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STABILITY OF ANGLE–PRESERVING MAPPINGS ON THE PLANE

JACEK CHMIELIŃSKI

(communicated by T. M. Rassias)

Abstract. We prove that for the mappings of the plane the property of preserving the angle
between vectors is stable. We apply this result to prove some kind of stability of the Wigner
equation on the plane.

1. Introduction

The class of functions between Hilbert spaces preserving the absolute value of
the inner product has found some applications in quantum phisics. In the book of E.P.
Wigner [6] the class of such operators was described. Therefore the functional equation

| 〈 f (x)|f (y)〉 | = | 〈 x|y〉 |
postulated for all x, y from the domain is called the Wigner equation.

Speaking of the stability of a functional equation we follow the question of S.
Ulam: “when is it true that the solution of an equation differing slightly from a given
one, must of necessity be close to the solution of the given equation?” (see [5], p. 63)
As the words “differing slightly” and “be close” may have various meanings, different
kinds of stability can be dealt with (cf. [3]).

Different types of stability of the Wigner equation have been considered by the
author. In particular, the following result, based on [2] and [4], was established in [1]:

THEOREM 1. Let E and F be real or complex Hilbert spaces and let ε > 0 and
p ∈ R \ {1} be fixed. Then for a function f : E → F satisfying

| | 〈 f (x)|f (y)〉 | − | 〈 x|y〉 | | � ε ‖x‖p ‖y‖p, x, y ∈ Ep (1)

( Ep = E for p � 0 and Ep = E \ {0} for p < 0 ) there exists, a unique up to
phase-equivalency, function I : E → F satisfying the Wigner equation and such that

‖f (x) − I(x)‖ �
√
ε ‖x‖p, x ∈ Ep. (2)

Moreover, if E = F = R
n ( n ∈ N ) the so called superstability holds: any

function f satisfying (1) must be an exact solution of the Wigner equation on Ep .
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The stability problem for the case p = 1 is generally unsolved. Some partial
results concerning this case with an example showing that there is no superstability
then can be found in [1]. In the present paper we consider this case for the euclidean,
two-dimensional space R

2 with its standard inner product 〈 ·|·〉 . The results can be
generalized to the case of arbitrary two-dimensional real Hilbert spaces E and F . We
are considering the class of approximate solutions of the Wigner equation

| 〈 f (x)|f (y)〉 | = | 〈 x|y〉 | for x, y ∈ R
2 (W)

coinsisting of mappings f : R
2 → R

2 satisfying the functional inequality

| | 〈 f (x)|f (y)〉 | − | 〈 x|y〉 | | � ε ‖x‖ ‖y‖, x, y ∈ R
2. (�)

Proving the stability of the Wigner equation we use a geometrical property of preserva-
tion of the angle and its stability. By cos(u, v) we mean the cosine of the angle between
non-zero vectors u and v . Note that | cos(u, v)| is the cosine of the angle between
the lines spanned by u and v (directions of u and v ). We are dealing with map-
pings which preserves (accurately or approximately) the angle between the directions
of vectors. Thus we consider the following system:{

U(x) = 0 ⇔ x = 0

| cos(U(x), U(y))| = | cos(x, y)| for x, y ∈ R
2 \ {0}.

(3)

The class of mappings satisfying the system (3) consists of mappings U(x) = σ(x)I(x)
where I : R

2 → R
2 is a linear isometry and σ : R

2 → R is an arbitrary function.
We consider also some perturbation of (3):{

f (x) = 0 ⇔ x = 0

| | cos(f (x), f (y))| − | cos(x, y)| | � ε x, y ∈ R
2 \ {0}.

(��)

2. Results and proofs

The following lemma (cf. [1]) is easy to obtain.

LEMMA 1. Let f : R
2 → R

2 satisfies (� ) (with 0 � ε < 1 ). Define

g(x) :=

⎧⎨
⎩

f (x) ‖x‖
‖f (x)‖ , x 	= 0,

0, x = 0.Then:
(a) | | 〈 g(x)|g(y)〉 | − | 〈 x|y〉 | | � 2ε ‖x‖ ‖y‖, x, y ∈ R

2;
(b) ‖g(x)‖ = ‖x‖, x ∈ R

2 ;
(c) ‖f (x) − g(x)‖ �

(
1 −√

1 − ε
) ‖x‖, x ∈ R

2.

Now we get the stability of angle-preserving mappings.

THEOREM 2. For an arbitrary constant δ > 0 there exists ε > 0 such that
for any function f : R

2 → R
2 satisfying (�� ) there exists a function U : R

2 → R
2

satisfying (3) and such that

| cos(f (x), U(x))| � 1 − δ for x ∈ R
2 \ {0}. (4)



STABILITY OF ANGLE-PRESERVING MAPPINGS ON THE PLANE 499

Proof. Let e1 := (1, 0) , e2 := (0, 1) and e0 := (1, 1) . For x = (x1, x2) ∈ R
2

we denote: x := (x1,−x2) .
Let us fix an arbitrary δ > 0 . We choose 0 < ε < δ4 < δ3 < δ2 < δ1 < δ such

that for all u, v, w, z, y ∈ R
2 \ {0} the following implications hold.⎧⎪⎨

⎪⎩
| cos(u, z)| > 1 − δ1

and =⇒ | cos(u, v)| � 1 − δ.

| cos(v, z)| > 1 − δ1

(5)

⎧⎪⎨
⎪⎩

| cos(u, e1)| > 1 − δ2

or =⇒ | cos(u, u)| > 1 − δ1.

| cos(u, e2)| > 1 − δ2

(6)

⎧⎪⎨
⎪⎩

| | cos(w, e0)| − | cos(u, e0)| | < δ3

and

| cos(w, u)| > 1 − δ3

=⇒

⎧⎪⎨
⎪⎩

| cos(u, e1)| > 1 − δ2

or

| cos(u, e2)| > 1 − δ2.

(7)

⎧⎪⎨
⎪⎩

| | cos(w, e0)| − | cos(u, e0)| | < δ3

and

| cos(w, u)| > 1 − δ3

=⇒

⎧⎪⎨
⎪⎩

| cos(u, e1)| > 1 − δ2

or

| cos(u, e2)| > 1 − δ2.

(8)

(Implication (8) follows from (7) as | cos(x, y)| = | cos(x, y)| .)⎧⎪⎨
⎪⎩

| | cos(w, z)| − | cos(u, v)| | < δ4

and =⇒ | | cos(w, y)| − | cos(u, v)| | < δ3.

| cos(z, y)| > 1 − δ4

(9)

| | cos(u, e1)| − | cos(v, e1)| | � ε =⇒

⎧⎪⎨
⎪⎩

| cos(u, v)| > 1 − δ4

or

| cos(u, v)| > 1 − δ4.

(10)

Let f : R
2 → R

2 be a function satisfying (�� ). Additionally, in the first part of the
proof, we assume that f (e1) and e1 are colinear vectors, i.e.,

| cos(f (e1), e1)| = 1. (11)

This implies, for an arbitrary x ∈ R
2 \ {0} ,

| cos(f (x), f (e1))| = | cos(f (x), e1)|.
Therefore, we have from (�� )

| | cos(f (x), e1)| − | cos(x, e1)| | � ε, x ∈ R
2 \ {0}.

According to (10), for an arbitrary x ∈ R
2 \ {0} , the following two cases are possible:

(i) | cos(f (x), x)| > 1 − δ4 ;
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(ii) | cos(f (x), x)| > 1 − δ4 .
In particular, for e0 , we have two possibilities

1◦ | cos(f (e0), e0)| > 1 − δ4

or 2◦ | cos(f (e0), e0)| > 1 − δ4.

Let us suppose now that the case 1◦ holds. Then we define a mapping

U(x) := x for x ∈ R
2.

which obviously satisfies (3) and it remains to prove (4). As it is obvious for x = 0 ,
let us fix x ∈ R

2 \ {0} . If x satisfies (i) then

| cos(f (x), U(x))| = | cos(f (x), x)| > 1 − δ4 > 1 − δ,

i.e., (4) holds. Suppose now that x satisfies (ii). As we have

| cos(f (e0), e0)| > 1 − δ4 and | | cos(f (x), f (e0))| − | cos(x, e0)| | � ε < δ4,

then from (9)
| | cos(f (x), e0)| − | cos(x, e0)| | < δ3.

The last inequality, together with

| cos(f (x), x)| > 1 − δ4 > 1 − δ3

yields, because of (7),

| cos(x, e1)| > 1 − δ2 or | cos(x, e2)| > 1 − δ2

which implies (according to (6))

| cos(x, x)| > 1 − δ1.

The above inequality, the fact that

| cos(f (x), x)| > 1 − δ4 > 1 − δ1

and (5) gives us
| cos(f (x), x)| � 1 − δ

which proves (4).
In the complementary case 2◦ we define

U(x) := x, x ∈ R
2

which obviously satisfies (3). The proof of (4) runs similarly as in the case 1◦ . It is
obvious for x = 0 , so let us fix x ∈ R

2 \ {0} . If x satisfies (ii) then we have

| cos(f (x), U(x))| = | cos(f (x), x)| > 1 − δ4 > 1 − δ

which proves (4). Suppose now that x satisfies (i). Since we have

| cos(f (e0), e0)| > 1 − δ4 and | | cos(f (x), f (e0))| − | cos(x, e0)| | � ε < δ4,
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from (9) we get
| | cos(f (x), e0)| − | cos(x, e0)| | < δ3.

This inequality, together with

| cos(f (x), x)| > 1 − δ4 > 1 − δ3,

(8) and (6) yields
| cos(x, x)| > 1 − δ1.

The above inequality with

| cos(f (x), x)| > 1 − δ4 > 1 − δ1

and (5) gives us
| cos(f (x), x)| � 1 − δ

which proves (4).
Now,we consider the casewhen (11) is not assumed. Then, there exists R —arota-

tion about the origin, such that R(f (e1)) is colinear with e1 , i.e., | cos(R(f (e1)), e1)| =
1 . Then the function h := R ◦ f satisfies the condition (�� ) and also (11). Thus, due
to the first part of the proof, there exists U′ : R

2 → R
2 satisfying (3) and

| cos(h(x), U′(x))| � 1 − δ.

Defining U := R−1 ◦ U′ we obtain that U satisfies (3) and

| cos(f (x), U(x))| = | cos(R−1(R(f (x))), R−1(U′(x)))|
= | cos(h(x), U′(x))|
� 1 − δ.

This finishes the proof. �
The correspondence between δ and ε gives us a function R+ � δ → ε(δ) ∈ R+ .

Moreover, we obtained that ε(δ) < δ which proves that limδ→0 ε(δ) = 0 . Without
loss of generality we may assume that the function ε = ε(δ) is increasing (we may
assume that all the correspondences δ → δ1, . . . , δ4 → ε considered in (5)-(10) are
increasing). Therefore we can define the inverse function δ = δ(ε) defined on an
interval (0, ε0) for some ε0 > 0 . We can reformulate our result.

COROLLARY 1. There exists ε0 > 0 such that for any ε ∈ (0, ε0) if f : R
2 → R

2

satisfies (�� ) then there exists a function U : R
2 → R

2 satisfying (3) and such that

| cos(f (x), U(x))| � 1 − δ(ε) for x ∈ R
2 \ {0}.

with some function δ : (0, ε0) → R+ satisfying the condition limε→0 δ(ε) = 0 .

Now we can establish the stability result for the Wigner equation.

THEOREM 3. For an arbitrary δ > 0 there exists ε > 0 such that for an arbitrary
function f : R

2 → R
2 satisfying (� ) there exists a function I : R

2 → R
2 satisfying

the Wigner equation (W) and such that

‖f (x) − I(x)‖ � δ ‖x‖ for x ∈ R
2.
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Proof. Let us fix δ > 0 and put δ ′ := δ 2

8 . Applying Theorem 2, we obtain for

δ ′ suitably constant ε′ . Let ε′′ < min{ε′, 2} be such that 1 −
√

1 − ε′′
2 � δ

2 and

define ε := ε′′
2 . Let f : R

2 → R
2 be an arbitrary function satisfying (� ). Define the

function g : R
2 → R

2 as in Lemma 1. Therefore

| | 〈 g(x)|g(y)〉 | − | 〈 x|y〉 | | � 2ε ‖x‖ ‖y‖ = ε′′ ‖x‖ ‖y‖, x, y ∈ R
2

and
‖g(x)‖ = ‖x‖, x ∈ R

2.

This gives us
g(x) = 0 ⇔ x = 0

and
| | cos(g(x), g(y))| − | cos(x, y)| | � ε′ for x, y ∈ R

2 \ {0}.
Thus g satisfies (�� ). Then, in virtue of Theorem 2, there exists U : R

2 → R
2

satisfying (3) and such that

| cos(g(x), U(x))| � 1 − δ ′ for x ∈ R
2 \ {0}.

Define
J(x) :=

⎧⎨
⎩

U(x) ‖x‖
‖U(x)‖ , x 	= 0,

0, x = 0

and let I(x) := σ(x)J(x) where σ(0) = 1 and for x ∈ R
2 \ {0} the value σ(x) ∈

{−1, 1} is such that cos(g(x),σ(x)J(x)) � 0 . Since

| cos(g(x), J(x))| = | cos(g(x), U(x))| � 1 − δ ′,

we conclude that cos(g(x), I(x)) � 1−δ ′ . We have also, for arbitrary x, y ∈ R
2 \{0} ,

| cos(I(x), I(y)| = | cos(U(x), U(y))| = | cos(x, y)|
and

‖I(x)‖ = ‖x‖.
Therefore

| 〈 I(x)|I(y)〉 | = | 〈 x|y〉 | for x, y ∈ R
2.

Moreover, we have for x ∈ R
2 \ {0} ,

‖I(x) − g(x)‖2 = ‖I(x)‖2 + ‖g(x)‖2 − 2‖I(x)‖ ‖g(x)‖ cos(I(x), g(x))

= 2‖x‖2 (1 − cos(I(x), g(x)))

� 2‖x‖2δ ′

=
δ 2

4
‖x‖2,

i.e., ‖I(x) − g(x)‖ � δ
2
‖x‖.
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Finally, we have

‖I(x) − f (x)‖ � ‖I(x) − g(x)‖ + ‖g(x) − f (x)‖

� δ
2

+

(
1 −

√
1 − ε′′

2

)
‖x‖

� δ‖x‖
for all x ∈ R

2 . The proof is finished. �
Following Corollary 1 we get the final result.

COROLLARY 2. There exists ε0 > 0 such that for any ε ∈ (0, ε0) if f : R
2 → R

2

satisfies the inequality

| | 〈 f (x)|f (y)〉 | − | 〈 x|y〉 | | � ε ‖x‖ ‖y‖, x, y ∈ R
2,

then there exists a mapping I : R
2 → R

2 satisfying the Wigner equation on R
2 and

such that
‖f (x) − I(x)‖ � δ(ε)‖x‖, x ∈ R

2

for some function δ : (0, ε0) → R+ satisfying the condition limε→0 δ(ε) = 0 .

It is an open problem to extend the assertions of Theorems 2 and 3 to the n -
dimensional case.
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