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(communicated by J. Mawhin)

Abstract. This paper is devoted to the study of resonant nonlinear boundary value problems with
Neumann boundary condition. First we consider the linear situation doing a careful analysis on
the existence of nontrivial solutions. This analysis involves Liapunov-type inequalities with the
Lp− norm of the coefficient function for 1 � p � ∞ . We carry out a complete treatment of
the problem for any constant p � 1. Then, this is combined with Schauder fixed point theorem
to obtain new results about the existence and uniqueness of solutions for resonant nonlinear
problems.

1. Introduction

Let us consider the Neumann problem

u′′(x) + f (x, u(x)) = 0, x ∈ (0, L), u′(0) = u′(L) = 0 (1.1)

where f : [0, L] × R → R, (x, u) → f (x, u), satisfies the condition

(H) f , f u are continuous on [0, L] × R and 0 � f u(x, u) on [0, L] × R.
The existence of a solution of (1.1) implies∫ L

0
f (x, z) dx = 0 (1.2)

for some z ∈ R. However, conditions (H) and (1.2) are not sufficient for the existence
of solutions of (1.1). Indeed, consider the problem

u′′(x) + π2u(x) + cos(πx) = 0, x ∈ (0, 1), u′(0) = u′(1) = 0. (1.3)

The function f (x, u) = π2u + cos(πx) satisfies (H) and (1.2), but the Fredholm
alternative theorem shows that there is no solution of (1.3).

If (H) and (1.2) are assumed, and for instance, L = 1 for simplicity, different
supplementary assumptions have been given which imply the existence of a solution of
(1.1). For example
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(h1) f u(x, u) � β(x) on [0, 1] × R with β ∈ L∞(0, 1), β(x) � π2 on [0, 1] and
β(x) < π2 on a subset of (0, 1) of positive measure.
Conditions of this type are referred to as non-uniform non-resonance conditions

with respect to the first positive eigenvalue of the associated linear homogeneous prob-
lem. By using variational methods, it is proved in [8] that (H), (1.2) and (h1) imply
the existence of solutions of (1.1).

On the other hand, in [6] it is supposed

(h2) f u(x, u) � β(x) on [0, 1]× R with β ∈ L1(0, 1) and
∫ 1

0
β(x) dx � 4 .

The authors use OptimalControl theorymethods to prove that (H), (1.2) and (h2)
imply the existence and uniqueness of solutions of (1.1). Restriction (h2) is related to
Liapunov-type inequalities for linear second order equations (see, for instance Corollary
5.1 in [5] for the case of Dirichlet boundary conditions and [1] for a survey paper on
Lyapunov inequalities).

Let us observe that supplementary conditions (h1) and (h2) are given respectively
in terms of ‖β‖∞ and ‖β‖1, the usual norms in the spaces L∞(0, 1) and L1(0, 1).
Also, it is clear that under the hypotheses (H) and (1.2), (h1) and (h2) are not related.

In this paper we provide supplementary conditions in terms of ‖β‖p, 1 < p < ∞.
In fact, this was the original motivation of our work, but the proofs are based in a
previous analysis of the linear case which involves Liapunov-type inequalities with
the Lp−norm of the coefficient function for 1 � p � ∞ . Really, this is the main
contribution of this paper where we carry out a complete treatment of the linear problem
for any p � 1. As a consequence, a natural relation between (h1) and (h2) arises if
one studies the limits of ‖β‖p for p → 1+ and p → ∞.

One of the main results of our paper is given by Lemma 2.6 below where we
prove that the best constant of our problem, βp defined in (2.5), can be computed by
using a certain minimization problem. Motivated by a completely different problem (an
isoperimetric inequality known as Wulff theorem, of interest in crystallography), the
authors studied in [3] a similar variational problem for the case of periodic or Dirichlet
boundary conditions (see also [7] for the case p = 2, 3, 3/2 and Dirichlet boundary
conditions and [2] for more general minimization problems). We study in this paper
the case of Neumann boundary conditions and our treatment of the Euler equation
associated to the mentioned minimization problem is different from that of [3]. Finally,
it is clear from the proofs that one can deal with other boundary conditions and more
general second order equations. Also, some results for PDE problems may be obtained.
This will be published elsewhere.

2. Liapunov-type inequalities for the linear problem

This section will be concerned with the existence of nontrivial solutions of a
homogeneous linear problem of the form

u′′(x) + a(x)u(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0 (2.1)
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where a ∈ Λ and Λ is defined by

Λ =
{

a ∈ L∞(0, L) \ {0} :
∫ L

0
a(x)dx � 0 and (2.1) has nontrivial solutions

}
.

(2.2)
Here u ∈ H1(0, L), the usual Sobolev space. For each p with 1 � p � ∞ we can
define the functional Ip : Λ → R given by the expression

Ip(a) = ‖a‖p =
(∫ L

0
|a(x)|p dx

)1/p

, ∀ a ∈ Λ, 1 � p < ∞

I∞(a) = sup ess a, ∀a ∈ Λ.

(2.3)

Obviously, the positive eigenvalues of the eigenvalue problem

u′′(x) + λu(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0, (2.4)

belong to Λ. Therefore Λ is not empty and

βp ≡ inf
a∈Λ

Ip(a), 1 � p � ∞ (2.5)

is well defined. The main result of this section is the following.

THEOREM 2.1. The following statements hold:
1. βp is attained if and only if 1 < p � ∞. In this case, βp is attained in a

unique element ap ∈ Λ which is not constant if 1 < p < ∞.
2. The quantity βp is given by

βp =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4
L

, if p = 1,

4(p − 1)1+ 1
p

L2− 1
p p(2p − 1)1/p

(∫ π/2

0
(sin x)−1/p dx

)2

, if 1 < p < ∞,

π2

L2
, if p = ∞

(2.6)

3. a∞(x) ≡ π2

L2
. If 1 < p < ∞, the function ap is given by ap = |up|

2
p−1 , where

in the interval (0, L
2 ), up is the unique positive solution of the problem

−u′′(x) = u(x)
p+1
p−1 , u′(0) = 0, u(L/2) = 0

and in the interval (L/2, L) up is defined by the formula up(x) = −up(L − x), ∀ x ∈
(L/2, L) (see the proof of Lemma 2.7 ).

4. The mapping [1,∞) → R, p → βp, is continuous and limp→∞ βp = β∞.

Moreover, the mapping [1,∞) → R, p → L−1/pβp is strictly increasing.

Proof. It is based on some lemmas. In the first one we study the case p = ∞. �

LEMMA 2.2. β∞ is attained in a unique element a∞ ∈ Λ . Moreover a∞(x) ≡
π2

L2
.
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Proof. If a ∈ Λ and u ∈ H1(0, L) is a nontrivial solution of

−u′′(x) = a(x)u(x), x ∈ (0, L), u′(0) = u′(L) = 0, (2.7)

then ∫ L

0
u′v′ =

∫ L

0
auv, ∀ v ∈ H1(0, L).

In particular, we have ∫ L

0
u′2 =

∫ L

0
au2,

∫ L

0
au = 0. (2.8)

Therefore, for each k ∈ R, we have∫ L

0
(u + k)′2 =

∫ L

0
u′2 =

∫ L

0
au2 �

∫ L

0
au2 + k2

∫ L

0
a

=
∫ L

0
au2 +

∫ L

0
k2a + 2k

∫ L

0
au =

∫ L

0
a(u + k)2.

This implies ∫ L

0
(u + k)′2 � ‖a‖∞

∫ L

0
(u + k)2.

Also, since u is a nonconstant solution of (2.7), u + k is a nontrivial function.
Consequently

‖a‖∞ �

∫ L

0
(u + k)′2∫ L

0
(u + k)2

.

Now, choose k0 ∈ R satisfying
∫ L

0 (u + k0) = 0. Then,

‖a‖∞ �

∫ L

0
(u + k0)′2∫ L

0
(u + k0)2

� inf
v∈X∞\{0}

∫ L

0
(v)′2∫ L

0
(v)2

=
π2

L2 , ∀ a ∈ Λ (2.9)

where X∞ =
{

v ∈ H1(0, L) :
∫ L

0 v = 0
}

.

Hence β∞ � π2

L2 . Since the constant function π2

L2 is an element of Λ, we deduce

β∞ = π2

L2 . Furthermore, if a ∈ Λ is such that ‖a‖∞ = π2

L2 , it follows from (2.9) that

π2

L2
=

∫ L

0
(u + k0)′2∫ L

0
(u + k0)2

.

The variational characterization of the constant π2

L2 (this constant is the second eigen-
value of the eigenvalue problem (2.4) ) implies that u(x)+k0 = c cos(πx/L), for some
nonzero constant c . Then a(x) ≡ π2

L2 . This completes the proof of the lemma. �
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Now we deal with the case p = 1. Previously, we need the following result.

LEMMA 2.3. Let X1 = {u ∈ H1(0, L) : maxx∈[0,L] u(x) + minx∈[0,L] u(x) = 0}.
Then

inf
u∈X1\{0}

∫ L

0
u′2

‖u‖2∞
=

4
L

. (2.10)

Moreover, this infimum is attained in a function u ∈ X1 \ {0} if and only there exists a
nonzero constant k such that u(x) = k(x − L

2 ), ∀x ∈ [0, L].

Proof. If u ∈ X1\{0}, and x1, x2 ∈ [0, L] are such that u(x1) = max[0,L] u, u(x2) =
min[0,L] u, then ‖u‖∞ = max[0,L] u = −min[0,L] u. Clearly, it is not restrictive to assume
that x1 < x2. Let us denote I = [x1, x2] . Then, it follows from the Cauchy-Schwartz
inequality

∫ L

0
u′2 �

∫
I
u′2 �

(∫
I
|u′|
)2

x2−x1
�

(∫
I
u′
)2

x2 − x1
=

(u(x2)−u(x1))2

x2−x1
=

4‖u‖2
∞

x2 − x1
� 4

L
‖u‖2

∞.

(2.11)
Therefore,

inf
u∈X1\{0}

∫ L

0
u′2

‖u‖2∞
� 4

L
.

On the other hand, if v(x) = x − L
2 , ∀ x ∈ [0, L], then v ∈ X1 \ {0} and

∫ L
0 v′2

‖v‖2∞
=

4
L

.

This proves (2.10). Finally, if u ∈ X1 \ {0} is such that

∫ L
0 u′2

‖u‖2∞
=

4
L

, then all the

inequalities of (2.11) transform into equalities. In particular, x2 = L, x1 = 0 and(∫ L
0 u′
)2

= L
∫ L

0 u′2. Again, the Cauchy-Schwartz inequality (equality in this case)
implies that the function u′ is constant in [0, L]. Taking into account that u ∈ X1 \ {0},
we have the existence of a nontrivial constant k such that u(x) = k(x − L

2 ), ∀x ∈
[0, L]. �

With the help of the previous lemma, we obtain the next result concerning the case
p = 1.

LEMMA 2.4. We have β1 = 4
L and ‖a‖1 > 4

L , ∀ a ∈ Λ.

Proof. As in Lemma 2.2, if a ∈ Λ and u ∈ H1(0, L) is a nontrivial solution of
(2.7), then we obtain, for each k ∈ R,∫ L

0
(u + k)′2 �

∫ L

0
a(u + k)2.

This implies ∫ L

0
(u + k)′2 � ‖a‖1‖(u + k)‖2

∞
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and consequently

‖a‖1 �

∫ L

0
(u + k)′2

‖(u + k)‖2∞
.

Now, if we choose k0 ∈ R satisfying u + k0 ∈ X1, we deduce

‖a‖1 �

∫ L

0
(u + k0)′2

‖u + k0‖2∞
� 4

L
, ∀ a ∈ Λ. (2.12)

Therefore, β1 � 4
L . Also, we can define a minimizing sequence in the following way.

Let {un} ⊂ C2[0, L] be a sequence such that un(x) = (x − L
2 ), ∀ x ∈ ( 1

n , L − 1
n );

u′n(0) = u′n(L) = 0; u′′n (x) > 0, ∀ x ∈ [0, 1
n ); u′′n (x) < 0, ∀ x ∈ (L − 1

n , L].
Then, if we define the sequence of continuous functions an : [0, L] → R, as an(x) = 0,

∀ x ∈ [ 1
n , L− 1

n ]; an(x) = −u′′n (x)
un(x) , ∀ x ∈ [0, 1

n ]∪ [L− 1
n , L], we have that an ∈ L∞(0, L),

an � 0, a.e. in (0, L), an is nontrivial and moreover u′′n (x) + an(x)un(x) = 0, in
(0, L), u′n(0) = u′n(L) = 0. Therefore, an ∈ Λ, ∀ n ∈ N. Also,

∫ L

0
an =

∫ 1
n

0

−u′′n (x)
un(x)

+
∫ L

L− 1
n

−u′′n (x)
un(x)

�
∫ 1

n

0

u′′n (x)
min[0, 1

n ] (−un)
+
∫ L

L− 1
n

−u′′n (x)
min[L− 1

n ,L](un)

=
u′n(

1
n )

L
2 − 1

n

+
u′n(L − 1

n )
L
2 − 1

n

=
1

L
2 − 1

n

+
1

L
2 − 1

n

.

Taking limits as n → ∞, we deduce β1 = 4
L .

Finally, let a ∈ Λ be such that ‖a‖1 = 4
L . By choosing u a nontrivial solution of

(2.1) and k0 ∈ R such that u + k0 ∈ X1, we obtain

∫ L

0
(u + k0)′2 � 4

L
‖(u + k0)‖2

∞.

From Lemma 2.3 we obtain that u+k0 = k(x− L
2 ), ∀ x ∈ [0, L] and for some constant

k. Then from (2.1) we deduce a ≡ 0, which is a contradiction. �

REMARK 1. Previous lemma was proved by Huaizhong and Yong (see Theorem 3
in [6]) by using methods from Optimal Control theory. More precisely, the authors used
the Pontryagin’s maximum principle. The proof that we have presented here motivates
some of the main ideas that we will use in the case 1 < p < ∞.

Next we concentrate on the case 1 < p < ∞. This is the most difficult one and
we will need some auxiliary lemmas.
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LEMMA 2.5. Assume 1 < p < ∞ and let Xp =
{

u ∈ H1(0, L) :
∫ L

0 |u| 2
p−1 u = 0

}
If Jp : Xp \ {0} → R is defined by

Jp(u) =

∫ L

0
u′2

(∫ L

0
|u| 2p

p−1

) p−1
p

(2.13)

and mp ≡ infXp\{0} Jp, mp is attained. Moreover, if up ∈ Xp \ {0} is a minimizer,
then up satisfies the problem

u′′p (x) + Ap(up)|up(x)|
2

p−1 up(x) = 0, x ∈ (0, L), u′p(0) = u′p(L) = 0, (2.14)

where

Ap(up) = mp

(∫ L

0
|up|

2p
p−1

)−1
p

. (2.15)

Proof. It is clear that for any u ∈ H1(0, L), there exists some constant k ∈ R such
that u+ k ∈ Xp. Hence mp is well defined. Now, let {un} ⊂ Xp \ {0} be a minimizing
sequence. Since the sequence {knun}, kn 
= 0, is also a minimizing sequence, we

can assume without loos of generality that
∫ L

0 |un|
2p

p−1 = 1. Then
{∫ L

0 |u′2n |
}

is also

bounded. Moreover, for each un there is xn ∈ (0, L) such that un(xn) = 0. Therefore,
{un} is bounded in H1(0, L). So, we can suppose, up to a subsequence, that un ⇀ u0 in
H1(0, L) and un → u0 in C[0, L] (with the uniform norm). The strong convergence in

C[0, L] gives us
∫ L

0 |u0|
2p

p−1 = 1 and u0 ∈ Xp \{0}. The weak convergence in H1(0, L)
implies Jp(u0) � lim inf Jp(un) = mp. Then u0 is a minimizer.

Since Xp = { u ∈ H1(0, L) : ϕ(u) = 0}, ϕ(u) =
∫ L

0 |u| 2
p−1 u, if u0 ∈ Xp \ {0} is

any minimizer of Jp , Lagrange multiplier Theorem implies that there is λ ∈ R such
that

H′(u0) + λϕ′(u0) = 0

where H : H1(0, L) → R is defined by

H(u) =
∫ L

0
u′2 − mp

(∫ L

0
|u| 2p

p−1

) p−1
p

.

Also, since u0 ∈ Xp we have H′(u0)(1) = 0. Moreover H′(u0)(v) = 0, ∀ v ∈
H1(0, L) : ϕ′(u0)(v) = 0. Finally, as any v ∈ H1(0, L) may be written in the form
v = α + w, α ∈ R, and w satisfying ϕ′(u0)(w) = 0, we conclude H′(u0)(v) =
0, ∀ v ∈ H1(0, L), i.e., H′(u0) = 0 which is (2.14). �

LEMMA 2.6. If 1 < p < ∞, we have βp = mp.

Proof. As in Lemma 2.2, if a ∈ Λ and u ∈ H1(0, L) is a nontrivial solution of
(2.7), then for each k ∈ R we have∫ L

0
(u + k)′2 �

∫ L

0
a(u + k)2.



466 A. CAÑADA, J. A. MONTERO AND S. VILLEGAS

It follows from Hölder inequality∫ L

0
(u + k)′2 � ‖a‖p‖(u + k)2‖ p

p−1
.

Also, since u is a nonconstant solution of (2.7), u + k is a nontrivial function.
Consequently,

‖a‖p �

∫ L

0
(u + k)′2

‖(u + k)2‖ p
p−1

.

Now, choose k0 ∈ R satisfying u + k0 ∈ Xp. Then, ‖a‖p � mp, ∀ a ∈ Λ and
consequently βp � mp. Reciprocally, if up ∈ Xp \ {0} is any minimizer of Jp, then up

satisfies (2.14). Therefore, Ap(up)|up|
2

p−1 ∈ Λ. Also,

‖ Ap(up)|up|
2

p−1 ‖p
p =

∫ L

0
mp

p|up|
2p

p−1 = mp
p.

Then βp � mp. �

LEMMA 2.7. If 1 < p < ∞, mp is given by

mp =
4(p − 1)1+ 1

p

L2− 1
p p(2p − 1)1/p

(∫ π/2

0
(sin x)−1/p dx

)2

. (2.16)

Proof. By Lemma 2.5, if up ∈ Xp \ {0} is a minimizer of Jp, then up satisfies a
problem of the type

v′′(x) + B|v(x)| 2
p−1 v(x) = 0, x ∈ (0, L), v′(0) = v′(L) = 0, (2.17)

where B is some positive real constant. Also, let us observe that any nontrivial solution
of (2.17) belongs to Xp \ {0}. Therefore,

inf
B∈R+

inf
v∈SB

Jp(v) = mp

where, for a given B ∈ R
+, SB denotes the set of all nontrivial solutions of (2.17).

Now, if B ∈ R
+ is a fixed number and v is a nontrivial solution of (2.17), we

may assume without loos of generality that v(0) > 0. Moreover, since v ∈ Xp, v must
change its sign in (0, L). Let x0 be the first zero point of v in (0, L). Thus, v satisfies
the initial value problem

w′′(x) + B|w(x)| 2
p−1 w(x) = 0, w(0) = v(0), w′(0) = 0. (2.18)

Note that this problem has a unique solution defined in R (see proposition 2.1. in [4]).
If x ∈ (0, x0) is fixed, multiplying both terms of (2.17) by v′ and integrating in

the interval [0, x] we obtain

− (v′(x))2

2
=

B(p − 1)
2p

(
|v(x)| 2p

p−1 − |v(0)| 2p
p−1

)
. (2.19)
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On the interval (0, x0) the function v satisfies v(x) > 0 and v′(x) � 0 (see 2.17 ) and
thus

v′(x) = −
[
B(p − 1)

p

]1/2 [
|v(0)| 2p

p−1 − |v(x)| 2p
p−1

]1/2
(2.20)

Therefore, ∫ x

0

v′(t)[
|v(0)| 2p

p−1 − |v(t)| 2p
p−1

]1/2
dt = −

[
B(p − 1)

p

]1/2

x

for any x ∈ (0, x0). Doing the change of variables s =
v(t)
v(0)

, previous relation can be
written as

−ϕ(1) + ϕ
(

v(x)
v(0)

)
= −v(0)

1
p−1

[
B(p − 1)

p

]1/2

x.

Here ϕ : [0, 1] → R is the strictly increasing function defined by

ϕ(t) =
∫ t

0

ds(
1 − s

2p
p−1

)1/2
.

If ϕ [0, 1] = [0, I], then we find

v(x)
v(0)

= ϕ−1

[
I − v(0)

1
p−1

(
B(p − 1)

p

)1/2

x

]
. (2.21)

Moreover, since v(x0) = 0, we obtain

I − v(0)
1

p−1

(
B(p − 1)

p

)1/2

x0 = 0.

Hence,

v(0) =

(
I
x0

(
p

B(p − 1)

)1/2
)p−1

. (2.22)

Finally,

v(x) =

(
I
x0

(
p

B(p − 1)

)1/2
)p−1

ϕ−1

(
I − I

x0
x

)
, ∀ x ∈ [0, x0]. (2.23)

Also, the initial value problem

w′′(x) + B|w(x)| 2
p−1 w(x) = 0, w(x0) = 0, w′(x0) = v′(x0) (2.24)

has a unique solution defined in R. Since the function −v(2x0 − x), x ∈ (x0, 2x0),
is a solution of (2.24), this provides v(x), ∀x ∈ [x0, 2x0]. Let us note that v(x) =
−v(2x0 − x), ∀ x ∈ (x0, 2x0). Now, we can repeat this procedure in the intervals
[nx0, (n + 1)x0], ∀ n ∈ N. The conclusion is that if v is a nontrivial solution of (2.17)
for some B ∈ R

+, and x0 is the first zero point of v in (0, L) then L = 2nx0 for some
n ∈ N. Next we calculate Jp(v) .
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It follows from previous reasonings that

Jp(v) =

∫ L

0
v′2

(∫ L

0
|v| 2p

p−1

) p−1
p

=
2n
∫ x0

0
v′2

(
2n
∫ x0

0
|v| 2p

p−1

) p−1
p

. (2.25)

From (2.19) we obtain∫ x0

0
(v′(x))2 dx =

B(p − 1)
p

[
−
∫ x0

0
|v(x)| 2p

p−1 dx + x0|v(0)| 2p
p−1

]
(2.26)

and from (2.23) we obtain

∫ x0

0
|v(x)| 2p

p−1 =
∫ x0

0

(
I
x0

(
p

B(p − 1)

)1/2
)2p [

ϕ−1

(
I − I

x0
x

)] 2p
p−1

dx. (2.27)

Doing the change of variables s = ϕ−1(I(1 − x
x0

)), we have

∫ x0

0
|v(x)| 2p

p−1 =

(
I
x0

(
p

B(p − 1)

)1/2
)2p

x0

I

∫ 1

0
s

2p
p−1

(
1 − s

2p
p−1

)−1/2
ds. (2.28)

Integrating by parts the previous expressionwith f (s) = s, g′(s) = s
p+1
p−1

(
1 − s

2p
p−1

)−1/2
,

we deduce ∫ x0

0
|v(x)| 2p

p−1 =

(
I
x0

(
p

B(p − 1)

)1/2
)2p

x0

I
p − 1
2p − 1

I (2.29)

If we substitute this expression in (2.26) and, moreover, we take into account (2.22)
we obtain (think that L = 2nx0 )

∫ x0

0
|v′(x)|2 dx =

B(p − 1)
p

x0

(
I
x0

(
p

B(p − 1)

)1/2
)2p

p
2p − 1

. (2.30)

Nowwe can substitute (2.29) and (2.30) in (2.25). After some elementary calculations
we deduce

Jp(v) =
4n2I2p

L2− 1
p (p − 1)1− 1

p (2p − 1)1/p
. (2.31)

At this point, one may observe two things. First, Jp(v) does not depend on B .
Second, all values of n ∈ N are possible in (2.31). In fact if x0 = L

2n , formula
(2.23) defines a nontrivial solution of (2.17). Therefore, the infimum mp is at-

tained if n = 1. Finally, doing the change of variables s
p

p−1 = sin t, we obtain

I =
∫ 1

0

ds(
1 − s

2p
p−1

)1/2
=

p − 1
p

K, where K =
∫ π/2

0
(sin t)−1/p dt. This gives

mp =
4(p − 1)1+ 1

p

L2− 1
p p(2p − 1)1/p

(∫ π/2

0
(sin x)−1/p dx

)2

. �
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LEMMA 2.8. If 1 < p < ∞ and the functions up, vp ∈ Xp \{0} are minimizers of
Jp, then there exists a nonzero constant c ∈ R such that up = cvp. As a consequence,
there is a unique function ap ∈ Λ such that βp = Ip(ap). Moreover, the function ap is

given by ap = Ap(up)|up|
2

p−1 , where up is any minimizer of Jp in Xp \ {0}.
Proof. It follows fromLemma 2.5 that both functions, up and vp satisfy a problem

like (2.17) for possibly different positive constants Bu and Bv. Moreover, if xu and xv

are, respectively, the first zero points of u and v in (0, L) , we must have L = 2xu = 2xv.
Therefore xu = xv and from (2.23) we deduce the existence of the constant c.

Now, let a ∈ Λ be such that βp = Ip(a). Let u ∈ H1(0, L) be a nontrivial solution
of

−u′′(x) = a(x)u(x), x ∈ (0, L), u′(0) = u′(L) = 0,

Choose k0 ∈ R satisfying u + k0 ∈ Xp. Then, as in Lemma 2.6, we have∫ L

0
(u + k0)′2 �

∫ L

0
a(u + k0)2 � ‖a‖p‖(u + k0)2‖p′

= mp‖(u + k0)2‖p′ = mp

(∫ L

0
|(u + k0)|

2p
p−1

) p−1
p

�
∫ L

0
(u + k0)′2.

Then, u + k0 is a minimizer of Jp in Xp \ {0} and we have an equality in Hölder

inequality. Therefore there exists a nontrivial constant d such that a = d|(u+ k0)|
2

p−1 .
Now, if ã ∈ Λ is such that βp = Ip(ã) , then there exists a nontrivial constant d̃

such that ã = d̃|(ũ + k̃0)|
2

p−1 , where ũ ∈ H1(0, L) is a nontrivial solution of

−z′′(x) = ã(x)z(x), x ∈ (0, L), z′(0) = z′(L) = 0,

and k̃0 ∈ R satisfies ũ+k̃0 ∈ Xp. Since both functions u+k0 and ũ+k̃0 are minimizers
of Jp in Xp \ {0}, there exists a positive constant c such that u+ k0 = c(ũ+ k̃0). Then

a = dc
2

p−1 |ũ + k̃0|
2

p−1 . Moreover, since ‖a‖p = ‖ã‖p = βp we must have dc
2

p−1 = d̃
and consequently a = ã.

Finally, up is any minimizer of Jp in Xp \ {0}, then we obtain from (2.14) that

the function = Ap(up)|up|
2

p−1 belongs to Λ. Also the Lp− norm of this function is βp.
This proves the lemma. �

It is trivial to prove that βp is a continuous function if p ∈ (1,∞) and that
limp→∞ βp = β∞. To finish the proof of the theorem we need the next two lemmas
will be devoted to the study of some qualitative properties of the function βp.

LEMMA 2.9. We have limp→1+ βp = β1.

Proof. Since

βp =
4(p − 1)1+ 1

p

L2− 1
p p(2p − 1)1/p

(∫ π/2

0
(sin x)−1/p dx

)2

=
4(p − 1)−1+ 1

p (p − 1)2

L2− 1
p p(2p − 1)1/p

(∫ π/2

0
(sin x)−1/p dx

)2
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and

lim
p→1+

4

L2− 1
p p(2p − 1)1/p

=
4
L

, lim
p→1+

(p − 1)−1+ 1
p = 1,

it is sufficient to prove

lim
p→1+

(p − 1)
∫ π/2

0
(sin t)−1/p dt = 1. (2.32)

To see this, since sin t � t, ∀ t ∈ (0, π/2), we have (sin t)−1/p � (t)−1/p, ∀ t ∈
(0, π/2). Therefore

(p − 1)
∫ π/2

0
(sin t)−1/p dt � (p − 1)

∫ π/2

0
(t)−1/p dt = p

(π
2

)1− 1
p
.

Hence,

lim inf
p→1+

(p − 1)
∫ π/2

0
(sin t)−1/p dt � 1. (2.33)

On the other hand, as limt→0
sin t

t = 1, we have that for each ε ∈ (0, 1), there exists
t0 ∈ (0, π/2) such that sin t

t � 1 − ε, ∀ t ∈ (0, t0). Therefore,

(p − 1)
∫ π/2

0
(sin t)−1/p dt

= (p − 1)
∫ t0

0
(sin t)−1/p dt + (p − 1)

∫ π/2

t0

(sin t)−1/p dt

� (p − 1)
∫ t0

0
(1 − ε)−1/pt−1/p dt + (p − 1)

∫ π/2

t0

(sin t0)−1/p dt

= (1 − ε)−1/ppt
1− 1

p
0 + (p − 1)(sin t0)−1/p

(π
2
− t0

)
.

Hence

lim sup
p→1+

(p − 1)
∫ π/2

0
(sin t)−1/p dt � 1

1 − ε
, ∀ε ∈ (0, 1)

and consequently

lim sup
p→1+

(p − 1)
∫ π/2

0
(sin t)−1/p dt � 1. (2.34)

Finally, (2.33) and (2.34) prove the lemma. �

LEMMA 2.10. Assume L = 1 and 1 � p < q < ∞. Then βp < βq. As a
trivial consequence, if L is an arbitrary positive number, the mapping [1,∞) → R,
p → L−1/pβp is strictly increasing.

Proof. Since βp is a continuous function of p , it is sufficient to prove that βp < βq

when 1 < p < q < ∞. Now, if ap, aq are the elements of Λ such that βp =
‖ap‖p, βq = ‖aq‖q, then since ‖aq‖p � ‖aq‖q, we obtain βp � βq. If βp = βq, then

βp � ‖aq‖p � ‖aq‖q = ‖ap‖p = βp.
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Therefore ‖aq‖p = ‖aq‖q. Since p < q, we deduce that |aq| must be a positive
constant. But it is easily deduced from Lemma 2.8 that |aq| can not be a constant.

Now if L is an arbitrary positive number, then it is trivial from the explicit expres-
sion of βp that the mapping L−1/pβp is also strictly increasing. �

As an application of Theorem 2.1 to the linear problem

u′′(x) + a(x)u(x) = f (x), x ∈ (0, L), u′(0) = u′(L) = 0, (2.35)

we have the following corollary, which clearly generalizes Theorem 3 in [6].

COROLLARY 2.11. Let a ∈ L∞ \ {0}, 0 �
∫ L

0
a(x), satisfying one of the

following conditions:
1. ‖a‖1 � β1,
2. There is some p ∈ (1,∞) such that ‖a‖p < βp or ‖a‖p = βp and a 
= ap.
3. ‖a‖∞ < β∞ or ‖a‖∞ = β∞ and a 
= a∞.

Then for each f ∈ L∞(0, L), the boundary value problem (2.35) has a unique
solution.

3. The nonlinear problem

In this section we give some new results on the existence and uniqueness of
solutions of nonlinear b.v.p. (1.1). To get our purpose, we combine the results obtained
in the previous section with the Schauder’s fixed point theorem. In fact, once we have
the result given by Corollary 2.11, the procedure is standard and may be seen, for
example, in [6].

THEOREM 3.1. Let us consider (1.1) where the following requirements are
fulfilled:

1. f and f u are continuous on [0, L] × R.
2. For some function β ∈ L∞(0, L), we have f u(x, u) � β(x) on [0, L] × R

and β satisfies some of the conditions given in Corollary 2.11.
3. 0 � f u(x, u) in [0, L] × R . Moreover, for each u ∈ C[0, L] one has

f u(x, u(x)) 
= 0, a.e. on [0, L] and
∫ L

0
f (x, 0) dx = 0.

Then, problem (1.1) has a unique solution.

Proof. We first prove uniqueness. Let u1 and u2 be two solutions of (1.1). Then,
the function u = u1 − u2 is a solution of a problem of the type (2.35) with f ≡ 0 and

a(x) =
∫ 1

0
f u(x, u2(x) + θu(x)) dθ. Applying Corollary 2.11, we obtain u ≡ 0.

Next we prove existence. First, we rewrite (1.1) in the equivalent form

u′′(x) + b(x, u(x))u(x) = −f (x, 0), x ∈ [0, L], u′(0) = u′(L) = 0 (3.1)

where the continuous function b : [0, L]×R→R, is defined by b(x, z) =
∫ 1

0 f u(x, θz)dθ.

If X = C1([0, L], R) with the usual norm, i.e., ‖y‖X = maxx∈[0,L] |y(x)| + maxx∈[0,L] |y′(x)| ,
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∀ y ∈ X, we can define the operator T : X → X, by Ty = uy where uy is the unique
solution of the linear problem

u′′(x) + b(x, y(x))u(x) = −f (x, 0), x ∈ [0, L], u′(0) = u′(L) = 0. (3.2)

We claim that T is completely continuous and that T(X) is bounded. Then, T has a
fixed point which provides a solution of (1.1).

To prove the claim, if T(X) is not bounded, there would exist a sequence {yn} ⊂ X
such that ‖uyn‖X → ∞. Passing to a subsequence if necessary, we may assume that the
sequence of functions {b(·, yn(·))} is weakly convergent in L2(0, L) to a function β0

satisfying 0 � β0(x) � β(x) , a.e. in [0, L]. If zn ≡ uyn

‖uyn‖X
, passing to a subsequence

if necessary, we may assume that zn → z0, uniformly in [0, L] , where z0 satisfies
‖z0‖X = 1 and

z′′0 (x) + β0(x)z0(x) = 0, x ∈ [0, L], z′0(0) = z′0(L) = 0. (3.3)

Moreover, from the hypotheses of the theorem, we have for each n ∈ N,
∫ L

0 b(x, yn(x))
uyn(x) dx = − ∫ L

0 f (x, 0) dx = 0. Therefore, for each n ∈ N, the function uyn has a
zero in [0, L] and hence so does z0. Thus, β0 ∈ L∞(0, L)\ {0}. This is a contradiction
with Corollary 2.11.

Now, let us prove that the operator T is continuous. To see this, if {yn} → y0 in
the space X and uyn does not converge to uy0 , passing to a subsequence if necessary,
there exists a constant δ > 0 such that uyn /∈ BX(uy0 ; δ), ∀ n ∈ N. Also, taking into
account (3.2) and the boundness of operator T, we obtain that the sequence u′′yn

is
uniformly bounded. Thus, again passing to a subsequence if necessary, we deduce that
uyn converges to some function u0. But, by the uniqueness of solution for problem
(3.2), we must have u0 = uy0 , which is a contradiction.

Finally, by using the Arzela-Ascoli theorem, it is trivial from (3.2) that if B ⊂ X
is bounded, then T(B) is relatively compact in X. �

REMARK 2. Since the change of variables u(x) = v(x) + z, z ∈ R, transforms
(1.1) into the problem

v′′(x) + f (x, v(x) + z) = 0, x ∈ (0, L), v′(0) = v′(L) = 0,

the condition
∫ L

0 f (x, 0) dx = 0 in the previous Theorem, may be substituted by (1.2).
Previous result generalizes Theorem B in [6]. Also, under the hypothesis (1) of

previous Theorem, it is a generalization of Theorem 2 in [8] for the case of ordinary
differential equations.

4. Final remarks

REMARK 3. Theorem 2.1 can be slightly improved by considering the positive
part a+ of a function a ∈ Λ (i.e. a+(x) = max{0, a(x)} ). Specifically, if we define

β+
p ≡ inf

a∈Λ
Ip(a+), 1 � p � ∞ (4.1)
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it is possible to prove that all the assertions in Theorem 2.1 hold true if we replace βp

by β+
p . Note that this is a more general result since Ip(a+) � Ip(a), ∀a ∈ Λ . In order

to prove this, it is sufficient to observe that if a ∈ Λ , and u ∈ H1(0, L) is a nontrivial
solution of (2.7), then we have, for each k ∈ R,

∫ L

0
(u + k)′2 �

∫ L

0
a(u + k)2 �

∫ L

0
a+(u + k)2.

Hence, we can apply the same arguments in Lemmas 2.2, 2.4 and 2.6, with a replaced
by a+ , and the rest of the proof runs as before. By using this we can obtain a similar
result to that given in Corollary 2.11 involving the positive part a+ of function a .

REMARK 4. We need the positivity of
∫ L

0 a in order to obtain a positive infimum
of Ip(a) . In fact if u ∈ H1(0, L) is a positive nonconstant solution of (2.7) and we
consider v = 1

u as test function in the weak formulation, we obtain

∫ L

0
u′
(

1
u

)′
=
∫ L

0
au

1
u
,

which implies ∫ L

0
a = −

∫ L

0

u′2

u2
< 0.

Hence, if we fixed a nonconstant u0 ∈ C2[0, L] such that u′0(0) = u′0(L) = 0 , then,
for large n ∈ N , we have that un = u0 + n is a positive nonconstant solution of (2.7),
with an = −u′′0

u0+n . Clearly ‖an‖p → 0 as n → ∞ for every 1 � p � ∞ and, as we

have seen before,
∫ L

0 an < 0 .

REMARK 5. We can do an analogous study for Dirichlet boundary conditions. That
is, consider the linear problem

u′′(x) + a(x)u(x) = 0, x ∈ (0, L), u(0) = u(L) = 0, (4.2)

where a ∈ Λ̄ and Λ̄ is defined by

Λ̄ = {a ∈ L∞(0, L) such that (4.2) has nontrivial solutions } . (4.3)

In this case, it is possible to prove that

inf
a∈Λ̄

‖ap‖ = βp, 1 � p � ∞ (4.4)

where the constant βp is the same as in Theorem 2.1. Moreover all the assertions of
this theorem hold true if we replace ūp by up , being ūp the unique positive solution of
the problem

−u′′(x) = u(x)
p+1
p−1 , u(0) = u(L) = 0.

(Note that ūp(x) = up(L/2 − x) , ∀x ∈ [0, L/2] and ūp(x) = up(x − L/2) , ∀x ∈
[L/2, L] .)
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To obtain these results, it is sufficient to apply the same arguments as in the
Neumann case, with the spaces Xp of Lemmas 2.2, 2.4 and 2.6 replaced by H1

0(0, L) .

We can check that our constants βp in the case p = 2, 3 and 3/2 are the same
that obtained in [7] by different methods.

REMARK 6. One can expect that some results hold true in the case of Neumann
boundary value problem for partial differential equations

Δu(x) + a(x)u(x) = 0, x ∈ Ω,
∂u(x)
∂n

= 0, x ∈ ∂Ω (4.5)

where Ω is a bounded and regular domain in R
N . But here the role played by the

dimension N may be important. For instance, if N � 3 and

Λ =
{

a ∈ L∞(Ω) \ {0} :
∫
Ω

a(x) dx � 0 and (4.5) has nontrivial solutions

}

then it may be proved that infa∈Λ ‖a‖p > 0 ⇐⇒ p � N
2 . The details about this problem

will be published elsewhere.
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