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GENERALIZATIONS OF SPECIAL BIHARI

TYPE INTEGRAL INEQUALITIES

LÁSZLÓ HORVÁTH

(communicated by A. M. Fink)

Abstract. In this paper we consider Bihari type integral inequalities in measure spaces. We give
explicit bounds for the solutions under very weak conditions. The studied inequality essentially
contains all inequalities of similar forms that was considered previously, the results and the proofs
give a unified approach of the problem. The results are applied to establish the existence of a
solution to the integral equation corresponding to the integral inequality.

1. Introduction

Throughout this paper, (X, A ,μ) denotes a measure space. We consider integral

inequalities

y(x) � f (x) + g(x)
∫

S(x)

yαdμ, x ∈ X (1.1)

with 0 < α < 1 . The formal assumptions on the functions y , f , g : X → R and
S : X → A are listed in the main theorems. Special cases of these inequalities have
been studied by many authors. See, for example [1], [3], [7]-[10] and the references
therein. Note that inequalities of this type are connected to the well known Bihari type
inequalities (see [2]). The results are very useful in the theory of differential and integral
equations.

Inmost of the concrete cases X = [0,∞[ , the functions y , f and g are continuous,
S(x) = [0, x] or S(x) = [x,∞[ , and Riemann integral is used. The essential idea of the
proof of such results is to transforme the considered integral inequalities to differential
inequalities, but this approach can not be applied for (1.1). The presentwork succesfully
resolves this problem. It is emphasised that we are able to give explicit bounds for the
solutions of (1.1) under very weak hypotheses on the function S . We assume only that
it satisfies the condition (see [4])

if y ∈ S(x), then S(y) ⊂ S(x), x ∈ X. (C2)

This hypotheses is satisfied, in particular, if X = [0,∞[ , A is the σ -algebra of
Lebesgue measurable sets, and S(x) = [0, βx] or S(x) = [γ x,∞[ ( 0 � β � 1 and
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1 � γ ) or S(x) = [0, a[ ( 0 < a or a = ∞ fixed ), but the sets S(x) are not even
intervals. Analoges of these examples can also be defined in higher dimensions. For
further examples see [6].

If the additional condition

H := {(x1, x2) ∈ X2 | x2 ∈ S(x1)} is μ2-measurable (C3)

is also supposed, then it is possible to show deeper properties of the bounds for the
solutions of (1.1).

Finally we illustrate the scope of the results by applying them to establish the
existence of a solution to the integral equations corresponding to (1.1).

2. Preliminaries

A always represents a σ -algebra in X , and the μ -integrable functions over
X are considered to be almost measurable on X . The product of the measure space
(X, A ,μ) with itself is understood as in [5], and it is denoted by (X2, A 2,μ2) . If f is
a function and A is a subset of the domain of f , we denote by f |A the restriction of f
to A . We let N := {0, 1, 2, . . .} .

In this section a few preliminary results are presented which we need later. Some
of them are rather simple, but others are also of independent interest.

LEMMA 1.
(a) If 0 < α < 1 , then (x + y)α � xα + yα for every x , y � 0 .
(b) If α > 1 , then (x + y)α � 2α−1(xα + yα) for every x , y � 0 .

Proof. The proofs are elementary and we omit them. �

LEMMA 2. Consider the algebric equation

x = a + bxα , x � 0, (2.1)

where 0 < α < 1 and a , b � 0 .
(a) For a = b = 0 , x0 = 0 is the only solution of (2.1). For a + b > 0 there is

exactly one positive root of (2.1) which is denoted by x0.
(b) If 0 � x � x0 , then x � a + bxα . Similarly, if x > x0 , then x > a + bxα .
(c) The following inequality holds

a + b
1

1−α � x0 � a
1 − α

+ b
1

1−α . (2.2)

Proof. For b > 0 let f : [0,∞[→ R be given by f (x) = a + bxα − x . Then a

simple covering argument shows that f is strictly increasing on [0, (αb)
1

1−α ] , strictly

decreasing on [(αb)
1

1−α ,∞[ , and strictly concave.
(a) If b = 0 , then x = a is the only solution of (2.1). Suppose b > 0 . Since

f (0) = a � 0 , lim∞ f = −∞ , and f is continuous, it follows from the monotonicity

properties of f that there exists exactly one x0 > 0 satisfying f (x0) = 0 .
(b) One cheks easily.
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(c) If a � 0 and b = 0 , then x0 = a , so that (2.2) holds. Suppose b > 0 .

Since f takes on its largest value at (αb)
1

1−α and f is strictly concave, the inequality

b
1

1−α > (αb)
1

1−α implies that the x -coordinate of the point at which the tangent to the

graph of f at (b
1

1−α , f (b
1

1−α )) intersects the x -axis is an upper bound for x0 . This
gives the second inequality in (2.2).

To prove the first part of (2.2), an easy computation shows that a + b
1

1−α is a
solution of the inequality x � a + bxα , so that we can apply (b). �

REMARK 3. An argument entirely similar to that of Lemma 2. (c) (using the

tangent to the graph of f at (a + b
1

1−α , f (a + b
1

1−α )) ) shows that

x0 � (1 − α)b(a + b
1

1−α )α + a

1 − αb(a + b
1

1−α )α−1
.

It follows from b
1

1−α � a + b
1

1−α � x0 that the previous upper bound for x0 is sharper
then the upper bound in (2.2), but we don’t use this stronger result in the paper.

We need the following function space.

DEFINITION 4. Suppose S : X → A , and 0 < α < 1 . By L α we denote the
vector space

{z : X → R | z is μ-almost measurable on S(x),

and |z|α is μ-integrable over S(x) for every x ∈ X
}

.

The purpose of the next lemma is to describe the almost measurability of certain
functions.

LEMMA 5.
(a) Let pri : X2 → X , pri(x1, x2) = xi (i = 1, 2) . If A ∈ A and the function

r : A → R is μ -almost measurable on A , then the function r ◦ pr1 ( r ◦ pr2 ) is
μ2 -almost measurable on A × X (X × A ).

(b) Let S : X → A satisfy (C3), and let A ∈ A such that S(x) ⊂ A for every
x ∈ A . Suppose p : A → R is μ -integrable over A , q : A → R is μ -almost
measurable on A , and there exists a measurable subset C of A such that μ(C) is
σ -finite and q(x) = 0 for all x ∈ A \ C . Then the function

x → q(x)
∫

S(x)

pdμ, x ∈ A

is μ -almost measurable on A .

Proof. (a) Let B be a measurable subset of A such that μ(A \ B) = 0 and r is
measurable on B . Since pr1 is A 2 −A measurable, r ◦ pr1 is measurable on B×X ,
and therefore it is enough to show that

μ2((A × X) \ (B × X)) = 0.

Clearly

μ2((A × X) \ (B × X)) = μ2((A \ B) × X) = μ(A \ B) · μ(X) = 0.
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(b) It is obviously enough to confine ourselves to those p and q that are nonneg-
ative. Since p is μ -integrable over A , there is a measurable subset D of A such that
μ(D) is σ -finite and p(x) = 0 for all x ∈ A \ D . Let

h : A2 → R, h(x, u) = q(x)p(u)χH(x, u),

where χH denotes the characteristic function of H . By (a), the function

(x, u) → q(x)p(u), (x, u) ∈ A2

is μ2 -almost measurable on A2 , and hence, by (C3), the function h is μ2 -almost
measurable on A2 . It therefore follows from the nonnegativity of h that the integral∫

A2

hdμ2

exists. Since μ2(C ×D) is σ -finite and h(x, u) = 0 for all (x, u) ∈ A2 \ (C×D) , we
can apply the Fubini’s theorem (see [5]) which implies, by the second condition on S ,
that the function

x →
∫
A

h(x, u)dμ(u) = q(x)
∫

S(x)

pdμ, x ∈ A

is μ -almost measurable on A . �

3. Main results

Our first result gives explicit bounds for the solutions of (1.1).

THEOREM 6. Suppose 0 < α < 1 , and f , g ∈ L α are nonnegative.
(a) If y ∈ L α is nonnegative such that

y(x) � f (x) + g(x)
∫

S(x)

yαdμ, x ∈ X, (3.1)

then

y(x) � f (x) +
g(x)

1 − α

∫
S(x)

f αdμ + g(x)

⎛
⎜⎝∫

S(x)

gαdμ

⎞
⎟⎠

1
1−α

, x ∈ X. (3.2)

(b) If y ∈ L α is nonnegative such that

y(x) � f (x) + g(x)
∫

S(x)

yαdμ, x ∈ X, (3.3)

then

y(x) � f (x) + g(x)
∫

S(x)

f αdμ, x ∈ X. (3.4)

(c) If the property (C3) holds, then the functions defined by the right hand sides
of (3.2) and (3.4) belong to L α .
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Proof. (a) When S(x) = ∅ for some x ∈ X , then for all such x y(x) � f (x) by
(3.2), and this is equivalent to (3.1). Now suppose x ∈ X with S(x) �= ∅ . Then by
(3.1), Lemma 1. (a) and the property (C2),

yα(u) �

⎛
⎜⎝f (u) + g(u)

∫
S(u)

yαdμ

⎞
⎟⎠

α

� f α(u) + gα(u)

⎛
⎜⎝∫

S(u)

yαdμ

⎞
⎟⎠

α

� f α(u) + gα(u)

⎛
⎜⎝∫

S(x)

yαdμ

⎞
⎟⎠

α

, u ∈ S(x),

so that ∫
S(x)

yαdμ �
∫

S(x)

f αdμ +
∫

S(x)

gαdμ

⎛
⎜⎝∫

S(x)

yαdμ

⎞
⎟⎠

α

.

It therefore follows from Lemma 2. (b) and the second inequality in (c) that

∫
S(x)

yαdμ � 1
1 − α

∫
S(x)

f αdμ +

⎛
⎜⎝∫

S(x)

gαdμ

⎞
⎟⎠

1
1−α

. (3.5)

The substitution of (3.5) into (3.1) implies (3.2).
(b) We can assume that x ∈ X with S(x) �= ∅ . Then, by (3.3), y(u) � f (u) for

all u ∈ S(x) , and hence (3.4) follows from another application of (3.3).
(c) We consider only the function defined by the right hand side of (3.2). Since

L α is a vector space, it is enough to prove that the last two members of this function
belong to L α .

Let x ∈ X with S(x) �= ∅ . Since g ∈ L α , the subset {u ∈ S(x) | g(u) > 0} is
of σ -finite measure.

By applying Lemma 5. (b) with A := S(x) , p := f |S(x) and q := g|S(x) , we
obtain that the function

u → g(u)
∫

S(u)

f αdμ, u ∈ S(x) (3.6)

is μ -almost measurable on S(x) . Since

gα(u)

⎛
⎜⎝∫

S(u)

f αdμ

⎞
⎟⎠

α

� gα(u)

⎛
⎜⎝∫

S(x)

f αdμ

⎞
⎟⎠

α

, u ∈ S(x),

this shows that the function (3.6) is μ -integrable over S(x) in the α th power.
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The hypotheses on g imply that g1−α is μ -almost measurable on S(x) , and
therefore, by Lemma 5. (b) with A := S(x) , p := gα |S(x) and q := g1−α |S(x) , the
function

u → g1−α(u)
∫

S(u)

gαdμ, u ∈ S(x)

is μ -almost measurable on S(x) , so that the function

u → g(u)

⎛
⎜⎝∫

S(u)

gαdμ

⎞
⎟⎠

1
1−α

, u ∈ S(x) (3.7)

is also μ -almost measurable on S(x) . Since

gα(u)

⎛
⎜⎝∫

S(u)

gαdμ

⎞
⎟⎠

α
1−α

� gα(u)

⎛
⎜⎝∫

S(x)

gαdμ

⎞
⎟⎠

α
1−α

, u ∈ S(x),

the function (3.7) is μ -integrable over S(x) in the α th power.
The proof is now completed. �
Some mention should be made here of the previous theorem. The inequality (3.1)

essentially contains all inequalities of similar forms that was considered previously,
but even if X = R

n it contains a lot of inequalities which have never been studied.
Moreover, it is a generalization to measure spaces. The result and the proof give a
unified approach of the problem. By using the inequality in Remark 3., we can obtain
another upper bound for the solutions of (3.1) which is sharper than the upper bound in
(3.2). Theorem 6. (c) does not hold without the property (C3) in general as is easily
seen by considering concrete examples.

The preceding theorem makes it possible for us to study another integral inequality.
We show two different methods to get explicit upper bounds for the solutions of the
inequality.

THEOREM 7. Suppose 0 < α < 1 , and f , g ∈ L 1 are nonnegative.
(a) If y ∈ L 1 is nonnegative such that

y(x) � f (x) + g(x)

⎛
⎜⎝∫

S(x)

ydμ

⎞
⎟⎠

α

, x ∈ X. (3.8)

Then
(a1)

y(x) � 21−α

⎛
⎜⎜⎝f

1
α (x) +

21−αg
1
α (x)

1 − α

∫
S(x)

f dμ + 2g
1
α (x)

⎛
⎜⎝∫

S(x)

gdμ

⎞
⎟⎠

1
1−α
⎞
⎟⎟⎠

α

, x ∈ X

(3.9)
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(a2)

y(x) � f (x) + g(x)

( ∫
S(x)

f dμ +
1

1 − α

∫
S(x)

(
g(u)(

∫
S(u)

f dμ)
)α

dμ(u)

+
( ∫

S(x)

gdμ
) 1

1−α
)α

, x ∈ X,

(3.10)

whenever the property (C3) holds.
(b) If y ∈ L 1 is nonnegative such that

y(x) � f (x) + g(x)

⎛
⎜⎝∫

S(x)

ydμ

⎞
⎟⎠

α

, x ∈ X, (3.11)

then

y(x) � f (x) + g(x)

⎛
⎜⎝∫

S(x)

f dμ

⎞
⎟⎠

α

, x ∈ X. (3.12)

(c) If the property (C3) holds, then the functions defined by the right hand sides
of (3.9) , (3.10) and (3.12) belong to L 1 .

Proof. (a1) The inequalities (3.8) and Lemma 1. (b) imply that

y
1
α (x) �

⎛
⎜⎝f (x)+g(x)

⎛
⎜⎝∫

S(x)

ydμ

⎞
⎟⎠

α⎞
⎟⎠

1
α

� 2
1
α−1

⎛
⎜⎝f

1
α (x)+g

1
α (x)

∫
S(x)

ydμ

⎞
⎟⎠ , x ∈ X.

It therefore follows from Theorem 6. (a) that

y
1
α (x) � 2

1
α−1f

1
α (x)+

21−αg
1
α (x)

1 − α

∫
S(x)

21−α f dμ+21−αg
1
α (x)

⎛
⎜⎝∫

S(x)

21−αgdμ

⎞
⎟⎠

1
1−α

, x ∈ X,

and this is equivalent to (3.9).
(a2) By the inequality (3.8),

y(x) − f (x) � g(x)

⎛
⎜⎝∫

S(x)

ydμ

⎞
⎟⎠

α

, x ∈ X.

Since the last expression is nonnegative on X , we have

max(0, y(x) − f (x)) � g(x)

⎛
⎜⎝∫

S(x)

ydμ

⎞
⎟⎠

α

, x ∈ X,
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and it can be deduced from this that

max(0, y(x) − f (x))
1
α � g

1
α (x)

∫
S(x)

ydμ = g
1
α (x)

∫
S(x)

f dμ + g
1
α (x)

∫
S(x)

(y − f )dμ

� g
1
α (x)

∫
S(x)

f dμ + g
1
α (x)

∫
S(x)

max(0, y(x) − f (x))dμ, x ∈ X.

(3.13)
Assuming for the present that the function

x → g
1
α (x)

∫
S(x)

f dμ, x ∈ X (3.14)

belongs to L α . Theorem 6. (a) can then be applied to (3.13), and it follows that

max(0, y(x) − f (x))

�
(

g
1
α (x)

∫
S(x)

f dμ +
g

1
α (x)

1 − α

∫
S(x)

(
g(u)

( ∫
S(u)

f dμ
)α
)

dμ(u)

+ g
1
α (x)

( ∫
S(x)

gdμ
) 1

1−α
)α

, x ∈ X.

This inequality implies (3.10).
To justify that the function (3.14) lies in L α , a similar argument used in the first

part of the proof of Theorem 6. (c) can be applied.
(b) We argue as in the proof of Theorem 6. (b).
(c) The proof is, in its essentials, similar as that of Theorem 6. (c). �
The following result provides an application of Theorem 6. We prove that the

integral equation corresponding to the integral inequality (3.1) has at least one solution
on X .

THEOREM 8. Suppose 0 < α < 1 , and f , g ∈ L α are nonnegative, and the
property (C3) holds. Then the integral equation

y(x) = f (x) + g(x)
∫

S(x)

yαdμ, x ∈ X (3.15)

has a solution on X , that is, there exists a nonnegative function s ∈ L α such that
y = s satisfies (3.15) for every x ∈ X .

Proof. Let y0 := f , and let

yn+1(x) := f (x) + g(x)
∫

S(x)

yαn dμ, x ∈ X, n ∈ N. (3.16)
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We prove by induction on n that this recurrence relation defines a nonnegative sequence
in L α . By definition, y0 is a nonnegative function from L α . Suppose then that
n ∈ N such that yn ∈ L α and yn is nonnegative. Then yn+1 is defined on X and
nonnegative. Let x ∈ X with S(x) �= ∅ . We can see exactly as in the first part of the
proof of Theorem 6. (c) that yαn+1 is μ -integrable over S(x) , so that yn+1 ∈ L α .
Another induction argument shows that the sequence (yn) is increasing. Obviously
y0 � y1 . If n ∈ N for which yn � yn+1 holds, then, by the nonnegativity of g and the
monotonicity of the integral, yn+1 � yn+2 . Since

yn(x) � f (x) + g(x)
∫

S(x)

yαn dμ, x ∈ X, n ∈ N,

Theorem 6. (a) and (c) imply that

yn(x) � f (x) +
g(x)

1 − α

∫
S(x)

f αdμ + g(x)

⎛
⎜⎝∫

S(x)

gαdμ

⎞
⎟⎠

1
1−α

, x ∈ X, n ∈ N,

where the function defined by the right hand side of the previous inequality belongs to
L α . We have seen that (yn) is increasing and bounded above by a function from L α ,
and therefore it converges to a function s ∈ L α , pointwise on X . It now follows from
(3.16) and the monotone convergence theorem that s is a solution of the considered
integral equation. The proof is complete. �

RE F ER EN C ES

[1] D. BAINOV, P. SIMEONOV, Integral Inequalities and Applications, Kluwer Academic, Dordrecht (1992).
[2] I. BIHARI, A generalization of a lemma of Bellman and its application to uniqueness problems of

differential equations, Acta Math. Acad. Sci. Hungar., 7, (1956), 81–94.
[3] S. G. DEO, M. G. MURDESHWAR, A note on Gronwall’s inequality, Bull. London Math. Soc., 3, 1 (1971),

34–36.
[4] L. HORVÁTH, Integral inequalities in measure spaces, J. Math. Anal. Appl., 231, (1999), 278–300.
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