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WEIGHTED INEQUALITIES FOR POSITIVE OPERATORS

GORD SINNAMON

(communicated by L.-E. Persson)

Abstract. A technique arising from Schur’s Lemma and its converse is shown to generate
weighted Lebesgue norm inequalities for a wide class of linear and non-linear positive oper-
ators. In many cases the best constants for these inequalities are determined as well. A sharp
converse to Schur’s Lemma is proved via a minimax principle for a class of positive operators on
Banach Function Spaces. This shows that all such inequalities can be generated by this technique
and establishes a structure theorem for weight pairs.

Examples involving Hardy and Stieltjes operators are given as well as several Opial-type
inequalities. As an illustration of the structure theorem a new proof is given of necessity in the
well-known weight characterization for the Hardy operator.

1. Introduction

Let (X,μ) and (Y, ν) be σ -finite measure spaces and L+
μ and L+

ν denote the
collections of non-negative measurable functions on (X,μ) and (Y, ν) respectively.
Suppose that for i = 1, . . . , n the maps Ti : L+

ν → L+
μ have formal adjoints T∗

i : L+
μ →

L+
ν , that is, ∫

X
(Tif )ϕ dμ =

∫
Y
f (T∗

i ϕ) dν, for all f ∈ L+
ν and ϕ ∈ L+

μ .

Define the map T : L+
ν → L+

μ by

(Tf )q =
n∏

i=1

(Tif
ri)qi/ri (1.1)

where q = q1 +q2 + · · ·+qn . Our purpose is to give a method for generating weighted
inequalities of the form(∫

X
(Tf )qu dμ

)1/q

� C

(∫
Y
f pv dν

)1/p

, f ∈ L+
ν , (1.2)

for indices satisfying ri < q � p < ∞ for all i . If q < p and ri � qi for all i
then the method generates essentially all such inequalities and always produces the best
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constant. If q = p and ri � qi for all i then the method generates essentially all such
inequalities and produces constants arbitrarily close to optimal.

The methods of the paper can be traced back to Frobenius and Schur but are
naturally more closely connected with recent work. Schur’s lemma [14] gave a method
for proving that a matrix with non-negative entries was bounded as a map on �2 . Many
generalizations and applications of the result and its converse [7] followed. See, for
example [1, 3, 4, 5, 9, 10, 11, 13, 16, 18, 19]. In [9, 16], the method was used on positive,
linear operators that need not be integral operators. In [5] it was extended to non-linear,
positive operators of the form f �→ f αTf with T a positive integral operator. The
operators in (1.1) include both these cases and much more.

The minimax principle introduced in [6] evolved in [5, 19] and elsewhere. Here
we give a substantial extension of the principle to include operators in Banach Function
Spaces. In this general setting we are able to improve the clever iteration given in [7]
to establish a sharp converse to Schur’s Lemma for operators of the form (1.1). This
sharp converse was proved for matrix operators on Lebesgue sequence spaces in [3, 11]
and for positive operators with formal adjoints on Lebesgue spaces in [16].

The plan of the paper emphasizes our focus on weighted inequalities. In the next
section we state and prove our method for generating weighted inequalities of the form
(1.2). We also state the converse results which show that the method generates all such
inequalities. The minimax principle is given in Section 3 and in Section 4 we apply it
in the Lebesgue space case to give our general Schur’s Lemma, the sharp converse, and
the proofs deferred from Section 2.

From a wealth of possible examples we select a collection that illustrates the
versatility of the method. These are given in Section 5. The first two examples are
weighted norm inequalities with best constant for the Hardy operator and the Stieltjes
transformation. The next two show how using product operators like (1.1) can restore
homogeneity in inequalities with nonhomogeneous constraints. Example 5.5 gives the
best constant in a known weighted Opial inequality and Example 5.6 is an unusual
variant of Hardy’s inequality which does not seem to be accessible by other methods.

Section 5 concludes with a new proof of a well-known result. See, for example,
[12] and the references given there. The idea is to use the sharp converse of Schur’s
Lemma as a structure theorem for weight functions, a notion that promises to provide a
new technique in weighted norm inequalities.

The remainder of this introduction is devoted to notation and definitions used in
the paper. For a σ -finite measure space (Y, λ ) we let L+

λ be the collection of λ -
measurable functions ϕ : Y → [0,∞] . Arithmetic on [0,∞] is used throughout with
the conventions that 0(∞) = (∞)0 = 0 , 0/0 = 0 , ∞/∞ = 0 , and ∞0 = 1 . With
these conventions the expression f � ∞g , for f , g ∈ L+

λ , means that f vanishes
wherever g does.

As usual we write f n ↑ f , for f , f 1, f 2, · · · ∈ L+
λ to mean that the sequence

f 1, f 2, . . . is non-increasing and converges pointwise λ -almost everywhere to f . Sim-
ilarly for f n ↓ f . We use a prime to denote the harmonic conjugate of an index so that
1/p + 1/p′ = 1 whenever 1 � p � ∞ .

We say that an operator T : L+
ν → L+

μ is [0,∞] -linear if T(af + g) = aTf + Tg
for all a ∈ [0,∞] ; preserves order if Tf � Tg whenever f � g ; is order continuous
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if it preserves order and Tf n ↑ Tf whenever f n ↑ f ; is strongly order continuous if
it is order continuous and Tf n ↓ Tf whenever both f n ↓ f and Tf 1 < ∞ λ -almost
everywhere.

Note that the Arithmetic-Geometric Mean inequality (AGM) remains valid on
[0,∞] : If a1, . . . , an ∈ [0,∞] and θ1, . . . , θn ∈ (0, 1] satisfy θ1 + · · · + θn = 1 then

n∏
i=1

aθi
i �

n∑
i=1

θiai.

For definitions and properties of Banach Function Norms we refer [2]. One simple
consequence of the definition [2, I.1.1] is that for any Banach Function Norm over a
σ -finite measure space there exists a positive function with finite norm. Another fact
that we will need is [2, Proposition I.3.6]. If a Banach Function Norm is absolutely
continuous then it has a dominated convergence property.

If ‖ · ‖μ and ‖ · ‖ν are Banach Function Norms on L+
μ and L+

ν respectively and
J : L+

ν → L+
μ the inequality

‖Jf ‖μ � C‖f ‖ν, f ∈ L+
ν , (1.3)

is equivalent to

sup
f ∈L+

ν

‖Jf ‖μ
‖f ‖ν � C

and the least constant C for which they hold is called the best constant in (1.3). A
function g satisfying 0 < ‖g‖ν < ∞ for which ‖Jg‖μ/‖g‖ν is the best constant in
(1.3) is called an extremal for (1.3).

2. Weighted Norm Inequalities

Suppose that for i = 1, . . . , n the maps Ti : L+
ν → L+

μ have formal adjoints
T∗

i : L+
μ → L+

ν and T is defined by (1.1) with q = q1 + · · ·+qn and ri < q � p < ∞ .
Fix a weight u ∈ L+

μ . For each positive g ∈ L+
ν we define

vg =
n∑

i=1

(qi/q)gri−pT∗
i (u(Tg)q/Ti(gri)),

Cg =
(∫

Y
gpvg dν

)(1/q)−(1/p)

.

(2.1)

Note that by our convention, Cg = 1 when p = q even if
∫

Y gpvg dν = ∞ .

THEOREM 2.1. If 0 < g < ∞ ν -almost everywhere and 0 < Tg < ∞ uμ -almost
everywhere then(∫

X
(Tf )qu dμ

)1/q

� Cg

(∫
Y

f pvg dν
)1/p

, f ∈ L+
ν . (2.2)
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If 0 <
∫

X(Tg)qu dμ < ∞ then Cg is the best constant in (2.2) and g is an
extremal for (2.2).

When q < p this method generates all weighted norm inequalities for operators
T provided qi � ri for i = 1, . . . , n as we see in our first converse to Theorem 2.1.
The condition (2.3) imposed in Theorem 2.2 and the restriction 0 < v < ∞ imposed
in Theorems 2.2 and 2.3 are not essential and can be easily removed by reducing (1.2)
to an equivalent inequality. See Theorem 4.4.

THEOREM 2.2. Suppose that q < p and qi � ri for i = 1, . . . , n , and that the
best constant in (1.2) is C < ∞ . If 0 < v < ∞ and T satisfies,

if Tf = T(χ Ef ) for all f ∈ L+
ν then ν(Y \ E) = 0 (2.3)

then there exists a g ∈ L+
ν satisfying 0 < g < ∞ and 0 <

∫
X(Tg)qu dμ < ∞ such

that v = vg and C = Cg .

This result may be viewed as a structure theorem for weights. Once the operator
and the indices are fixed, Theorem 2.2 states that every weight pair for which the
inequality holds is of the form (u, vg) for some positive g . See Theorem 5.7 for an
example of how this idea may be used.

The classical Hardy inequality [8, Theorem327] has no extremal function, showing
that Theorem 2.2 does not extend to the case p = q . Thus, when p = q there are
inequalities of the form (1.2) that are not generated by Theorem 2.1 for any choice of
the function g . However, even when p = q the method of Theorem 2.1 can generate
inequalities as close as desired to any given inequality of the form (1.2).

THEOREM 2.3. Suppose q � p , qi � ri for i = 1, . . . , n , C is the best constant
in (1.2) and C < A < ∞ . If 0 < v < ∞ then there exists a g ∈ L+

ν satisfying
0 < g < ∞ and 0 <

∫
X(Tg)qu dμ < ∞ such that vg � Apv and Cg � 1 so that

(∫
X
(Tf )qu dμ

)1/q

� Cg

(∫
Y

f pvg dν
)1/p

� A

(∫
Y

f pv dν
)1/p

holds for all f ∈ L+
ν .

We prove Theorem 2.1 below but the rest of the proofs are deferred until Section
4 because they depend on the minimax principle of Section 3. To begin, however, we
must take a closer look at operators with formal adjoints.

The most popular positive operators are the integral operators with non-negative
kernels and it is immediate that they have formal adjoints. Although the identity
operator is not in general an integral operator, it clearly has a formal adjoint as well.
More generally, if a positive operator J : L+

ν → L+
μ arises as the restriction to the

positive functions of an order continuous linear operator on the space of real-valued
functions then, according to [9, p. 141], it necessarily has a formal adjoint.

In the next lemma we see that an operatorwith a formal adjoint inherits many of the
properties of integration. We review the standard proofs here with an eye to arithmetic
in [0,∞] .
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LEMMA 2.4. Suppose J : L+
ν → L+

μ has a formal adjoint. Then the formal adjoint
is unique, J is [0,∞] -linear and strongly order continuous. Also, if 1 < q < ∞ and
f , g ∈ L+

ν then

J(f g) � (J(f q))1/q(J(gq′))1/q′ .

Proof. If J∗ and J� are both formal adjoints of J then for all E with νE < ∞
and all ϕ ∈ L+

μ we have∫
E

J∗ϕ dν =
∫

X
(J χ E)ϕ dμ =

∫
E
J�ϕ dν

and hence J∗ϕ = J�ϕ ν -almost everywhere. This shows that the formal adjoint is
unique.

Let J∗ be the formal adjoint of J . If μE < ∞ , a ∈ [0,∞] and f , g ∈ L+
ν then∫

E
J(af + g) dμ =

∫
Y
(af + g)J∗χE dν = a

∫
Y

f J∗χE dν +
∫

Y
gJ∗χE dν

= a
∫

E
Jf dμ +

∫
E
Jg dμ =

∫
E

aJf + Jg dμ

so we have J(af + g) = aJf + Jg ν -almost everywhere. This proves the [0,∞] -
linearity of J . If f � g and μE < ∞ then∫

E
(Jf ) dμ =

∫
Y
f J∗ χ E dν �

∫
Y
gJ∗ χ E dν =

∫
E

Jg dμ

so Jf � Jg . Thus J is order-preserving and so if {f n} is a non-decreasing sequence
in L+

ν then Jf n is a non-decreasing sequence in L+
μ . Let f and ϕ be the pointwise

limits of these two sequences. To see that ϕ = Jf we use the formal adjoint again. If
μE < ∞ then by the Monotone Convergence Theorem applied twice we have∫

E
ϕ dμ = lim

n→∞

∫
E

Jf n dμ = lim
n→∞

∫
Y

f nJ
∗ χ E dν =

∫
Y
f J∗ χ E dν =

∫
E
Jf dμ.

This implies that ϕ = Jf μ -almost everywhere as desired and we have shown that
J is order continuous. To prove strong order continuity we apply the Dominated
Convergence Theorem. If {f n} is a non-increasing sequence in L+

ν then Jf n is a non-
increasing sequence in L+

μ . Once again, let f and ϕ be the pointwise limits. If Jf 1 is
finite μ -almost everywhere and μE < ∞ then the sets Em = {x ∈ E : Jf 1(x) � m}
increase with m to E , except for a set of λ -measure zero. Moreover∫

Y
f 1J

∗ χ Em dν =
∫

Em

Jf 1 dμ < ∞.

Thus, by the Dominated Convergence Theorem applied twice we have∫
Em

ϕ dμ = lim
n→∞

∫
Em

Jf n dμ = lim
n→∞

∫
Y
f nJ

∗χEm dν

=
∫

Y
f J∗χEm dν =

∫
Em

Jf dμ.
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As m → ∞ the Monotone Convergence Theorem shows that∫
E
ϕ dμ =

∫
E
Jf dμ.

This implies that ϕ = Jf μ -almost everywhere and we have established the strong
order continuity of J .

To prove the analogue of Hölder’s inequality we first dispense with the case where
the right hand side is zero. Since f g � ∞f q the [0,∞] -linearity of J implies
J(f g) � ∞J(f q) so J(f g) vanishes wherever J(f q) does. Similarly J(f g) vanishes
wherever J(gq′) does. It remains to prove the inequality where both J(f q) and J(gq′)
are positive and finite. Using the homogeneity of J we may assume that both are 1 .
Now by the AGM we have

J(f g) � J((1/q)f q + (1/q′)gq′) = (1/q)J(f q) + (1/q′)J(gq′) = 1.

This completes the proof.

The key argument for the proof of Theorem 2.1 is isolated in the next lemma so
that it may be re-used more readily. Define the maps Ri , i = 1, . . . , n , by

Rig(x) =
{ ∞, if qi < ri and Tigri(x) = ∞∏n

j=1(Tjgrj)qj/rj−δij , otherwise.

This definition is complicated by difficulties with the rules for exponentswhen extended
real values are involved. However, when 0 < Tigri < ∞ the definition reduces to

Rig = (Tg)q/Tig
ri .

LEMMA 2.5. If f , g ∈ L+
ν then∫

X
(T(f g))qu dμ �

∫
Y

f q

(
n∑

i=1

(qi/q)griT∗
i (uRig)

)
(2.4)

with equality when f ≡ 1 .

Proof. We can apply the Hölder inequality from Lemma 2.4 with q replaced by
q/ri to get

Ti((f g)ri) = Ti(f ri gr2
i /qgri(q−ri)/q) � (Ti(f qgri))ri/q(Ti(gri))(q−ri)/q

for each i . If for some x , 0 < Tg(x) < ∞ then 0 < (Tigri)(x) < ∞ for all i so

T(f g)(x)q =
n∏

i=1

Ti((f g)ri)(x)qi/ri

�
n∏

i=1

Ti(f qgri)(x)qi/qTi(gri)(x)(qi/ri)−(qi/q)

= Tg(x)q
n∏

i=1

[Ti(f qgri)(x)/Ti(gri)(x)]qi/q

� Tg(x)q
n∑

i=1

(qi/q)Ti(f qgri)(x)/Ti(gri)(x).
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The last inequality is an application of the AGM. We have shown that

T(f g)(x)q �
n∑

i=1

(qi/q)Ti(f qgri)(x)Rig(x) (2.5)

whenever 0 < Tg(x) < ∞ . If Tg(x) = 0 then because f g � ∞g wehave T(f g)(x) �
∞Tg(x) = 0 . Thus (2.5) holds when Tg(x) = 0 . If Tg(x) = ∞ then Tj(grj)(x) > 0
for all j and Ti(gri)(x) = ∞ for some i . It follows from the definition of the Rj ’s
that Rjg(x) = ∞ for i 
= j and Rig(x) = ∞ as well unless qi = ri . If n > 1 we can
choose j 
= i to get Rjg(x) = ∞ and if n = 1 then q1 = q > r1 by assumption so
we can choose j = 1 to get Rjg(x) = ∞ . For this j , if Tj(f qgrj)(x) > 0 then (2.5)
holds with infinite right hand side and if Tj(f qgrj)(x) = 0 then (2.5) holds with zero
left hand side because (f g)rj � ∞f qgrj implies Tj((f g)rj)(x) � ∞Tj(f qgrj)(x) = 0
and hence T(f g)(x) = 0 . We conclude that (2.5) holds for all x .

It is easy to check that the inequality (2.5) reduces to equality when f ≡ 1 . This
property is retained when we integrate (2.5) to get∫

X
(T(f g))qu dμ �

n∑
i=1

(qi/q)
∫

X
Ti(f qgri)uRig dμ

=
n∑

i=1

(qi/q)
∫

Y
f qgriT∗

i (uRig) dν

=
∫

Y
f q

(
n∑

i=1

(qi/q)griT∗
i (uRig)

)
dν.

This completes the proof.

Proof of Theorem 2.1. The hypothesis that 0 < Tg < ∞ uμ -almost everywhere
together with the definitions of vg and Rig yield

vg =
n∑

i=1

(qi/q)gri−pT∗
i (uRig).

Since 0 < g < ∞ , (f /g)g = f so we can replace f by f /g in (2.4) to get∫
X
(Tf )qu dμ �

∫
Y

f qgp−qvg dν.

If p = q then Cg = 1 so we just take q th roots to get (2.2). If p > q then we apply
Hölder’s inequality with indices p/q and p/(p − q) to get(∫

X
(Tf )qu dμ

)1/q

� Cg

(∫
Y

f pvg dν
)1/p

.

This proves the first statement of Theorem 2.1. For the second statement we use the
fact that (2.4) is equality when f ≡ 1 and take q th roots to get(∫

X
(Tg)qu dμ

)1/q

=
(∫

Y
gpvg dν

)1/q

= Cg

(∫
Y

gpvg dν
)1/p

.
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Thus, if 0 <
∫

X(Tg)qu dμ < ∞ then Cg is the best constant and g is an extremal for
(2.2). This completes the proof.

Looked at in the right way, Lemma 2.5 enables us to reduce inequalities involving
T , a map between two different function spaces, to inequalities involving a map on a
single function space. If 0 < v < ∞ the new map S : L+

ν → L+
ν is defined by

(Sg)p =
1
v

n∑
i=1

(qi/q)griT∗
i (uRig). (2.6)

With f ≡ 1 , Lemma 2.5 shows that∫
X
(Tg)qu dμ =

∫
Y
(Sg)pv dν (2.7)

so (1.2) becomes (∫
Y
(Sf )pv dν

)1/q

� C

(∫
Y

f pv dν
)1/p

or equivalently,

sup
f ∈L+

ν

‖Sf ‖Lp
vν

‖f ‖q/p

Lp
vν

� Cq/p.

This is the sort of inequality we address in Section 3. The condition (3.1) imposed on
the operator S is motivated by the following consequence of Lemma 2.5. Using (2.7)
to write (2.4) in terms of S we have∫

Y
S(f g)pv dν �

∫
Y

f q(Sg)pv dν

which may be written as
‖S(f g)‖Lp

vν
� ‖f q/pSg‖Lp

vν
. (2.8)

3. A Minimax Principle

Let (Y, λ ) be a σ -finite measure space and let L = L+
λ be the collection of

non-negative, extended real valued, λ -measurable functions on Y .

THEOREM 3.1. Suppose that ‖ · ‖ is a Banach Function Norm on L , S : L → L ,
and 0 < α � 1 . If

‖S(f g)‖ � ‖f αSg‖, f , g ∈ L, (3.1)
then

sup
f ∈L

‖Sf ‖
‖f ‖α � inf

0<g
ess supλ

y∈Y

Sg(y)
g(y)

‖g‖1−α � inf
0<g, ‖g‖�1

ess supλ
y∈Y

Sg(y)
g(y)

(3.2)

with equality if S is order continuous.

Proof. First observe that if f , g ∈ L then ‖f αg1−α‖ � ‖f ‖α‖g‖1−α : The homo-
geneity of ‖ · ‖ reduces the observation to the case ‖f ‖ = ‖g‖ = 1 where we use the
AGM to get

‖f αg1−α‖ � ‖αf + (1 − α)g‖ � α‖f ‖ + (1 − α)‖g‖ = 1
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as required. With this in hand we address (3.2).
If f , g ∈ L with g positive then by (3.1)

‖Sf ‖ � ‖(f /g)αSg‖ � ess supλ
y∈Y

Sg(y)
g(y)

‖f αg1−α‖ � ess supλ
y∈Y

Sg(y)
g(y)

‖f ‖α‖g‖1−α.

If ‖f ‖ = 0 then ‖Sf ‖ = 0 so by our convention ‖Sf ‖/‖f ‖α is zero. Otherwise we
divide by ‖f ‖α , take the supremum over f , and take the infimum over g to get

sup
f ∈L

‖Sf ‖
‖f ‖α � inf

0<g∈L
ess supλ

y∈Y

Sg(y)
g(y)

‖g‖1−α .

The second inequality in (3.2) is trivial.
If S is order continuous let

C = sup
f ∈L

‖Sf ‖
‖f ‖α .

We need to consider only the case C < ∞ . Fix a finite A > C and choose a positive
g0 ∈ L such that ‖g0‖ � 1 − A−1C . Such a g0 exists because λ is σ -finite and ‖ · ‖
is a Banach Function Norm. For n = 0, 1, . . . define

gn+1 = g0 + A−1Sgn.

Clearly g0 � g1 and if gn−1 � gn then Sgn−1 � Sgn so gn � gn+1 . By induction
the sequence g0, g1, . . . is non-decreasing. Let g be its pointwise limit and note that
0 < g0 � g . The order continuity of S implies that

g = g0 + A−1Sg. (3.3)

Now ‖g0‖ � 1 − A−1C � 1 and if ‖gn‖ � 1 then

‖gn+1‖ � ‖g0‖ + A−1‖Sgn‖ � 1 − A−1C + A−1C‖gn‖α � 1.

By induction, ‖gn‖ � 1 for all n and the Fatou property of ‖ · ‖ yields ‖g‖ � 1 . This
and (3.3) imply

ess supλ
y∈Y

Sg(y)
g(y)

� A.

Since the argument holds for any A > C we have

inf
0<g∈L,‖g‖�1

ess supλ
y∈Y

Sg(y)
g(y)

� C.

This inequality completes the cycle and ensures equality in (3.2).

As an immediate consequence we have a version of Schur’s Lemma for operators
satisfying (3.1).
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COROLLARY 3.2. Suppose that ‖ ·‖ is a Banach Function Norm on L , S : L → L ,
0 < α � 1 and (3.1) holds. If there exists a positive g ∈ L satisfying Sg � Cg for
some C > 0 then

‖Sf ‖ �
(
C‖g‖1−α) ‖f ‖α , f ∈ L.

It is natural to ask if the supremum and infimum are achieved in (3.2). The answer
is yes when S has a positive (formal) eigenvector.

COROLLARY 3.3. Suppose that ‖ ·‖ is a Banach Function Norm on L , S : L → L ,
0 < α � 1 and (3.1) holds. If there exists a positive g ∈ L satisfying ‖g‖ < ∞ and
Sg = Cg for some C > 0 then

sup
f ∈L

‖Sf ‖
‖f ‖α = C‖g‖1−α .

Proof. Since g is positive (3.2) yields

C‖g‖1−α =
‖Sg‖
‖g‖α � sup

f ∈L

‖Sf ‖
‖f ‖α � ess supλ

y∈Y

Sg(y)
g(y)

‖g‖1−α = C‖g‖1−α

provided g 
≡ ∞ . If g ≡ ∞ then ‖g‖ < ∞ implies that ‖ · ‖ ≡ 0 and the conclusion
is trivially valid.

Our next result shows that when S and ‖ · ‖ are well-behaved and α < 1 then
such an eigenvector always exists. To ensure that the eigenvector we generate below
is positive we need an additional assumption: That S does not achieve its norm on a
proper ideal. If E is a measurable subset of Y we let

L(E) = χ EL = {f ∈ L : f (y) = 0 for y /∈ E}
be the ideal of functions supported on E . If E does not have full measure in Y then
we say that L(E) is a proper ideal. We will assume that

sup
f ∈L(E)

‖Sf ‖
‖f ‖α < sup

f ∈L

‖Sf ‖
‖f ‖α whenever λ (Y \ E) > 0. (3.4)

THEOREM 3.4. Suppose that ‖ · ‖ is an absolutely continuous Banach Function
Norm on L , S : L → L is strongly order continuous, 0 < α < 1 and (3.1) holds. If

sup
f ∈L

‖Sf ‖
‖f ‖α = C < ∞

then there exists a g ∈ L such that ‖g‖ = 1 and Sg = Cg . If, in addition, (3.4) holds
then g is positive.

Proof. If C = 0 then S ≡ 0 and the theorem holds trivially. Otherwise fix a
positive g0 ∈ L with ‖g0‖ = 1 . For each positive integer k let Dk > 1 be the solution
to

(1/k) + Dα
k = Dk
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and note that Dk decreases to 1 as k increases to ∞ . Set

g(k)
0 = (1/k)g0 and g(k)

n+1 = g(k)
0 + C−1Sg(k)

n , n = 0, 1, . . . .

As in the proof of Theorem 3.1, we find that the sequence g(k)
0 , g(k)

1 , . . . is non-
decreasing. Let g(k) be its pointwise limit. The order continuity of S implies

g(k) = (1/k)g0 + C−1Sg(k). (3.5)

Now ‖g(k)
0 ‖ = 1/k � Dk and if ‖g(k)

n ‖ � Dk then

‖g(k)
n+1‖ � (1/k)‖g0‖ + C−1‖Sg(k)

n ‖ � (1/k) + Dα
k = Dk.

By induction ‖g(k)
n ‖ � Dk for all n and the Fatou property of ‖ · ‖ yields ‖g(k)‖ � Dk .

Since Sg(k) � Cg(k) , Corollary 3.2 shows that

C = sup
f ∈L

‖Sf ‖
‖f ‖α � C‖g(k)‖1−α .

It follows that ‖g(k)‖ � 1 and we have

1 � ‖g(k)‖ � Dk. (3.6)

Now we are ready to vary k . It is easy to verify that g(1), g(2), . . . is a non-increasing
sequence. Let g be its pointwise limit. Since Sg(1) � Cg(1) � Cg0 we see that Sg(1)

is finite λ -almost everywhere. The strong order continuity of S applied to (3.5) gives

g = C−1Sg

and the dominated convergence property of ‖ ·‖ ([2, Proposition I.3.6]) applied to (3.6)
yields

1 � ‖g‖ � 1.

This completes the proof of the first statement.
To show that g is positive λ -almost everywhere we set E = {y ∈ Y : g(y) > 0}

so that g ∈ L(E) . Then

sup
f ∈L

‖Sf ‖
‖f ‖α = C =

‖Sg‖
‖g‖α � sup

f ∈L(E)

‖Sf ‖
‖f ‖α

and in view of our hypothesis (3.4) we have λ (E) = 0 as required.

If we work with ideals in L instead of L itself then we can better understand why
g is required to be positive in the infimum of Theorem 3.1. For g ∈ L we set

Eg = {y ∈ Y : g(y) > 0}.
The ideal L(Eg) consists of those functions that vanish wherever g does. Note that
for any E the ideal L(E) is an order ideal as well as a multiplicative ideal. That is, if
f � g ∈ L(E) then f ∈ L(E) and also if f ∈ L and g ∈ L(E) then f g ∈ L(E) . We
have defined L(Eg) to be the order ideal generated by g rather than the multiplicative
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ideal generated by g which may be smaller. One easily checks that gL ⊂ L(Eg) and
it is worth noting that if g takes the value ∞ on a set of positive measure then the
inclusion is proper.

If E ⊂ Y and S : L → L satisfies (3.1) then SE : L(E) → L(E) defined by

SE(f ) = χ ESf

satisfies ‖SEf ‖ = ‖Sf ‖ for all f ∈ L(E) and

‖SE(f g)‖ � ‖f αSEg‖, f , g ∈ L(E).

It is natural to identify the ideal L(E) with the cone L+
λ (E) of non-negative

functions on E and by making this identification we can apply the results of this section
to the operator SE . The outcome of this process is recorded below. Since it includes all
the results of this section as special cases, the next theorem also serves as a summary.

Recall that λ is a σ -finite measure on Y and L = L+
λ (Y) is the collection of λ -

measurable functions on Y with values in [0,∞] . For g ∈ L , Eg = {y ∈ Y : g(y) > 0}
and for E ⊂ Y , L(E) = χ EL .

THEOREM 3.5. Suppose that ‖ · ‖ is a Banach function norm on L , S : L → L ,
0 < α � 1 , and

‖S(f g)‖ � ‖f αSg‖, f , g ∈ L.

1. If E subsetY is λ -measurable then

sup
f ∈L(E)

‖Sf ‖
‖f ‖α � inf

Eg=E
ess supλ

y∈E

Sg(y)
g(y)

‖g‖1−α � inf
Eg=E, ‖g‖�1

ess supλ
y∈E

Sg(y)
g(y)

with equality if S is order continuous.
2. If Sg � Cg then

sup
f ∈L(Eg)

‖Sf ‖
‖f ‖α � C‖g‖1−α .

3. If ‖g‖ < ∞ and Sg = Cg then

sup
f ∈L(Eg)

‖Sf ‖
‖f ‖α = C‖g‖1−α .

4. If ‖ · ‖ is absolutely continuous, S is strongly order continuous, 0 < α < 1 ,
E ⊂ Y is λ -measurable, and

sup
f ∈L(E)

‖Sf ‖
‖f ‖α = C < ∞

then there exists a g ∈ L(E) such that ‖g‖ = 1 and Sg = Cg on E . If for every
E1 ⊂ E , S satisfies

sup
f ∈L(E1)

‖Sf ‖
‖f ‖α < sup

f ∈L(E)

‖Sf ‖
‖f ‖α whenever λ (E \ E1) > 0 (3.7)

then g > 0 on E .
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4. Back to the Lebesgue Case

The general results of Section 3 include the situation introduced in Section 2. Our
first result is an analogue of Theorem 3.5 in this case. With this, the proofs of Theorems
2.2 and 2.3 will be easy.

Recall that L+
μ and L+

ν are the collections of functions from the σ -finite measure
spaces (X,μ) and (Y, ν) , respectively, taking values in [0,∞] . Themaps Ti : L+

ν → L+
μ

and T∗
i : L+

μ → L+
ν are formal adjoints for i = 1, . . . , n , T is defined by

(Tf )q =
n∏

i=1

(Tif
ri)qi/ri ,

and ri < q = q1 + · · · + qn � p for all i . For u ∈ L+
μ and v ∈ L+

ν with 0 < v < ∞ ,
the operator S is given by

(Sg)p =
1
v

n∑
i=1

(qi/q)griT∗
i (uRig)

where

Rig(x) =
{ ∞, if qi < ri and Ti(gri)(x) = ∞∏n

j=1 Tj(grj)qj/rj−δij , otherwise.

For g ∈ L+
ν we set

Bg =
(∫

E
gpv dν

)(1/q)−(1/p)

and note that Bg = 1 when p = q even if g /∈ Lp
vν .

As a notational convenience of using arithmetic on [0,∞] we write f � ∞g to
mean that f vanishes wherever g does. Thus f � ∞χ E means that f = 0 off the set
E and ∞g = ∞χ E means that g = 0 off E and g > 0 on E .

THEOREM 4.1.
1. If E ⊂ Y is ν -measurable then

sup
f �∞χ

E

(∫
X(Tf )qu dμ

)1/q

(∫
E f pv dν

)1/p
� inf

∞g=∞χ
E

Bg

(
ess supλ

y∈E

Sg(y)
g(y)

)p/q

� inf
∞g=∞χ

E,
∫

E
gv dν�1

(
ess supλ

y∈E

Sg(y)
g(y)

)p/q

with equality if qi � ri for i = 1, . . . , n .
2. If g ∈ L+

ν satisfies Sg � Cg then(∫
X
(Tf )qu dμ

)1/q

� Cp/qBg

(∫
Y

f pv dν
)1/p

, f � ∞g. (4.1)

3. If g ∈ Lp
vν and Sg = Cg then the constant in (4.1) is best possible.
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4. If q < p , qi � ri for i = 1, . . . , n , E ⊂ Y and(∫
X
(Tf )qu dμ

)1/q

� Cp/q

(∫
Y

f pv dν
)1/p

, f � ∞χ E,

then there exists a g � ∞χ E such that Bg = 1 and Sg = Cg on E . If T satisfies
(2.3) then ∞g = ∞χ E .

Proof. It is a simple matter to check that if the theorem holds for the indices
p, q, r1, . . . , rn, q1, . . . , qn and m is any positive real number then it also holds for the
indices mp, mq, mr1, . . . , mrn, mq1, . . . , mqn . Therefore, we may assume without loss
of generality that p � 1 . This ensures that ‖ · ‖Lp

vν
is a Banach Function Norm. Note

that ‖ · ‖Lp
vν

has the dominated convergence property and so is absolutely continuous.
The measure λ = vν is σ -finite because ν is σ -finite and v < ∞ ν -almost

everywhere. Take ‖ · ‖ = ‖ · ‖Lp
vν

and α = q/p and apply Theorem 3.5 to the operator
S above. In this special case the condition (3.1) is just (2.8) which was established
previously. The conclusions of Theorem 3.5 are readily reformulated to yield Theorem
4.1 by using (2.7) to express the results in terms of T . Only two things remain. To
show that S is strongly order continuous when qi � ri for i = 1, . . . , n and to show
that if T satisfies (2.3) then S satisfies (3.7). These are established in the next two
lemmas.

LEMMA 4.2. If qi � ri for i = 1, . . . , n then S is strongly order continuous.

Proof. By Lemma 2.4, Tj is strongly order continuous (SOC) and it is easy to
check that

g �→ Tj(grj)qj/rj−δij

is also SOC because the exponent qj/rj−δij is non-negative for all i and j . A standard
argument shows that sums and products of SOC operators are again SOC. Thus Ri is
SOC for each i and to complete the proof it is enough to show that

g �→ T∗
i (uRig)

is SOC. Of course, T∗
i has formal adjoint Ti so Lemma 2.4 shows that T∗

i is SOC. If
gn ↑ g then uRign ↑ uRig so T∗

i (uRign) ↑ T∗
i (uRig) .

For non-increasing sequences a bit more analysis is required. If gn ↓ g and
T∗

i (uRig1) < ∞ then we let E = {x : u(x)Rig1(x) < ∞} . For any f

∞χ
X\Ef = 0 � uRig1

so
∞T∗

i (χ X\Ef ) � T∗
i (uRig1) < ∞.

It follows that T∗
i (χ X\Ef ) = 0 and, since T∗

i is additive, that T∗
i f = T∗

i (χ Ef ) .
Now χ EuRig1 < ∞ and χ EuRi is SOC so χ EuRign ↓ χ EuRig . Since T∗

i is
SOC and T∗

i (χ EuRig1) = T∗
i (uRig1) < ∞ we have

T∗
i (uRign) = T∗

i (χ EuRign) ↓ T∗
i (χ EuRig) = T∗

i (uRig).

This shows that g → T∗
i (uRig) is SOC and completes the proof.
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LEMMA 4.3. If q < p , qi � ri for i = 1, . . . , n and T satisfies (2.3) then S
satisfies (3.7).

Proof. The assumption qi � ri for i = 1, . . . , n gives T a q -superadditivity
property: If f 0 and f 1 have disjoint supports then (f 0 + f 1)ri = f ri

0 + f ri
1 for all i so

(T(f 0 + f i))q =
n∏

i=1

(Ti(f ri
0 + f ri

1 ))qi/ri

=
n∏

i=1

(Ti(f ri
0 ) + Ti(f ri

1 ))qi/ri

�
n∏

i=1

((Ti(f ri
0 ))qi/ri + (Ti(f ri

1 ))qi/ri)

�
n∏

i=1

(Ti(f ri
0 ))qi/ri +

n∏
i=1

(Ti(f ri
1 ))qi/ri

= (Tf 0)q + (Tf 1)q.

Consequently
‖Tf 0‖q

q + ‖Tf 1‖q
q � ‖T(f 0 + f 1)‖q

q. (4.2)

With this in hand we suppose that T satisfies (2.3), fix E1 ⊂ E , and suppose that
E0 = E \ E1 has positive λ -measure. Define

M = sup
f �∞χ

E

‖Tf ‖q

‖f ‖p
, M0 = sup

f �∞χ
E0

‖Tf ‖q

‖f ‖p
, M1 = sup

f �∞χ
E1

‖Tf ‖q

‖f ‖p
.

In view of (2.7) our object is to show that M1 < M . Since λ = vν and E0 has positive
λ -measure, it also has positive ν -measure so (2.3) shows that M0 > 0 . To complete
the proof it will suffice to establish

Ms
0 + Ms

1 � Ms (4.3)

where s = pq/(p−q) . If M1 = 0 then (4.3) holds trivially. If M1 > 0 and m0 and m1

satisfy 0 < m0 < M0 and 0 < m1 < M1 then there exist functions f 0 � ∞χ E0 and
f 1 � ∞χ E1 such that m0‖f 0‖p � ‖Tf 0‖q and m1‖f 1‖p � ‖Tf 1‖q . The homogeneity
of T ensures that we can scale f 0 and f 1 so that they also satisfy ‖f 0‖p

p = ms
0 and

‖f 1‖p
p = ms

1 . Using (4.2) and the definition of M we get

ms
0 + ms

1 = mq
0‖f 0‖q

p + mq
1‖f 1‖q

p

� ‖Tf 0‖q
q + ‖Tf 1‖q

q

� ‖T(f 0 + f 1)‖q
q

� Mq‖f 0 + f 1‖q
p

= Mq(‖f 0‖p
p + ‖f 1‖p

p)
q/p

= Mq(ms
0 + ms

1)
q/p.
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Thus, (ms
0 + ms

1)
(1−q/p) � Mq whenever m0 < M0 and m1 < M1 and so we have

(4.3). This completes the proof.

Proof of Theorem 2.2. By replacing v in (1.2) by Cpv we can reduce Theorem
2.2 to the case C = 1 . Let E = Y and take g to be the function satisfying Sg = g ,
Bg = 1 and g > 0 whose existence is guaranteed by Theorem 4.1(4). In view of (2.7)
we have ∫

X
(Tg)qu dν =

∫
Y
(Sg)pv dν =

∫
Y

gpv dν = 1

and because v > 0 it is clear that g < ∞ ν -almost everywhere. Therefore, vg =
g−pv(Sg)p = v and it follows that Cg = Bg = 1 .

Proof of Theorem 2.3. If S ≡ 0 then by (2.7) uT ≡ 0 as well and the theorem is
trivial. Otherwise, with E = Y in Theorem 4.1 (1), we have

C = inf
g>0,

∫
Y

gv dν�1

(
ess supλ

y∈Y

Sg(y)
g(y)

)p/q

.

Since C < A < ∞ there exists g0 > 0 with
∫

Y g0v dν � 1 such that Sg0 < Aq/pg0

ν -almost everywhere. With g = A−1g0 this becomes Sg < Ag and we have vg =
g−pv(Sg)p � Apv . Now

Cg =
(∫

Y
gpvg dν

)(1/q)−(1/p)

�
(∫

Y
A−pgp

0A
pv dν

)(1/q)−(1/p)

� 1.

The condition (2.3) of Theorem 2.2 and the restriction 0 < v < ∞ of Theorems
2.2 and 2.3 do not reduce the generality of these results. This is because an inequality
of the form (1.1) which is not trivially false is equivalent to another of the same form
for which (2.3) holds and 0 < v < ∞ . This is presented in the next theorem.

THEOREM 4.4. Let T be an operator of the form (1.1). Suppose 0 < C < ∞ and
let Y0 = {y ∈ Y : v(y) = 0} . If there exists an f 0 ∈ Lp

vν such that uTf 0 
= uT(f 0 χ Y\Y0)
on a set of positive

μ -measure then(∫
X
(Tf )qu dμ

)1/q

� C

(∫
Y

f pv dν
)1/p

, f ∈ L+
ν (Y), (4.4)

fails. Otherwise, (4.4) holds if and only if

(∫
X1

(Tf )qu dμ
)1/q

� C

(∫
Y1

f pv dν
)1/p

, f ∈ L+
ν (Y1), (4.5)

where
X1 = {x ∈ X : u(x)T(χ Y\Y0)(x) > 0}

and
Y1 = {y ∈ Y : 0 < v(y) < ∞;

∑n
i=1T

∗
i (χ X1)(y) > 0}.
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Moreover, if (4.5) holds, E ⊂ Y1 and uTf = uT(f χ E) for all f ∈ L+
ν (Y1) then

ν(Y1 \ E) = 0 .

Proof. Suppose f ∈ Lp
vν satisfies uTf 
= uT(f χ Y\Y0) on a set of positive μ -

measure. Then for some i both Ti(f ri) > Ti(f ri χ
Y\Y0) and Tj(f rj) > 0 for i 
= j hold

on a set of positive uμ -measure. The [0,∞] -linearity of Ti yields Ti(∞f ri χ Y0) = ∞
on this set. Therefore∫

X
T(∞f χ Y0 + f )qu dμ �

∫
X

Ti(∞f ri χ Y0)
qi/ri

∏
j	=i

Tj(f rj)qj/rju dμ = ∞.

However, v vanishes on Y0 so∫
Y
(∞f χ Y0 + f )pv dν =

∫
Y

f pv dν < ∞.

We conclude that (4.4) fails for the function ∞f χ Y0 +f . This proves the first statement
of the theorem.

If (4.4) holds and f ∈ L+
ν (Y1) then(∫

X1

(Tf )qu dμ
)1/q

�
(∫

X
(Tf )qu dμ

)1/q

� C

(∫
Y

f pv dν
)1/p

= C

(∫
Y1

f pv dν
)1/p

so (4.5) holds. On the other hand, suppose (4.5) holds and fix f ∈ L+
ν (Y) . If the right

hand side of (4.4) is infinite there is nothing to prove so we may assume that f ∈ Lp
vν

and, in particular, that f = 0 vν -almost everywhere on {y ∈ Y : v(y) = ∞} . By
hypothesis, we also have uTf ≡ uT(f χ Y\Y0) so

uTf ≡ uT(f χ {y∈Y:0<v(y)<∞}). (4.6)

For each i , T∗
i
χ X1 = χ Y2T

∗
i
χ X1 where

Y2 = {y ∈ Y :
∑n

i=1T
∗
i (χ X1)(y) > 0}.

Therefore∫
X1

Ti(f ri) dμ =
∫

Y
f riT∗

i
χ X1 dν =

∫
Y

f ri χ Y2T
∗
i
χ X1 dν =

∫
X1

Ti(f ri χ Y2) dμ

and since Ti(f ri χ Y2) � Ti(f ri) it follows that Ti(f ri) = Ti(f ri χ Y2) μ -almost every-
where on X1 . Hence Tf = T(f χ Y2) μ -almost everywhere on X1 . Combining this
with (4.6) yields

uTf ≡ uT(f χ Y1).
With this we can prove (4.4). Observe that

uTf ≡ uT(f χ Y\Y0) � ∞uT(χ Y\Y0)

so uTf = 0 off X1 . Now(∫
X
(Tf )qu dμ

)1/q

=
(∫

X1

(Tf )qu dμ
)1/q

=
(∫

X1

T(f χY1)
qu dμ

)1/q

� C

(∫
Y1

f pv dν
)1/p

� C

(∫
Y

f pv dν
)1/p

.



436 GORD SINNAMON

This is (4.4).
Finally, suppose that (4.5) holds and E ⊂ Y1 satisfies uTf = uT(f χ E) on X1

for all f ∈ L+
ν (Y1) . Since vν is a σ -finite measure on Y \Y0 we can choose a positive

function f ∈ Lp
vν(Y1) . Then T χ

Y\Y0 = T χ Y1 � ∞Tf so Tf > 0 on X1 . Also, using
(4.5) we see that

∫
X1

(Tf )qu dμ < ∞ . We have

∞
∫

X1

Ti(χY1\E)qi/ri
∏
j	=i

Tj(f rj)qj/rju dμ

�
∫

X1

T(∞χ
Y1\E + f )qu dμ =

∫
X1

(Tf )qu dμ < ∞.

Since Tf is positive on X1 this implies Ti(χ Y1\E) = 0 and hence Ti χ Y1 = Ti(χ E)
for each i . Now∫

Y1

T∗
i
χ X1 dν =

∫
X1

Ti χ Y1 dμ =
∫

X1

Ti χ E dμ =
∫

E
T∗

i
χ X1 dν.

Thus T∗
i (χ X1) = 0 ν -almost everywhere off E and so the definition of Y1 yields

ν(Y1 \ E) = 0 .

5. Examples and Applications

Our first example illustrates the simplicity of generating inequalities using Theorem
2.1 by exhibiting a weighted Hardy inequality with best constant.

EXAMPLE 5.1. If 1 < q � p < ∞ and α > 0 then

(∫ ∞

0

(
1
x

∫ x

0
f (y) dy

)q

e−αxx dx

)1/q

� α(1/p)−(2/q)
(∫ ∞

0
f (y)pe−αy dy

)1/p

,

for all f � 0 . The constant is best possible.

Proof. Let n = 1 , T1f (x) = 1
x

∫ x
0 f , u(x) = xe−αx , r1 = 1 , q1 = q , and apply

Theorem 2.1 with g(y) ≡ 1 . Using the formulas (2.1), we readily calculate

vg = e−αy/α and Cg = α(2/p)−(2/q)

and then (2.2) simplifies to the above inequality.

Next we show that the Stieltjes transformation has norm 1 as a map from L2 to a
certain weighted L2 .

EXAMPLE 5.2.∫ ∞

0

(∫ ∞

0

f (y)
x + y

dy

)2 2
log(x)2 + π2

dx �
∫ ∞

0
f (y)2 dy, f � 0.

The constant 1 is best possible.
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Proof. Let n = 1 , T1f (x) =
∫∞

0 f (y)/(x + y) dy , u(x) = 2/(log(x)2 + π2) ,
r1 = 1 , q1 = 2 , p = q = 2 and apply Theorem 2.1 with g(y) = log(y)/(y−1) . Since
p = q we have Cg = 1 and checking that vg ≡ 1 in (2.1) completes the proof.

In the next examplewe look at aweightedHardy inequalitywith a nonhomogeneous
boundary condition. In the next three examples, AC(I) denotes the collection of
absolutely continuous functions on the interval I .

EXAMPLE 5.3. Suppose u and w areweightswith w positive and set U(y) =
∫ 1

y u .
Then ∫ 1

0
|h|u � C

∫ 1

0
|h′|2/w, h ∈ AC[0, 1], h(0) = 0, h(1) = 1,

with C = 1
2

∫ 1
0 Uw + 1

2

(∫ 1
0 U2w

∫ 1
0 w
)1/2

. If the constant C is finite then it is best

possible.

Proof. We make the substitution h(x) =
∫ x

0 f /
∫ 1

0 f to see that the desired in-
equality is equivalent to

∫ 1

0

(∫ x

0
f

)(∫ 1

0
f

)
u(x) dx � C

∫ 1

0
f 2/w, f � 0.

For this we apply Theorem 2.1 with n = 2 , T1f (x) =
∫ x

0 f , T2f (x) =
∫ 1

0 f , r1 =
r2 = q1 = q2 = 1 , p = q = 2 and, of course, u = u . Set g = Uw + bw where
b2 =

∫ 1
0 U2w/

∫ 1
0 w . Since p = q we have Cg = 1 and a calculation yields wvg = C .

If C is finite it is easy to check that
∫ 1

0 (T1g)(T2g)u < ∞ to conclude that the
constant is best possible.

Next is an unweighted variant of Opial’s inequality with nonhomogeneous bound-
ary conditions.

EXAMPLE 5.4. Suppose p � 3 . Then∫ 1

0
|h||1 − h||h′| � 1

6

∫ 1

0
|h′|p, h ∈ AC[0, 1], h(0) = 0, h(1) = 1.

The constant is best possible.

Proof. The substitution h(x) =
∫ x

0 f /
∫ 1

0 f shows that the desired inequality is
equivalent to

∫ 1

0

(∫ x

0
f

)(∫ 1

x
f

)
f (x)

(∫ 1

0
f

)p−3

dx � 1
6

∫ 1

0
f (y)p dy, f � 0.

To generate this from Theorem 2.1 we put n = 4 , T1f (x) =
∫ x

0 f , T2f (x) =
∫ 1

x f ,

T3f (x) = f (x) , u(x) ≡ 1 , and T4f (x) =
∫ 1

0 f . Take the ri ’s and qi ’s all to be 1
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except for q4 = p − 3 , and set g(y) ≡ 1 . Straightforward calculations yield vg = 1/6
and Cg = 1 to prove the result. (If p = 3 the operator T4 does not appear so we are
applying Theorem 2.1 with n = 3 . The calculations are the same.)

In the previous examples the functions g satisfied
∫
(Tg)qu < ∞ so they were

extremals and the constants were automatically best possible. Next we give an example
where g is not an extremal. As we see in the proof, a sequence of functions tending to g
provides our substitute for an extremal. The following weighted Opial-type inequality
appeared without best constant in [15].

EXAMPLE 5.5. Let u(x) = 1/x . Then∫ ∞

0
|hh′|u � 2

∫ ∞

0
|h′|2, h′ ∈ AC[0,∞), h(0) = 0.

The constant is best possible.

Proof. The desired inequality is equivalent to∫ ∞

0

(∫ x

0
f (y) dy

)
f (x)

dx
x

� 2
∫ ∞

0
f (y)2 dy, f � 0.

Let n = 2 , T1f (x) =
∫ x

0 f (y) dy , T2f (x) = f (x) , u(x) = 1/x , r1 = r2 = q1 = q2 =
1 , p = q = 2 and set g(y) = y−1/2 . Since p = q we have Cg = 1 and integration
yields vg = 2 . The inequality therefore holds by Theorem 2.1 but without a guarantee
that the best constant is 2. To see that the inequality does not hold for any constant less
than 2 we set f k(y) = y−1/2 χ (1/k,k)(y) for k = 1, 2, . . . . The best constant can be no
less than

lim
k→∞

∫∞
0

(∫ x
0 f k(y) dy

)
f k(x) dx/x∫∞

0 f k(y)2 dy
= 2.

We can generate inequalities with given weights u and v provided we can solve
the equation vg = Av for some function g and constant A . Often this can be reduced
to a differential equation and solved explicitly. Once the solution is found there is no
need to exhibit the solution procedure, we merely apply Theorem 2.1 to the appropriate
function g . The next example is of this sort. Both the weights u and v are constant
in this unweighted Hardy type inequality. (Although the example below is not strictly
a Hardy type inequality in the sense of [12], we refer to it as such because of the Hardy
averaging operators it involves.)

EXAMPLE 5.6.∫ ∞

0

(
1
x

∫ x

0
f

)(
1
x

∫ x

0
f 2

)
dx � 9

2

∫ ∞

0
f 3, f � 0.

The constant is best possible.

Proof. Apply Theorem 2.1 with both T1f (x) = T2f (x) = 1
x

∫ x
0 f but let q1 =

r1 = 1 , q2 = r2 = 2 and p = q = 3 . Let g(y) = y−1/3 and check that Cg = 1 and
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vg(y) ≡ 9/2 . As in the previous example, some extra argument is needed to show that
the constant is best possible. We omit the details.

We conclude with an application of Theorem 2.2 viewed as a structure theorem.
Although the result is well-known the method is new. See [17] or the references in [12].

THEOREM 5.7. If 1 < q < p and(∫ ∞

0

(∫ x

0
f

)q

u(x) dx

)1/q

� C

(∫ ∞

0
f pv

)1/p

, f � 0,

for some finite C then

(∫ ∞

0

(∫ ∞

t
u

)r/p(∫ t

0
v1−p′

)r/p′

u(t) dt

)1/r

� C.

Here 1/r = 1/q − 1/p .

Proof. By Theorem 2.2 there exists a positive function g such that v = vg and
Cg � C < ∞ . Using the definition of vg and reducing the region of integration we
have

∫ t

0
v1−p′ =

∫ t

0

(∫ ∞

y
u(x)

(∫ x

0
g

)q−1

dx

)1−p′

g(y) dy

�
∫ t

0

(∫ ∞

t
u(x)

(∫ t

0
g

)q−1

dx

)1−p′

g(y) dy

=
(∫ t

0
g

)q−p′q+p′ (∫ ∞

t
u

)1−p′

.

This estimate and the hypothesis of the theorem yields

(∫ ∞

0

(∫ ∞

t
u

)r/p (∫ t

0
v1−p′

)r/p′

u(t) dt

)1/r

�
(∫ ∞

0

(∫ t

0
g

)q

u(t) dt

)1/r

� Cq/r

(∫ ∞

0
gpv

)q/(pr)

= Cq/rCq/p
g � C.
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