, p > 1, the improvement (2.3) of Hardy’s
inequality was proved in [5]. It has been known for a long time that Hardy’s inequality
(for n = 1 ) in fact holds also for p < 0. See e.g. [1] and the book [12] and the
references given there. This multidimensional generalization of these facts seems to be
new.

Proof. Apply (2.1) with Φ(u) = up, p > 1 or p < 0 and we obtain that

b1∫
0

. . .

bn∫
0

⎛⎝ 1
x1 . . . xn

x1∫
0

. . .

xn∫
0

f (t1, . . . , tn)dt1 . . . dtn

⎞⎠p

dx1 . . . dxn

x1 . . . xn
(2.5)

�
b1∫

0

. . .

bn∫
0

f p(x1, . . . , xn)
(

1 − x1

b1

)
. . .

(
1 − xn

bn

)
dx1 . . . dxn

x1 . . . xn
.

Let p > 1. Now, first put ti = s
p−1

p
i in (2.5) and then let xi = y

p−1
p

i , b
p

p−1
i = di

for i = 1, 2, . . . , n. Then the proof of (2.3) follows by defining the relation between
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the functions f and g by

f

(
x

p−1
p

1 , x
p−1

p
2 , . . . , x

p−1
p

n

)
x
− 1

p
1 x

− 1
p

2 . . . x
− 1

p
n = g(x1, x2, . . . , xn).

The proof of the case p < 0 is completely similar. Moreover, for the case 0 < p < 1
the function Φ is concave and the proof of (2.4) follows in an analogous way by
applying (2.2).

The proof is complete. �
By choosing Φ(t) = exp(t) in Theorem 2.1. and replacing f by ln gp we obtain

the following multidimensional form of the so called Pólya-Knopp’s inequality:

COROLLARY 2.3. Let 0 < bi � ∞, i = 1, 2, . . . , n. If p > 0, then⎛⎝ b1∫
0

. . .

bn∫
0

⎡⎣exp

⎛⎝ 1
x1 . . . xn

x1∫
0

. . .

xn∫
0

ln g(t1, . . . , tn)dt1 . . . dtn

⎞⎠⎤⎦p

dx1 . . . dxn

⎞⎠
1
p

� e
n
p

⎛⎝ b1∫
0

. . .

bn∫
0

gp(x1, . . . xn)
n∏

i=1

(
1 − xi

bi

)
dx1 . . . dxn

⎞⎠
1
p

,

for each positive function g on (0, b) .

Proof. It is obviously sufficient to prove the inequality for the case p = 1. By
applying (2.1) with Φ(u) = exp u and replacing f by ln f we obtain that⎛⎝ b1∫

0

. . .

bn∫
0

exp

⎛⎝ 1
x1 . . . xn

x1∫
0

. . .

xn∫
0

ln f (t1, . . . , tn)dt1 . . . dtn

⎞⎠ dx1 . . . dxn

x1 . . . xn

⎞⎠ (2.6)

�

⎛⎝ b1∫
0

. . .

bn∫
0

f (x1, . . . xn)
n∏

i=1

(
1 − xi

bi

)
dx1 . . . dxn

x1 . . . xn

⎞⎠ .

The proof follows by using this inequality with g(x1, . . . , xn) = f (x1,...xn)
x1...xn

. �

REMARK 2.2. For the case n = 1 Corollary 2.3. was proved in [3] by using
another technique (via a mixed mean inequality).

REMARK 2.3. By instead applying (2.2) with Φ(u) = ln u and replacing f by
exp f we obtain the following reversed version of (2.6) :⎛⎝ b1∫

0

. . .

bn∫
0

ln

⎛⎝ 1
x1 . . . xn

x1∫
0

. . .

xn∫
0

exp f (t1, . . . , tn)dt1 . . . dtn

⎞⎠ dx1 . . . dxn

x1 . . . xn

⎞⎠
�

⎛⎝ b1∫
0

. . .

bn∫
0

f (x1, . . . xn)
n∏

i=1

(
1 − xi

bi

)
dx1 . . . dxn

x1 . . . xn

⎞⎠ ,

which we think is new also for n = 1.
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3. On the weighted case

Our main result in this section reads:

THEOREM 3.1. Let 0 < p � q < ∞ and 0 < bi � ∞ , i = 1, . . . , n . Let Φ(x)
be a positive and convex function on (a, c) , −∞ � a < c � ∞, and let u(x) and
w(x) be weight functions on (0, b) such that a < f (x) < c. Then⎛⎜⎝ b1∫

0

...

bn∫
0

⎛⎝Φ

⎛⎝ 1
x1...xn

x1∫
0

...

xn∫
0

f (t1, ..., tn)dt1...dtn

⎞⎠⎞⎠
q
p

w(x1, ..., xn)
dx1...dxn

x1...xn

⎞⎟⎠
1
q

� C

⎛⎝ b1∫
0

...

bn∫
0

Φ (f (x1, ..., xn)) u(x1, ..., xn)
dx1...dxn

x1...xn

⎞⎠
1
p

(3.1)

holds for some finite positive constant C if

A := sup
0<ti�bi

(
t1 . . . tn
u(t)

) 1
p

⎛⎝ b1∫
t1

. . .

bn∫
tn

w(x)x
−( q

p +1)
1 . . . x

−( q
p +1)

n dx1 . . . dxn

⎞⎠
1
q

< ∞.

Moreover, if C is the least constant for (3.1) to hold it yields that

C � A.

Proof. We apply first Jensen’s inequality and then Minkowski’s inequality and find
that⎛⎜⎝ b1∫
0

...

bn∫
0

⎛⎝Φ

⎛⎝ 1
x1...xn

x1∫
0

...

xn∫
0

f (t1, ..., tn)dt1...dtn

⎞⎠⎞⎠
q
p

w(x1, ..., xn)
dx1...dxn

x1...xn

⎞⎟⎠
1
q

�

⎛⎜⎝ b1∫
0

...

bn∫
0

⎛⎝ 1
x1...xn

x1∫
0

...

xn∫
0

Φ (f (t1, ..., tn)) dt1...dtn

⎞⎠
q
p

w(x1, ..., xn)
dx1...dxn

x1...xn

⎞⎟⎠
1
q

�

⎛⎝ b1∫
0

...

bn∫
0

Φ (f (t1, ..., tn)) t1...tn
u(t)
u(t)

⎛⎝ b1∫
t1

...

bn∫
tn

w(x)x
−( q

p +1)
1

·... · x−( q
p +1)

n dx1...dxn

) p
q dt1...dtn

t1...tn

) 1
p

� A

⎛⎝ b1∫
0

...

bn∫
0

Φ (f (t1, ..., tn)) u(t)
dt1...dtn
t1...tn

⎞⎠
1
p

.
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Thus, (3.1) holds with C = A so the proof is complete. �

REMARK 3.1. If p = q, then Theorem 3.1. implies that for Φ convex

b1∫
0

...

bn∫
0

Φ

⎛⎝ 1
x1...xn

x1∫
0

...

xn∫
0

f (t1, ..., tn)dt1...dtn

⎞⎠ w(x1, ..., xn)
dx1...dxn

x1...xn
(3.2)

� A1

b1∫
0

. . .

bn∫
0

Φ (f (t1, . . . , tn)) u(t1, . . . tn)
dt1 . . . dtn
t1 . . . tn

,

where

A1 := sup
0<ti�bi

t1, . . . tn
u(t1, . . . tn)

b1∫
t1

. . .

bn∫
tn

w(x1, . . . , xn)
dx1 . . . dxn

x2
1 . . . x2

n
. (3.3)

Moreover, by modifying the proof of Theorem 3.1. we find that if Φ is concave, then
(3.2) holds in the opposite direction with (3.3) replaced by

A2 := inf
0<ti�bi

t1, . . . tn
u(t1, . . . tn)

b1∫
t1

. . .

bn∫
tn

w(x1, . . . , xn)
dx1 . . . dxn

x2
1 . . . x2

n
. (3.4)

EXAMPLE 3.1. In the case p = q, w ≡ 1 and u(x1, ..., xn) =
(
1 − x1

b1

)
...

(
1 − xn

bn

)
a simple calculation shows that A1 = A2 = 1 (A1 and A2 are defined by (3.3) and
(3.4)) and we get (2.1) and (2.2)).

4. Hardy-type inequalities with a general kernel

In this section we consider the following general Hardy-type arithmetic mean
operator:

AKf (x) :=
1

K(x)

x∫
0

k(x, y)f (y)dy, x > 0, (4.1)

where f (x) is real-valued and measurable, k(x, y) is measurable and nonnegative, and

K(x) :=

x∫
0

k(x, y)dy.

We also consider the natural limit (geometric mean) operator

GKf (x) := exp

⎛⎝ 1
K(x)

x∫
0

k(x, y) ln f (y)dy

⎞⎠ .
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There are some results concerning the mapping properties of these operators (see
e.g. [16] and the book [12] and the references given there) but we need always to
assume some extra assumptions on the kernel k(x, y) (i.e. that it satisfies the so called
Oinarov condition). Here we will present some results which can be achieved without
any restriction on k except that it is nonnegative. We start by stating the following
elementary but surprisingly powerful generalization of many forms of the classical
Hardy and Pólya-Knopp inequalities (see e.g. the examples and remarks below).

THEOREM 4.1. Let u be a weight function on (0, b) , 0 < b � ∞, and let
k(x, y) � 0 on (0, b) × (0, b). Assume that k(x,y)u(x)

xk(x) is locally integrable on (0, b) for
each fixed y ∈ (0, b) and define v by

v(y) := y

b∫
y

k(x, y)
K(x)

u(x)
dx
x

< ∞, y ∈ (0, b).

If Φ is a positive and convex function on (a, c), −∞ � a < c � ∞, then

b∫
0

Φ (AKf (x)) u(x)
dx
x

�
b∫

0

Φ (f (x)) v(x)
dx
x

,

for all f with a < f (x) < c, 0 � x � b, where AK is defined by (4.1).

Proof. By using Jensen’s inequality and the Fubini theorem we find that

b∫
0

Φ (AKf (x)) u(x)
dx
x

=

b∫
0

Φ

⎛⎝ 1
K(x)

x∫
0

k(x, y)f (y)dy

⎞⎠ u(x)
dx
x

�
b∫

0

⎛⎝ 1
K(x)

x∫
0

k(x, y)Φ (f (y)) dy

⎞⎠ u(x)
dx
x

=

b∫
0

Φ (f (y))

⎛⎝ b∫
y

1
K(x)

k(x, y)u(x)
dx
x

⎞⎠ dy

=

b∫
0

Φ (f (x)) v(x)
dx
x

.

The proof is complete. �

For the special case k(x, y) = 1 we have:

COROLLARY 4.2. Let u be a weight function on (0, b), 0 < b � ∞, and let

v be defined by v(y) = y
b∫
y

u(x)
x2 dx. If Φ is a positive and convex function on (a, c),
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−∞ � a < c � ∞, then

b∫
0

Φ

⎛⎝1
x

x∫
0

f (y)dy

⎞⎠ u(x)
dx
x

�
b∫

0

Φ (f (x)) v(x)
dx
x

,

for all f such that a < f (x) < c, 0 � x � b.

REMARK 4.1. The result in Corollary 4.2. was also recently presented and dis-
cussed in [5, Theorem 1]. For the unweighted case see also [10].

EXAMPLE 4.1. By applying Theorem 4.1. with Φ(x) = exp x and replacing f
by ln f p we obtain the following generalization of the Pólya-Knopp type inequality
(see [9] and [12] and the references given there):

b∫
0

⎡⎣exp

⎛⎝ 1
K(x)

x∫
0

k(x, y) ln f (y)dy

⎞⎠⎤⎦p

u(x)
dx
x

�
b∫

0

f p(x)v(x)
dx
x

, p > 0, (4.2)

where k(x, y), K(x), u(x) and v(x) are defined as in Theorem 4.1.

REMARK 4.2. By applying (4.2) with p = 1, u(x) ≡ 1 (and hence v(x) = 1− x
b )

we get

b∫
0

exp

⎛⎝ 1
K(x)

x∫
0

k(x, y) ln f (y)dy

⎞⎠ dx
x

�
b∫

0

f (x)
(
1 − x

b

) dx
x

,

which is a generalization of (14) from [5] and hence we can get e.g. the results from
their Corollary 2 (i) with α = 1, in particular that

b∫
0

exp

⎛⎝1
x

x∫
0

ln f (y)dy

⎞⎠ xεdx � e1+ε
b∫

0

(
1 − x

b

)
f (x)xεdx.

EXAMPLE 4.2. Let k(x, y) = γ
xγ (x−y)γ−1 if 0 � x � y, and k(x, y) = 0 if x > y.

Then K(x) ≡ 1 and

Akf (x) =
γ
xγ

x∫
0

(x − y)γ−1f (y)dy = Rγ f (x), γ > 0,

where Rγ is the Riemann-Liouville operator. If u(x) ≡ 1, then v(x) = (1 − x
b )

γ , and
the inequality from Theorem 4.1. reads

b∫
0

Φ
(
Rγ f

)
(x)

dx
x

�
b∫

0

Φ(f (x))
(
1 − x

b

)γ dx
x

.
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In particular, for the case Φ(x) = xp, p � 1 or p < 0 and k > 1 we get, after some
variable substitutions and changes of notations,

b∫
0

1
xγ (k−1)+1

⎛⎝ x∫
0

(
x

k−1
p − t

k−1
p

)γ−1
f (t)dt

⎞⎠p

dx

�
(

p
γ (k − 1)

)p b∫
0

f p(x)

[
1 −

( x
b

) k−1
p

]γ

xp−kdx.

Note that if γ = 1 we get Corollary 1 (i) from [5] and an equivalent form is

b∫
0

⎛⎝1
x

x∫
0

f (t)dt

⎞⎠p

xεdx �
(

p
p − 1 − ε

)p b∫
0

f p(x)

[
1 −

( x
b

) p−1−ε
p

]
xεdx, (4.3)

where p > 1 or p < 0 and ε < p − 1.

REMARK 4.3. For the case b = ∞ (4.3) reads

∞∫
0

⎛⎝1
x

x∫
0

f (t)dt

⎞⎠p

xεdx �
(

p
p − 1 − ε

)p ∞∫
0

f p(x)xεdx, ε < p − 1, (4.4)

which for the case p > 1 is the most elementary form of weighted Hardy’s inequality
(see [8]). By making some substitutions we find that (4.4) can be equivalently rewritten
on the basic form ( (1.3) with Φ(u) = up)

∞∫
0

⎛⎝1
x

x∫
0

g(t)dt

⎞⎠p

dx
x

�
∞∫
0

gp(x)
dx
x

, (4.5)

where f (t) = g(t
p−1−ε

p )t−
1+ε
p . Note that (4.5) also holds for p = 1. This shows that

(4.4) in fact is not more general than the unweighted Hardy inequality (1.1) because
both equivalently be rewritten on the same form (4.5).

REMARK 4.4. The fact that Hardy’s inequality holds also for the case p < 0 ,
b = ∞ was known earlier (see e.g. [1] and the references given there). Our approach
give both cases p < 0 and p > 1 directly as a consequence of Theorem 4.1. Some
other new information concerning the case p < 0 can also be found in the PhD thesis
[16] of V. D. Prokhorov.

Now let K̃(x) :=
∞∫
x

k(x, y)dy < ∞ and define

AK̃(f (x)) :=
1

K̃(x)

∞∫
x

f (y)k(x, y)dy.
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Then from Jensen’s inequality we have

Φ (AK̃(f (x))) � 1

K̃(x)

∞∫
x

Φ (f (y)) k(x, y)dy, x > 0.

By making similar calculations as in the proof of Theorem 4.1. we also have the
following:

THEOREM 4.3. For 0 � b < ∞, let u be a weight function such that k(x,y)u(x)
xK̃(x) is

locally integrable on (b,∞) for every fixed y ∈ (b,∞). Let the function v be defined
by

v(y) = y

y∫
b

k(x, y)u(x)
xK̃(x)

dx < ∞, y ∈ (b,∞).

If Φ is a positive and convex function on (a, c), −∞ � a < c � ∞, then

∞∫
b

Φ(AK̃f (x))u(x)
dx
x

�
∞∫
b

Φ(f (x))v(x)
dx
x

,

for all f with a < f (x) < c, 0 � x � b.

REMARK 4.5. In fact Theorem 4.3. may be seen as a generalization of [5, Theorem

2]. This fact can be seen by choosing k(x, y) = 1
y2 . Then K̃(x) =

∞∫
x

1
y2 dy = 1

x ,

v(y) = y

y∫
b

u(x)
x 1

x y
2
dx =

1
y

y∫
b

u(x)dx

and

AK̃ f (x) = x

∞∫
x

f (y)
dy
y2

,

and the statement follows.

Our final result reads:

THEOREM 4.4. Let 1 < p � q < ∞, 0 < b � ∞ , s ∈ (1, p) , let Φ be a convex
and strictly monotone function on (a, c), −∞ � a < c � ∞, and let AK be a general
Hardy type operator defined by (4.1). Then the inequality⎛⎝ b∫

0

[Φ (AKf (x))]q u(x)
dx
x

⎞⎠
1
q

� C

⎛⎝ b∫
0

Φp(f (x))v(x)
dx
x

⎞⎠
1
p

(4.6)

holds for all functions f (x), a < f (x) < c, x ∈ [0, b], if

A(s) := sup
0<t<b

⎛⎝ b∫
t

(
k(x, t)
K(x)

)q

u(x)V(x)
q(p−s)

p
dx
x

⎞⎠
1
q

V(t)
s−1

p < ∞, (4.7)
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holds, where V(t) =
t∫

0

v1−p′ (x)
x1−p′ dx. Moreover, if C is the best possible constant in (4.6),

then

C � inf
1<s<p

(
p − 1
p − s

) 1
p′

A(s). (4.8)

Proof. First we apply Jensen’s inequality to the left hand side of (4.6), and get⎛⎝ b∫
0

[Φ (AKf (x))]q u(x)
dx
x

⎞⎠
1
q

=

⎛⎝ b∫
0

⎡⎣Φ
⎛⎝ 1

K(x)

x∫
0

k(x, t)f (t)dt

⎞⎠⎤⎦q

u(x)
dx
x

⎞⎠
1
q

�

⎛⎝ b∫
0

⎡⎣ 1
K(x)

x∫
0

k(x, t)Φ (f (t)) dt

⎤⎦q

u(x)
dx
x

⎞⎠
1
q

.

Thus we can give an upper bound for the inequality (4.6) if we can prove the following
estimate:⎛⎝ b∫

0

⎡⎣ 1
K(x)

x∫
0

k(x, t)Φ (f (t)) dt

⎤⎦q

u(x)
dx
x

⎞⎠
1
q

� C

⎛⎝ b∫
0

Φp(f (x))v(x)
dx
x

⎞⎠
1
p

. (4.9)

Now let Φp(f (x)) v(x)
x = Φ(g(x)) in (4.9). Then (4.9) is equivalent to⎛⎝ b∫

0

⎡⎣ 1
K(x)

x∫
0

k(x, t)Φ
1
p (g(t))

(
t

v(t)

) 1
p

dt

⎤⎦q

u(x)
dx
x

⎞⎠
1
q

� C

⎛⎝ b∫
0

Φ(g(x))dx

⎞⎠
1
p

.

(4.10)
We apply Hölder’s inequality, Minkowski’s inequality, (4.7) and find that⎛⎝ b∫

0

⎡⎣ 1
K(x)

x∫
0

k(x, t)Φ
1
p (g(t))

(
t

v(t)

) 1
p

dt

⎤⎦q

u(x)
dx
x

⎞⎠
1
q

=

⎛⎝ b∫
0

⎡⎣ 1
K(x)

x∫
0

k(x, t)Φ
1
p (g(t)) V(t)

s−1
p V(t)

−(s−1)
p v(t)−

1
p t

1
p dt

⎤⎦q

u(x)
dx
x

⎞⎠
1
q

�

⎛⎜⎝ b∫
0

⎡⎣ x∫
0

kp(x, t)Φ (g(t)) V(t)s−1dt

⎤⎦
q
p
⎡⎣ x∫

0

V(t)
−p′(s−1)

p v(t)1−p′ tp
′−1dt

⎤⎦
q
p′

u(x)
K(x)q

dx
x

⎞⎟⎠
1
q

=
(

p − 1
p − s

) 1
p′

⎛⎜⎝ b∫
0

⎡⎣ x∫
0

kp(x, t)Φ (g(t)) V(t)s−1dt

⎤⎦
q
p

V
q(p−s)

p (x)
u(x)
K(x)q

dx
x

⎞⎟⎠
1
q
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�
(

p − 1
p − s

) 1
p′

⎛⎜⎝ b∫
0

Φ (g(t)) V(t)s−1

⎛⎝ b∫
t

V
q(p−s)

p (x)u(x)
(

k(x, t)
K(x)

)q dx
x

⎞⎠
p
q

dt

⎞⎟⎠
1
p

�
(

p − 1
p − s

) 1
p′

A(s)

⎛⎝ b∫
0

Φ (g(t)) dt

⎞⎠
1
p

.

Hence (4.10) and, thus, (4.9) holds with a constant C satisfying the inequality (4.8)
and the proof is complete. �

EXAMPLE 4.3. Let Φ(x) = x, k(x, t) = 1 and p = q in (4.6). Then we get the
following Hardy inequality⎛⎝ b∫

0

⎛⎝1
x

x∫
0

f (t)dt

⎞⎠p

u(x)
dx
x

⎞⎠
1
p

� C

⎛⎝ b∫
0

(f p(x))v(x)
dx
x

⎞⎠
1
p

, (4.11)

for which the well-known Muckenhoupt condition reads (see e.g. [12] or [17])

A := sup
0<x<b

⎛⎝ b∫
x

u(t)t−p dt
t

⎞⎠
1
p
⎛⎝ x∫

0

v1−p′(t)
t1−p′ dt

⎞⎠
1
p′

< ∞. (4.12)

Moreover, for the best constant C in (4.11) it yields that

C �
(
p′

) 1
p′ p

1
p A. (4.13)

If we now take in p = 2 , b = 1, u(x) = x2 and v(x) = x(1− x) we get the following
inequality: ⎛⎜⎝ 1∫

0

⎛⎝ x∫
0

f (t)dt

⎞⎠2

1
x
dx

⎞⎟⎠
1
2

� C

⎛⎝ 1∫
0

f 2(x)(1 − x)dx

⎞⎠
1
2

. (4.14)

By using the weight characterization (4.12) and the estimate (4.13) we get that

C � ln 4� 1.386294361.

Obviously the condition (4.7) is fulfilled for the weights we have chosed and using the
estimate (4.8) with s = 1.27 we get that

C � 1.131316436

which is a much better estimate of the best constant C in (4.14).
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REMARK 4.6. Example 4.3 illustrates the important fact that in Theorem 4.4. we
have a scale of conditions (one for each s ∈ (1, p) ) and in each case we get an upper
estimate of the best constant. Therefore, we get more possibilities to get better estimates
of the best constant then by just using the (single) Muckenhoupt condition.
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J. Approx. Theory 125 (2003), 74–84.

[6] G. H. HARDY, Notes on a theorem of Hilbert, Math. Z. 6 (1920), 314–317.

[7] G. H. HARDY, Notes on some points in the integral calculus (60), Messenger of Math. 54 (1925),
150–156.
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