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GENERAL INCLUSION THEOREMS FOR

ABSOLUTE SUMMABILITY OF ORDER k � 1

B. E. RHOADES AND EKREM SAVAŞ

(communicated by R. N. Mohapatra)

Abstract. We establish a general inclusion theorem for absolute summability of order k � 1 ,
involving two lower triangular matrices. As corollaries we obtain a number of other inclusion
theorems.

Let
∑

an be a given series with partial sums sn , (C,α) the Cesàro matrix of
order α . If σα

n denotes the nth term of the (C,α) -transform of {sn} , then Flett [3]
defined absolute summability of order k � 1 as follows. A series

∑
an is said to be

summable |C,α|k, k � 1 if

∞∑
n=1

nk−1|σα
n − σα

n−1|k :=
∞∑
n=1

nk−1|Δnσα
n−1|k < ∞. (1)

In an effort to extend (1) to other classes of matrices, some authors have interpreted
the n in (1) to represent the reciprocal of the nth diagonal entry of the matrix.

For example, in [2], with Zn denoting the nth term of the weighted mean transform
of a sequence {sn} , i.e.,

Zn =
1
Pn

n∑
k=0

pksk, (2)

their version of (1) becomes

∞∑
n=1

(Pn

pn

)k−1
|ΔZn−1|k < ∞. (3)

Detailed arguments showing that (3) is not an appropriate extension of (1) appear in
[6], and so will not be repeated here.
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For an arbitrary lower triangular matrix T , we shall say that a series
∑

an is
summable |T|k, k � 1 , if

∞∑
n=1

nk−1|Δtn−1|k < ∞, (4)

where

tn :=
n∑

k=0

tnksk. (5)

Such an extension is used, for example, in [1].
The purpose of this paper is to establish a general absolute inclusion theorem

involving a pair of triangles. We obtain, as corollaries, inclusion theorems for special
classes of triangles.

Let A be a lower triangular matrix. Associated with A are two lower triangular
matrices A = (ānk) and Â = (ânk) with entries defined by

ānk =
n∑

i=k

ani and ânk = ānk − ān−1,k, (6)

respectively.
With yn denoting the n -th term of the A -transform of a sequence {sn} , we have,

using (6),

yn =
n∑

k=0

anksk =
n∑

k=0

ank

n∑
i=k

ai =
n∑

i=0

ai

n∑
k=i

ani =
n∑

i=0

āniai,

and

Yn := yn − yn−1 =
n∑

i=0

āniai −
n−1∑
i=0

ān−1,iai =
n∑

i=0

âniai, since ān−1,n = 0. (7)

A lower triangular matrix A is called a triangle if ann �= 0 for each n . Then A has
a unique two-sided inverse, which we shall denote by A′ = (a′nk) . Clearly, if A is a
triangle, then Â′ exists, and is a triangle, since ânn = ann .

The notation Δν ânν means ânν − ân,ν+1 .
Theorem 1 of this paper represents the first time that two arbitrary triangles have

been used in an absolute inclusion theorem, using either definition (3) or (4). Theorem
1 also represents one of the most general such inclusion theorems that one can expect
to obtain.

Theorem 2 is an inclusion theorem in which the first matrix involved is an arbitrary
triangle. This is also the first inclusion theorem of this type.

By restricting A and B to specific classes of matrices, we obtain, as corollaries,
most of the known inclusion theorems, using (4), as special cases.
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THEOREM 1. Let A and B be triangles satisfying

(i)
|ann|
|bnn| = O(1) ,

(ii)
∣∣∣bn+1,n − bnn

bnnbn+1,n+1

∣∣∣ = O(1) ,

(iii)
n−1∑
ν=0

|Δν ânν| = O(|ann|) ,

(iv)
∞∑

n=ν+1

(n|ann|)k−1|Δν ânν| = O(νk−1|aνν|k) ,

(v)
n−1∑
ν=0

|aνν||ân,ν+1| = O(|ann|) ,

(vi)
∞∑

n=ν+1

(n|ann|)k−1|ân,ν+1| = O((ν|aνν |)k−1) ,

(vii)
n−2∑
r=0

|anr|
∣∣∣ n∑
ν=2

ânνb̂
′
νr

∣∣∣ = O(|ann|) ,

and

(viii)
∞∑

n=r+2

(n|ann|)k−1
∣∣∣ n∑
ν=r+2

ânνb̂
′
νr

∣∣∣ = O((r|arr|)k−1) .

Then, if
∑

an is summable |B|k , it is summable |A|k, k � 1 .

Proof. If xn denotes the nth term of the B -transform of a sequence sn , then, as in
(7),

Xn := xn − xn−1 =
n∑

i=0

b̂niai. (8)

Since B̂′ is a triangle, we may solve (8) for an to get

an =
n∑

r=0

b̂′nrXr. (9)

Substituting (9) into (7) yields

Yn =
n∑

ν=0

ânν

ν∑
r=0

b̂′νrXr =
n∑

ν=0

ânν

(
b̂′ννXν + b̂′ν,ν−1Xν−1 +

ν−2∑
r=0

b̂′νrXr

)

=
n∑

ν=0

ânνb̂
′
ννXν +

n∑
ν=0

ânν b̂
′
ν,ν−1Xν−1 +

n∑
ν=0

ânν

ν−2∑
r=0

b̂′νrXr

= ânnb
′
nnXn+

n−1∑
ν=0

ânνb
′
ννXν+

n−1∑
ν=0

ân,ν+1b̂ν+1,νXν+
n∑

ν=0

ânν

ν−2∑
r=0

b̂νrXr

=
annXn

bnn
+

n−1∑
ν=0

(Δνânν)
bνν

Xν +
n−1∑
ν=0

ân,ν+1(b̂′νν + b̂′ν+1,ν)Xν +
n−1∑
ν=0

ânν

ν−2∑
r=0

b̂′νrXr.

(10)
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Using the fact that
n∑

j=k

b̂njb̂
′
jk = δ n

k ,

and using (6),

b̂′νν + b̂′ν+1,ν =
1

bνν
− b̂ν+1,ν

bννbν+1,ν+1
=

1
bνν

(
1 − b̄ν+1,ν − b̄νν

bν+1,ν+1

)
=

1
bνν

(
1 − bν+1,ν + bν+1,ν+1 − bνν

bν+1,ν+1

)
=

1
bνν

(bνν − bν+1,ν

bν+1,ν+1

)
.

(11)

Substituting (11) into (10) we have

Yn =
annXn

bnn
+

n−1∑
ν=0

Δν ânνXν

bνν
+

n−1∑
ν=0

ân,ν+1

(bνν − bν+1,ν

bννbν+1,ν+1

)
Xν+

n∑
ν=2

ânν

ν−2∑
r=0

b̂′νrXr

= Tn1 + Tn2 + Tn3 + Tn4, say .

From (4), by Minkowski’s inequality, it is sufficient to prove that

∞∑
n=1

nk−1|Tni|k < ∞, i = 1, 2, 3, 4.

Using (i) ,

∞∑
n=1

nk−1|Tn1|k =
∞∑

n=1

nk−1
∣∣∣annXn

bnn

∣∣∣k = O(1)
∞∑
n=1

nk−1|Xn|k = O(1),

since
∑

an is summable |B|k .
Using (i) , Hölder’s inequality, (iii) , and (iv) ,

∞∑
n=1

nk−1|Tn2|k =
∞∑
n=1

nk−1
∣∣∣ n−1∑
ν=0

b−1
νν (Δν ânν)Xν

∣∣∣k �
∞∑
n=1

nk−1
( n−1∑

ν=0

|bνν|−1|Δνânν||Xν|
)k

= O(1)
∞∑
n=1

nk−1
( n−1∑

ν=0

|aνν|−1|Δνânν||Xν|
)k

= O(1)
∞∑
n=1

nk−1
( n−1∑

ν=0

|aνν|−k|Δν ânν||Xν|k
)( n−1∑

ν=0

|Δν ânν|
)k−1

= O(1)
∞∑
n=1

(n|ann|)k−1
n−1∑
ν=0

|aνν|−k|Δν ânν||Xν|k

= O(1)
∞∑
ν=0

|aνν|−k|Xν|k
∞∑

n=ν+1

(n|ann|)k−1|Δν ânν|

= O(1)
∞∑
ν=0

|aνν|−k|Xν|kνk−1|aνν|k = O(1)
∞∑
ν=1

νk−1|Xν|k = O(1).
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Using (ii) , (v) , and (vi) ,

∞∑
n=1

nk−1|Tn3|k =
∞∑

n=1

nk−1
∣∣∣ n−1∑
ν=0

ân,ν+1

(bνν − bν+1,ν

bννbν+1,ν+1

)
Xν

∣∣∣k

= O(1)
∞∑

n=1

nk−1
( n−1∑

ν=0

|ân,ν+1||Xν|
)k

= O(1)
∞∑

n=1

nk−1
( n−1∑

ν=0

|aνν|1−k|ân,ν+1||Xν|k
)( n−1∑

ν=0

|aνν||ân,ν+1|
)k−1

= O(1)
∞∑

n=1

(n|ann|)k−1
n−1∑
ν=0

|aνν|1−k|ân,ν+1||Xν|k

= O(1)
∞∑
ν=0

|aνν|1−k|Xν|k
∞∑

n=ν+1

(n|ann|)k−1|ân,ν+1|

= O(1)
∞∑
ν=0

|aνν|1−k|Xν|kνk−1|aνν|k−1 = O(1)
∞∑
ν=0

νk−1|Xν|k = O(1).

From conditions (vii) and (viii) ,

∞∑
n=1

nk−1|Tn4|k =
∞∑

n=1

nk−1
∣∣∣ n∑
ν=2

ânν

ν−2∑
r=0

Xr

∣∣∣k =
∞∑
n=1

nk−1
∣∣∣ n−2∑

r=0

Xr

n∑
ν=r+2

ânνb̂
′
νr

∣∣∣k

�
∞∑

n=1

nk−1
n−2∑
r=0

|arr|1−k|Xr|k
∣∣∣ n∑
ν=r+2

ânν b̂
′
νr

∣∣∣( n−2∑
r=0

|arr|
∣∣∣ n∑
ν=r+2

ânνb̂
′
νr

∣∣∣)k−1

= O(1)
∞∑

n=1

n−2∑
r=0

|arr|1−k|Xr|k
∣∣∣ n∑
ν=r+2

ânνb̂
′
νr

∣∣∣(n|ann|)k−1

= O(1)
∞∑
r=0

|arr|1−k|Xr|k
∞∑

n=r+2

(n|ann|)k−1
∣∣∣ n∑
ν=r+2

ânν b̂
′
νr

∣∣∣
= O(1)

∞∑
r=0

|arr|1−k|Xr|k(r|arr|)k−1 = O(1)
∞∑
r=1

rk−1|Xr|k = O(1).

�

A triangle B is called factorable if its nonzero entries bnk can be written in the
form cndk for each n and k .

COROLLARY 1. Let A and B be triangles, B factorable, satisfying conditions
(i) - (vi) of Theorem 1. Then, if

∑
an is summable |B|k , it is summable |A|k, k � 1 .

Proof. To verify conditions (vii) and (viii) of Theorem 1 we need the following
lemma.
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LEMMA 1. A factorable triangle B has an inverse that is bidiagonal.

Proof of Lemma. Let B′ denote the inverse of B . Then, since

n+k∑
j=n

bn+k,jb
′
jn = 0, k > 0,

b′n+1,n =
−bn+1,n

bnnbn+1,n+1
= − cn+1dn

cndncn+1dn+1
=

−1
cndn+1

.

b′n+2,n = − 1
bn+2,n+2

[bn+2,nb
′
nn + bn+2,n+1b

′
n+1,n]

= − 1
bn+2,n+2

[cn+2dn

cndn
+ cn+2dn+1

(
− 1

cndn+1

)]
= 0.

Suppose that b′n+j,n = 0 for 2 < j � k . Then

b′n+k+1,n = − 1
bn+k+1,n+k+1

[bn+k+1,nb
′
nn + bn+k+1,n+1b

′
n+1,n]

= − 1
bn+k+1,n+k+1

[cn+k+1dn

cndn
+ cn+k+1dn+1

(
− 1

cndn+1

)]
= 0,

and B′ is bidiagonal. �
It is well known that, if B is a weighted mean matrix, then B̂ has entries

b̂nk =
Pk−1pn

PnPn−1
.

Hence B̂ is factorable. By Lemma 1, B̂′ is bidiagonal, so b̂′νr = 0 for each 0 � r �
ν − 2, and conditions (vii) and (viii) are satisfied trivially. �

COROLLARY 2. Let {pn} be a positive sequence, A a triangle, satisfying

(i)
Pn

pn
|ann| = O(1)

and conditions (iii) - (vi) of Theorem 1. Then, if
∑

an is summable |N, pn|k , it is
summable |A|k, k � 1 .

Proof. With B = (N, pn) , condition (i) of Theorem 1 reduces to condition (i) of
Corollary 2. ∣∣∣bn+1,n − bnn

bnnbn+1,n+1

∣∣∣ =
∣∣∣pn/Pn+1 − pn/Pn

pnpn+1/PnPn+1

∣∣∣ =
pnpn+1

pnpn+1
= 1.

and condition (ii) of Theorem 1 is automatically satisfied.
Since a weighted mean matrix is factorable, the result follows from Corollary 1. �

Corollary 2 is the corrected form of the theorem of [6].
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COROLLARY 3. Let D be a Rhaly generalized Cesàro matrix, B be a triangle
satisfying

(i)
1

(n + 1)|bnn| = O(1) ,

(ii)
∣∣∣bn+1,n − bnn

bnnbn+1,n+1

∣∣∣ = O(1) ,

(iii)
tn

n(n + 1)(1 − t)

n−2∑
r=0

t−r
∣∣∣ n∑
ν=2

[(n + 1)tn−ν − ntn−ν−1 − 1]b̂′νr

∣∣∣ = O(1) ,

and

(iv)
∞∑

n=r+2

1
n(n + 1)(1 − t)

∣∣∣ n∑
ν=r+2

[(n + 1)tn−ν − ntn−ν−1 − 1]b̂′νr

∣∣∣k = O(1) .

Then, if
∑

an is summable |B|k , it is summable |D|k, k � 1 .

Proof. We shall restrict our attention to t < 1 , since, with t = 1 , the Rhaly
generalized Cesàro matrix reduces to (C, 1) .

Since dnk = tn−k/(n + 1) , (see, e.g., [4]) conditions (i) , (ii) , (vii) , and (viii) of
Theorem 1 reduce to conditions (i) - (iv) of Corollary 3, respectively.

We shall now show that conditions (iii) - (vi) of Theorem 1 are satisfied.
For Rhaly generalized Cesàro matrices,

Δνd̂nν = dnν − dn−1,ν =
tn−ν

n + 1
− tn−1−ν

n
.

(n + 1)
n−1∑
ν=0

|Δνd̂nν| = (n + 1)
[ n−1∑
ν=0

tn−1−ν

n
−

n−1∑
ν=0

tn−ν

n + 1

]

= (n + 1)
[ tn−1

n

n−1∑
ν=0

t−ν − tn

n + 1

n−1∑
ν=0

t−ν
]

= (n + 1)tn−1
(1

n
− t

n + 1

)[1 − 1/tn

1 − 1/t

]
=

(n + 1)tn

t − 1

(n + 1 − nt
n(n + 1)

) tn − 1
tn

=
n + 1 − nt
n(1 − t)

(1 − tn) = O(1).

Therefore (iii) is satisfied.
There exist positive constants K1 and K2 such that

(ν+1)k

νk−1

∞∑
n=ν+1

(n|dnn|)k−1|Δν d̂nν|

= O(1)ν
∞∑

n=ν+1

( n
n + 1

)k−1( tn−1−ν

n
− tn−ν

n + 1

)

= O(1)ν
∞∑

n=ν+1

( tn−1−ν

n
− tn−ν

n + 1

)
= O(1)ν(1/ν − 0) = O(1).
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and (iv) is satisfied.

d̂n,ν+1 = d̄n,ν+1 − d̄n−1,ν+1 =
n∑

i=ν+1

dni −
n−1∑

i=ν+1

dn−1,i

=
n∑

i=ν+1

tn−i

n + 1
−

n−1∑
i=ν+1

tn−1−i

n

=
n−ν−1∑

j=0

tn−j−ν−1

n + 1
− 1

n

n−ν−2∑
j=0

tn−1−j−ν−1

=
tn−ν−1

n + 1

n−ν−1∑
j=0

t−j − tn−ν−2

n

n−ν−2∑
j=0

t−j

=
1 − tn−ν

(n + 1)(1 − t)
− 1 − tn−ν−1

n(1 − t)

=
1

n(n + 1)(1 − t)
[n − ntn−ν − (n + 1) + (n + 1)tn−ν−1]

=
(n + 1)tn−ν−1 − ntn−ν − 1

n(n + 1)(1 − t)
=

O(1)
n(n + 1)(1 − t)

.

ν−1∑
n=0

|dνν||d̂n,ν+1| =
ν−1∑
n=1

O(1)
(ν + 1)n(n + 1)(1 − t)

= O(1),

and condition (v) is satisfied.

1
(ν|dνν |)k−1

∞∑
n=ν+1

(n|dnn|)k−1|d̂n,ν+1|

= O(1)
∞∑

n=ν+1

O(1)
1

n(n + 1)(1 − t)

=
O(1)

(1 − t)(ν + 1)
= O(1),

and (vi) is satisfied. �

COROLLARY 4. Let {pn} be a positive sequence, D a Rhaly generalized Cesàro
matrix satisfying

(i)
Pn

(n + 1)pn
= O(1).

Then, if
∑

an is summable |N, pn|k , it is summable Dk, k � 1 .

Proof. Setting B = (N, pn) in Corollary 3 yields condition (i) of Corollary 4.∣∣∣bn+1,n − bnn

bnnbn+1,n+1

∣∣∣ =
∣∣∣pn/Pn+1 − pn/Pn

pnpn+1/PnPn+1

∣∣∣ =
∣∣∣−pnpn+1

pnpn+1

∣∣∣ = O(1),
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and condition (ii) of Corollary 3 is satisfied.
As in the proof of Corollary 1, conditions (iii) and (iv) of Corollary 3 are

automatically satisfied. �

COROLLARY 5. If
∑

an is summable |C, 1|k , then it is summable |D|k, k � 1.

Proof. Use Corollary 4 with each pn = 1 . �

It is not possible to use Theorem 1 with B a Rhaly generalized Cesàro matrix,
since condition (ii) of Theorem 1 is violated.

COROLLARY 6. Let F be a Rhaly p-Cesàro matrix, B a triangle satisfying

(i)
1

(n + 1)p|bnn| = O(1) ,

(ii)
∣∣∣bn+1,n − bnn

bnnbn+1,n+1

∣∣∣ = O(1) ,

(iii)
n−2∑
r=0

∣∣∣ n∑
ν=2

[n − ν + 1
(n + 1)p

− n − ν
np

]
b̂′νr

∣∣∣ = O(1) .

and

(iv)
∞∑

n=r+2

( n
(n + 1)p

)k−1∣∣∣ n∑
ν=r+2

[n − ν + 1
(n + 1)p

− n − ν
np

]
b̂′νr

∣∣∣
= O

(( r
(r + 1)p

)k−1)
.

Then, if
∑

an is summable |B|k , then it is summable |F|k, k � 1 .

Proof. Let F denote the Rhaly p-Cesàro matrix (See, e.g., [5]). We shall assume
that p > 1 , since p = 1 reduces the matrix to (C, 1) .

Δν ˆf nν = ¯f nν − ¯f n−1,ν =
1

(n + 1)p
− 1

np
.

(n + 1)p
n−1∑
ν=0

|Δν ˆf nν| = (n + 1)p
n−1∑
ν=0

( 1
np

− 1
(n + 1)p

)

= (n + 1)pn
( 1

np
− 1

(n + 1)p

)
= n

((n + 1
n

)p
− 1

)
.

lim
n

((n + 1)/n)p − 1
1/n

= lim
n

p((n + 1)/n)p−1(−1/n2)
−1/n2

= lim
n

p
(n + 1

n

)p−1
= p,

and condition (iii) of Theorem 1 is satisfied.
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Conditions (i) , (ii) , (vii) , and (viii) of Theorem 1 are conditions (i) - (iv) of
Corollary 6, respectively.

J4 : =
1

νk−1|f νν |k
∞∑

n=ν+1

(n|f nn|)k−1|Δν ˆf nν|

=
(ν + 1)pk

νk−1

∞∑
n=ν+1

( n
(n + 1)p

)k−1( 1
np

− 1
(n + 1)p

)

= O(1)ν(p−1)k+1
∞∑

n=ν+1

O(1)n(1−p)(k−1)
( 1

np
− 1

(n + 1)p

)

= O(1)ν
∞∑

n=ν+1

(ν
n

)k(p−1)
np−1

( 1
np

− 1
(n + 1)p

)
.

Claim.

np−1
( 1

np
− 1

(n + 1)p

)
� p

(1
n
− 1

n + 1

)
.

Proof of the claim. The above inequality is equivalent to

np−1[(n + 1)p − np]
(n(n + 1))p

� p
n(n + 1)

or
(n + 1)p − np

p(n + 1)p−1
� 1.

f (n) : =
(n + 1)p − np

p(n + 1)p−1
=

1
p

[
n + 1 − n

( n
n + 1

)p−1]
f ′(n) =

1
p

[
1 −

( n
n + 1

)p−1
− n(p − 1)

( n
n + 1

)p−2 1
(n + 1)2

]
=

1
p

[
1 −

( n
n + 1

)p−1
− (p − 1)

n + 1

( n
n + 1

)p−1]
=

1
p

[
1 −

(
1 +

p − 1
n + 1

)( n
n + 1

)p−1]
.

f ′′(n) = −1
p

[
− (p − 1)

(n + 1)2

( n
n + 1

)p−1
+

(
1 +

p − 1
n + 1

)
(p − 1)

( n
n + 1

)p−2 1
(n + 1)2

]
=

(p − 1)
p(n + 1)3

( n
n + 1

)p−2
[n − n − 1 − (p − 1)] < 0.

Therefore f ′ is decreasing in n . lim f ′(n) = 0 , so f is increasing in n . We may write

f (n) =
1 − (n/(n + 1))p

p/(n + 1)
.

Thus

lim f (n) = lim
−p(n/(n + 1))p−1(1/(n + 1)2)

−p/((n + 1)2)
= lim

( n
n + 1

)p−1
= 1,
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and (iv) of Theorem 1 is satisfied.

ˆf n,ν+1 = ¯f n,ν+1 − ¯f n−1,ν+1 =
n∑

i=ν+1

f ni −
n−1∑

i=ν+1

f n−1,i

=
n∑

i=ν+1

1
(n + 1)p

−
n−1∑

i=ν+1

1
np

=
n − ν

(n + 1)p
− n − ν − 1

np
.

J5 : = (n + 1)p
n−1∑
ν=0

1
(ν + 1)p

∣∣∣ n − ν
(n + 1)p

− n − ν − 1
np

∣∣∣
� (n + 1)p

[ n−1∑
ν=0

(n − ν)
(ν + 1)p

( 1
np

− 1
(n + 1)p

)
+

n−1∑
ν=0

1
np(ν + 1)p

]

= (n + 1)p
( 1

np
− 1

(n + 1)p

) n−1∑
ν=0

(n − ν)
(ν + 1)p

+
(n + 1

n

)p n−1∑
ν=0

1
(ν + 1)p

� (n + 1)p+1
( 1

np
− 1

(n + 1)p

) n−1∑
ν=0

1
(ν + 1)p

+ O(1)

= O(1)n
((n + 1

n

)p
− 1

)
+ O(1).

Since

lim n
((n + 1

n

)p
− 1

)
= p,

(v) of Theorem 1 is satisfied.

J6 : =
1

(ν|f νν |)k−1

∞∑
n=ν+1

(n|f nn|)k−1| ˆf n,ν+1|

=
( (ν + 1)p

ν

)k−1 ∞∑
n=ν+1

( n
(n + 1)p

)k−1∣∣∣ n − ν
(n + 1)p

− n − ν − 1
np

∣∣∣
�

∞∑
n=ν+1

(n − ν)
( 1

np
− 1

(n + 1)p

)
+

∞∑
n=ν+1

1
np

�
∞∑

n=ν+1

n
( 1

np
− 1

(n + 1)p

)
+ O(1)

=
∞∑

n=ν+1

1
np−1

− n
(n + 1)p

+ O(1)

=
∞∑

n=ν+1

1
np−1

− 1
(n + 1)p−1

+
∞∑

n=ν+1

1
(n + 1)p

+ O(1)

=
1

(ν + 1)p−1 + O(1) = O(1),



516 B. E. RHOADES AND EKREM SAVAŞ

and (vi) of Theorem 1 is satisfied. �

COROLLARY 7. Let {pn} be a positive sequence, F a Rhaly p-Cesàro matrix
satisfying

Pn

(n + 1)ppn
= O(1).

Then, if
∑

an is summable |N, pn|k is it summable |F|k, k � 1 .

Proof. Set B = (N, pn) in Corollary 6 to obtain the above condition. As in the
proof of Corollary 2,conditions (ii) - (iv) ofCorollary 6 are automatically satisfied. �

COROLLARY 8. If
∑

an is summable |C, 1|k , then it is summable |F|k,
k � 1 .

To prove Corollary 8 observe that the condition of Corollary 7 is automatically
satisfied.

It is not possible to use Theorem 1 with B = F , since condition (ii) of Theorem
1 is violated.

A Nörlund matrix (N, pn) is a lower triangular matrix with nonzero entries ank =
pn−k/Pn .

COROLLARY 9. Let {pn} be a positive sequence, A a triangle satisfying
(i) Pn|ann| = O(1) ,
(ii) p1Pn − p0Pn+1 = O(1) ,
and conditions (iii) - (viii) of Theorem 1. Then, if,

∑
an is summable |N, pn|k it

is summable |A|k, k � 1 .

With B = (N, pn) , the conditions of Theorem 1 reduce immediately to those of
Corollary 9.

COROLLARY 10. Let A be a triangle satisfying

n|ann| = O(1),

and conditions (iii) - (vi) of Theorem 1. Then, if
∑

an is summable |C, 1|k , it is
summable |A|k, k � 1 .

Proof. In Corollary 2 set each pn = 1 . �

THEOREM 2. Let {qn} be a positive sequence, B be a triangle satisfying

(i)
qn

Qn|bnn| = O(1) ,

(ii)
∣∣∣ bn+1 − bnn

bnnbn+1,n+1

∣∣∣ = O(1) ,

(iii)
∞∑

n=ν+1

nk−1
( qn

Qn

)k 1
Qn−1

= O
((νqν)k−1

Qk
ν

)
,

(iv)
n−2∑
r=0

qr

∣∣∣ n∑
ν=2

Qν−1

QnQn−1
b̂′νr

∣∣∣ = O(1) ,
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and

(v)
∞∑

n=r+2

(nqn

Qn

)k−1∣∣∣ n∑
ν=r+2

Qν−1qn

QnQn−1
b̂′νr

∣∣∣ = O
(( rqr

Qr

)k−1)
.

Then, if
∑

an is summable |B|k , it is summable |N, qn|k, k � 1 .

Proof. In Theorem 1 set A = (N, pn) . Then conditions (i) , (ii) , (vii) , and (viii)
of Theorem 1 become conditions (i) , (ii) , (iv) , and (v) of Theorem 2, respectively.
Conditions (iv) and (vi) of Theorem 1 reduce to condition (iii) of Theorem 2.

For any matrix A , it is well known that Δνânν = anν − an−1,ν . With A = (N, qn) ,

n−1∑
ν=0

|Δν ânν| =
n−1∑
ν=0

|anν−an−1,ν| =
n−1∑
ν=0

∣∣∣ qν
Qn

− qν
Qn−1

∣∣∣ =
qn

QnQn−1

n−1∑
ν=0

qν =
qn

Qn
,

and condition (iii) of Theorem 1 is satisfied.
Also,

ân,ν+1 =
qnQν

QnQn−1
,

so
n−1∑
ν=0

|aννân,ν+1| =
n−1∑
ν=0

( qν
Qν

) qnQν

QnQn−1
=

qn

QnQn−1

n−1∑
ν=0

qν =
qn

Qn
,

and condition (v) is satisfied. �

COROLLARY 11. Let B be a triangle satisfying

(i)
1

n|bnn| = O(1) ,

(ii)
∣∣∣bn+1,n − bnn

bnnbn+1,n+1

∣∣∣ = O(1) ,

(iii)
n−2∑
r=0

∣∣∣ n∑
ν=2

ν
n(n + 1)

b̂′νr

∣∣∣ = O(1) ,

and

(iv)
∞∑

n=r+2

∣∣∣ n∑
ν=r+2

ν
n(n + 1)

b̂νr

∣∣∣k = O(1) . Then, if
∑

an is summable |B|k , it is

summable |C, 1|k, k � 1 .

Proof. Set each qn = 1 in Theorem 2. Then conditions (i) , (ii) , (iv) and (v) of
Theorem 2 become conditions (i) - (iv) of Corollary 11, respectively.

It remains to show that condition (iii) of Theorem 2 is satisfied.

Qk
ν

(νqν)k−1

∞∑
n=ν+1

nk−1
( qn

Qn

)k 1
Qn−1

= O(1)(ν + 1)
∞∑

n=ν+1

nk−1
( 1

n + 1

)k 1
n

= O(1)(ν + 1)
∞∑

n=ν+1

O(1)
n(n + 1)

= O(1).

�
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COROLLARY 12. Let {pn}, {qn} be positive sequences satisfying

(i)
qnPn

Qnpn
= O(1)

and

(ii)
∞∑

n=ν+1

nk−1
( qn

Qn

)k−1 1
Qn

= O
((νqν)k−1

Qk
ν

)
.

Then, if
∑

an is summable |N, pn|k it is summable |N, qn|k, k � 1 .

Proof. In Theorem 2 set B = (N, pn) . Then conditions (i) and (iii) of Theorem
2 become conditions (i) and (ii) of Corollary 12, respectively.

As in the proof of Corollary 1, conditions (ii) , (iv) and (v) of Theorem 2 are
automatically satisfied. �

Corollary 12 can also be proved using Corollary 2, but with more effort, since more
conditions need to be verified.

Corollary 12 is the sufficiency part of the theorem of [1].

COROLLARY 13. Let {qn} be a positive sequence satisfying

(i)
nqn

Qn
= O(1)

and

(ii)
∞∑

n=ν+1

nk−1
( qn

Qn

)k−1 1
Qn−1

= O
((νqν)k−1

Qk
ν

)
.

Then, if
∑

an is summable |C, 1|k it is summable |N, qn|k, k � 1 .

Corollary 13 follows immediately from Corollary 12 by setting each pn = 1 .

COROLLARY 14. Let {pn} be a positive sequence satisfying

Pn

npn
= O(1).

Then, if
∑

an is summable |N, pn|k , it is summable |C, 1|k, k � 1 .

Proof. In Corollary 12, set each qn = 1 to obtain the above condition, and observe
that condition (ii) of Corollary 12 is automatically satisfied. �

Combining Corollaries 13 and 14 we have the following.

COROLLARY 15. If {pn} is a positive sequence satisfying

npn

Pn
= O(1) and

Pn

npn
= O(1),

then |C, 1|k and |N, pn|k are equivalent for k � 1 .

A series will be called k-absolutely convergent if∑
nk−1|an|k < ∞.

Using some of the corollaries of Theorem 1, and Theorem 2, it is possible to determine
a number of matrices which sum all k-absolutely convergent series.
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COROLLARY 16. Every Rhaly generalized Cesàro matrix sums all k-absolutely
convergent series.

Proof. In Corollary 3 set B = I . Then all of the conditions are automatically
satisfied. �

COROLLARY 17. Every Rhaly p-Cesàro matrix sums all k-absolutely convergent
series.

Proof. Set B = I in Corollary 6. Then all of the conditions are automatically
satisfied. �

COROLLARY 18. Let (N, pn) be a weighted mean matrix with nonnegative weights
and p0 > 0 . Then, if {pn} satisfies

∞∑
n=ν+1

nk−1

Pn−1

( pn

Pn

)k
= O

( (νpν)k−1

Pk
ν

)
,

then (N, pn) sums every k-absolutely convergent series.

Proof. Substitute B = I in Theorem 2. Then conditions (i) , (ii) , (iv) , and (v)
are automatically satisfied, and condition (iii) is the condition of this corollary. �

We shall now determine some weighted mean matrices that satisfy the condition
of Corollary 18.

COROLLARY 19. Let pn satisfy

npn

Pn
= O(1) and

Pn

npn
= O(1).

Then (N, pn) sums every k-absolutely convergent series.

Proof.

Pk
ν

(νpν)k−1

∞∑
n=ν+1

nk−1

Pn−1

( pn

Pn

)k
= O(1)Pν

∞∑
n=ν+1

(npn

Pn

)k−1 pn

PnPn−1

= O(1)Pν

∞∑
n=ν+1

O(1)
(

1
Pn−1

− 1
Pn

)

= O(1),

and the condition of Corollary 18 is satisfied. �

In particular, (C, 1) sums every k-absolutely convergent sequence.
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COROLLARY 20. Let {pn} be nonincreasing with limit σ > 0 . Then (N, pn) sums
every k-absolutely convergent series.

Proof. Note that Pn � (n + 1)pn and Pn � (n + 1)p0 . Thus

Pk
ν

(νpν)k−1

∞∑
n=ν+1

nk−1

Pn−1

( pn

Pn

)k
=

Pk
ν

(νpν)k−1

∞∑
n=ν+1

O(1)
pn

PnPn−1

= O(1)
( Pν

νpν

)k−1
= O(1)

(p0

pν

)k−1

= O(1),

Since pν � σ > 0 . �
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