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WEIGHTED INEQUALITIES FOR POSITIVE OPERATORS

GORD SINNAMON

Abstract. A technique arising from Schur’s Lemma and its converse is shown to generate
weighted Lebesgue norm inequalities for a wide class of linear and non-linear positive oper-
ators. In many cases the best constants for these inequalities are determined as well. A sharp
converse to Schur’s Lemma is proved via a minimax principle for a class of positive operators on
Banach Function Spaces. This shows that all such inequalities can be generated by this technique
and establishes a structure theorem for weight pairs.

Examples involving Hardy and Stieltjes operators are given as well as several Opial-type
inequalities. As an illustration of the structure theorem a new proof is given of necessity in the
well-known weight characterization for the Hardy operator.
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