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GENERAL INCLUSION THEOREMS FOR
ABSOLUTE SUMMABILITY OF ORDER & > 1

B. E. RHOADES AND EKREM SAVAS

(communicated by R. N. Mohapatra)

Abstract. We establish a general inclusion theorem for absolute summability of order k > 1,
involving two lower triangular matrices. As corollaries we obtain a number of other inclusion
theorems.

Let > a, be a given series with partial sums s,, (C, o) the Cesaro matrix of
order or. If o denotes the nth term of the (C, @) -transform of {s,}, then Flett [3]
defined absolute summability of order k > 1 as follows. A series Y a, is said to be
summable |C, ai, k > 1 if

[eS)
Y oy — oy f = Zn Aoyt < (1)
n=1 n=1

In an effort to extend (1) to other classes of matrices, some authors have interpreted
the n in (1) to represent the reciprocal of the nth diagonal entry of the matrix.
For example, in [2], with Z, denoting the nth term of the weighted mean transform

of a sequence {s,},1i.e.,
1 n
= Pn Zpkslm (2)
k=0

their version of (1) becomes

i (i_:)k_lmz,,qk < 0. 3)

n=1

Detailed arguments showing that (3) is not an appropriate extension of (1) appear in
[6], and so will not be repeated here.

Mathematics subject classification (2000): 40F05, 40D25, 40G99.

Key words and phrases: Absolute summability inclusion theorem, triangular matrices, weighted mean
matrices.

The first author received partial support from the Scientific and Technical Research Council of Turkey during the
preparation of this paper.

© ey, Zagreb 505

Paper MIA-08-46



506 B. E. RHOADES AND EKREM SAVAS

For an arbitrary lower triangular matrix 7', we shall say that a series > a, is
summable |T|¢, &k > 1, if

> AL [F < oo, (4)

n=1

where
t, = Z 1k Sk- (5)
k=0

Such an extension is used, for example, in [1].

The purpose of this paper is to establish a general absolute inclusion theorem
involving a pair of triangles. We obtain, as corollaries, inclusion theorems for special
classes of triangles.

Let A be a lower triangular matrix. Associated with A are two lower triangular
matrices A = (@) and A = (&,x) with entries defined by

n

Qpi = § Apj and &nk = Gy — 67n—l,k> (6)
i=k

respectively.
With y, denoting the n-th term of the A -transform of a sequence {s,} , we have,
using (6),

n

n n n n n
Yn = E AnkSk = E Qnk E a; = E a; ani = E Qnidi,
k=0 k=0 i—k k=i i=0

i=0 —i

and

n —1 n
Yn =Yn— Yn—1 = E i — E an—l,iai = E é\lm'aiy since an—l,n =0. (7)
i=0 i=0 i=0

A lower triangular matrix A is called a triangle if a,, # O for each n. Then A has
a unique two-sided inverse, which we shall denote by A’ = (a},). Clearly, if A is a
triangle, then A’ exists, and is a triangle, since ap, = any, -

The notation A,a,, means &,y — ay y+1 -

Theorem 1 of this paper represents the first time that two arbitrary triangles have
been used in an absolute inclusion theorem, using either definition (3) or (4). Theorem
1 also represents one of the most general such inclusion theorems that one can expect
to obtain.

Theorem 2 is an inclusion theorem in which the first matrix involved is an arbitrary
triangle. This is also the first inclusion theorem of this type.

By restricting A and B to specific classes of matrices, we obtain, as corollaries,
most of the known inclusion theorems, using (4), as special cases.
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THEOREM 1. Let A and B be triangles satisfying

. |ann‘
(@) =0(1),
|bnn‘

anrl,n - bnn

= 0(1),

btznbn+l,t1+1
n—1

(i) Y |Avany| = O(jaml),

v=0
oo

(iv) Z (n\a,m|)k*1\Av&nv\ = 0(¢71‘GVV‘k)’

n=v+1

) Y lawllany1| = O(lauml).,
-

o0

i) > (lam) anyii| = O((Viaw) ),
n= v+1
(vii) Z|a,,,|] Zanvb ),
and
viti) Y (rlanl) D2 @bl = 0((rian ).
n=r+2 v=r+2

Then, if > a, is summable |Bly, it is summable |Alx, k > 1.

Proof. 1f x, denotes the nth term of the B-transform of a sequence s, , then, as in

) n
X, =X, — Xy_1 = Zi)nia,-. (8)
i=0

Since B’ is a triangle, we may solve (8) for a, to get

Z b X, )

Substituting (9) into (7) yields =0
n \ v=2
Vo= > B, = Z i (Bl X+ By Xt + 3 B, X, )
v=0 r=0 v=0 r=0

n n n v=2
A 2~ A T A 2~
= g anvaVXv+ E anvb\,’Vf]Xv—l + g Any E bvar
v=0 r=
n—1

= annb,/mX + Z anvwav+ Z Ay, v+1bv+1 vXy+ Z Aapy Z by X;

n—1 n—1

amXn e (A
e S S bl Bt S TR
n v=0 r=

(10)



508 B. E. RHOADES AND EKREM SAVAS
Using the fact that

> byibly = 5

j=k
and using (6),

1 b 1 bysiv—b
b/ + bv+1 . R v+1,v _ (1 _ Dvriy vv)
bvv bvvbv+1,v+l bvv bv+1,v+1 (11)
1 (1 _ bv+1,v + bv+1,v+l - bvv) _ L (bvv - bv+1,v)
byy

bVV

byiivi1 byiivi1

Substituting (11) into (10) we have
n—1 n—1
A Xy Avaanv byy — byy1y
Y, = n an, ( )X N an S BLX,
by ; byy ; v bvvbv+1 v+1 Y Z "rz Y

=T1n+ Tn2 + TnS + Tn4a say .

From (4), by Minkowski’s inequality, it is sufficient to prove that

ST < oo, i=1,2,3,4
n=1
Using (i),
inkq‘ka _ ink—l @k | (1) ink”p(n\k = 0(1),
—~ o bnn n=1

since Y a, is summable |B|.
Using (i), Holder’s inequality, (iii), and (iv),

- n—1

St = S a5 i)
n=1 v=0

n

k
=0(1) 3 (D Jawl ! 1Avan X,

8
|

n=1 v=0

00 n—1 n—1 k—1
=0(1) 3 (3 Jawl a1 F) (3 1Avan )

n=1 v=0 v=0

00 n—1
=o(1 )Z( )Y lavl T A 1 Xy

n=1 v=0

oo o0

Z‘GW‘ k‘XV‘k Z (n|an,,\)k*1|Av&nv|

n=v+1

o0

1) Z Jaw | KXV an [ = 0(1) Y VX = o(1).
v=0 v=1
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Using (ii), (v),and (vi),

n—1

an Tt = an llzanv+l(bvv bVHV)X\,k

byyb
—1 vwwlv+1,v+1

|
_

n

k
DY (Y )

n=1

=<
_o

n—1

k—1
my (Y |aw|1-’<\an,v+1|\xvv<) (> lawllani])

n=1 V= v=0
oo
=0(1) Z n|a,m| Z ‘QW‘I k|an vi1|[ Xy |
n=1
oo
1) Z |‘IVV|lik|XV‘k Z (n|a,m|)k71|&,,’v+1|
v=0 n=v+1

DY law] XV aw[ T = 0(1) Y VXS = 0(1).

v=0 v=0

From conditions (vii) and (viii),

n—2 n
St = Y| S o[ =[S Y sk
n=1 r=0 v=r+2
o) n—2 n A k—1
<> IZ\a ] S bl (X lanl| 3 i)
n=1 r=0 v=r+2 r=0 v=r+2
oo n—2
Arr anv vr| 1 Qun
O3S arl 4] 3 byl
n=1 r=0 v=r+2
oo oo
D3l S (a1 S i,
r=0 n=r+2 v=r+2
oo oo
=0(1) Y lan|" X[ (rlay )" = 0(1) Y FHX [ = 0(1).
r=0 r=1

O

A triangle B is called factorable if its nonzero entries b,; can be written in the
form c,d; foreach n and k.

COROLLARY 1. Let A and B be triangles, B factorable, satisfying conditions
(i) - (vi) of Theorem 1. Then, if > ay, is summable |B|i, it is summable |A|x, k > 1.

Proof. To verify conditions (vii) and (viii) of Theorem 1 we need the following
lemma.
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LEMMA 1. A factorable triangle B has an inverse that is bidiagonal.

Proof of Lemma. Let B’ denote the inverse of B. Then, since

n+k
> busbly =0, k>0,
j=n

b _ _anrl,n _ Cn+1dn _ —1
n+ln — b b - d d - d .
nnn+1,n+1 CnlnCpi1Gn+1 Cnlni1
1
/ ’ ’
n+2n — b [anrz,"bnn + bn+2,ﬂ+1bn+l,n]
n+2.n+2
1 cn+2dn 1
= - + Cn+2dn+l -
bn+2,n+2 Cndn Cndn+l
=0.
’ .
Suppose that b, ,;, = 0 for 2 <j < k. Then
! = 71 b b b b’
nt+k+1,n — _b [ n+k+1,nnp + n+k+1,n+1 n+1,n}
n+k+1,n+k+1
1 Cn+k+1dn 1
= 71’) d + Cn+k+ldn+1 - d
n+k-+1,n+k+1 Cndp Cnlp+1

pu— 0’
and B’ is bidiagonal. [
It is well known that, if B is a weighted mean matrix, then B has entries

_ Pkflpn

b = .
! PnPnfl

Hence B is factorable. By Lemma 1, B’ is bidiagonal, so i)’w =0 foreach 0 < r <
v — 2, and conditions (vii) and (viii) are satisfied trivially. O

COROLLARY 2. Let {p,} be a positive sequence, A a triangle, satisfying

(0 Pn gl = 0(1)

n

and conditions (iii) - (vi) of Theorem 1. Then, if > a, is summable |N,p,ly, it is

summable |Alg, k> 1.

Proof. With B = (N, p,), condition (i) of Theorem 1 reduces to condition (i) of
Corollary 2.
pn/Pn+l _pn/Pn _ PnPn+1 _
pnpn+1/PnPn+1 PnPn+1

bn+l,n - bnn

bnnanrl,trH

and condition (ii) of Theorem 1 is automatically satisfied.
Since a weighted mean matrix is factorable, the result follows from Corollary 1. [

Corollary 2 is the corrected form of the theorem of [6].
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COROLLARY 3. Let D be a Rhaly generalized Cesaro matrix, B be a triangle
satisfying

1
) — =0(1),
(i) CESNN (1)
.. bn+1n - bnn
ii) |—— | =0(1),
( ) bnnbn+l,n+l ( )
n—2 n
" —r — n
(lll) mzt [(n+ l)ln v nt v—1 l]b(/r — O(l)’
r=0 v=2
and
e} ~ |k
) 3 v ] Z v v = o)
n=r+2 v=r+2

Then, if > a, is summable |Bx, it is summable |Dlg, k > 1.

Proof. We shall restrict our attention to ¢ < 1
generalized Cesaro matrix reduces to (C,1).

Since dy = "% /(n+1), (see, e.g., [4]) conditions (i), (ii), (vii), and (viii) of
Theorem 1 reduce to conditions (i) - (iv) of Corollary 3, respectively.

We shall now show that conditions (iii) - (vi) of Theorem 1 are satisfied.
For Rhaly generalized Cesaro matrices,

, since, with # = 1, the Rhaly

R 1=V tnflfv
Av nv — dnv - dnfl,v = n+ 1 - n
n—1 n— ltn 1—v n—1 oV
(n+ 1) [Avdl = (141 [ }
n n—+1
v=0 v=0 v=0
n—1 n—1 —

- [n thV nJrlZ }

:(n+1)”1(1 t )[1—1/t"}

n n+1/L1-1/¢
_(n+ )" n L —nr\ 1" — 1
-1 <n(n+1)) z
n+1—nt

=S (- =0,

Therefore (iii) is satisfied.
There exist positive constants K; and K, such that

(v+DF & pG
V=1 Z (nldn] )~ [Avdyy|
n=v+1 o0 k—1 ,m—1—v n—v
n t t
—ov ¥ (755) (& —a51)
(1) n;ﬁ n+1 n n+1

oo

oy Y (

n n—+ 1)
n=v+1

=0(1)v(1/v—0)=0(1).

tnflfv 1=V
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and (iv) is satisfied.

n—1
dn,v+l = dn,v+l - n Lv+l = § dm § dn—l,i

i=v+1 i=v+1
n n—1 = 1—i
Z T2
=v+1 +1 i=v+1
—1 n—v—2
j—v—1
— " _ 1 tn—l—j—v—l
n+l  n
J=0 + J=0
M—v—l n—v—-l M—v=2 n—v-2
— 7 — t/
n+1 n
+ J=0 J=0
1=V 1— tnfvfl

T+ D)1 -1 a(l—1)

= m[n —nt" —(n+1)+ (n+ l)t"_"_l]
e o
nn+1)(1—1) B TE)

v—1

o(1) _
Z‘dvv‘|dnv+l‘ Z( )n(n+l)(1ft) _0(1)7

and condition (v) is satisfied.

V|dvv‘ —1 Z ‘dnn| ‘dAn,V+l|

n=v+1
1
by o0 T

n=v+1
_ o(1) _
(1= (v+1)

and (vi) is satisfied. O

COROLLARY 4. Let {p,} be a positive sequence, D a Rhaly generalized Cesaro

matrix satisfying
Pﬂ
i) ———=0(1).
(@) (n+ 1)pn (1)

Then, if > ay, is summable |N,py|x, it is summable Dy, k > 1.

Proof. Setting B = (N, p,) in Corollary 3 yields condition (i) of Corollary 4.

— pn/Pn+l _pn/Pn
pnpn+l/PnPn+1

bn+l,n - bnn

_ ’ —PnPn+1

= 0(1),
PnPn+1 ’ ( )

bnnanrl,trH



GENERAL INCLUSION THEOREM 513

and condition (ii) of Corollary 3 is satisfied.
As in the proof of Corollary 1, conditions (iii) and (iv) of Corollary 3 are
automatically satisfied. [

COROLLARY 5. If Y a, is summable |C, 1|, then it is summable |D|i, k > 1.

Proof. Use Corollary 4 with each p, =1. [

It is not possible to use Theorem 1 with B a Rhaly generalized Cesaro matrix,
since condition (if) of Theorem 1 is violated.

COROLLARY 6. Let F' be a Rhaly p-Cesaro matrix, B a triangle satisfying
1

) ——— = 0(1),
(l) (n—i—l)l’\b,m\ ( )
.. bn+1n - bnn
ii) |——| =0(1),

( ) bnnbn+1n+l ( )

(iii) Z‘Z_:[ V“ "’;V}E'w —o(1).
a."d e L VS
) ;2 (W) ‘V_Zrﬂ[(nﬂy’ Cow J2%

-o((G) )

Then, if > ay, is summable |B

&, then it is summable |F|i k> 1.

Proof. Let F denote the Rhaly p-Cesaro matrix (See, e.g., [5]). We shall assume
that p > 1, since p = 1 reduces the matrix to (C,1).
N - - 1 1
Aanv :fnv *fnfl,v - m - I’l_p

n—1

VZ%lAvfw\— 1Y (o - ),,)

v=0

1
:n—i—lpn( )

()

(4 O)/ny =1 . plnt 1)/m~t(=1/n?)

lim~— "7/ — ©
r 1/n o “1/n2
. n—+ 1\r-!
:hmp( ) =p,

and condition (iii) of Theorem 1 is satisfied.
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Conditions (i), (i), (vii), and (viii) of Theorem 1 are conditions (i) - (iv) of
Corollary 6, respectively.

[ -1 2
J4'_ Vk lv ‘k Z nlfnn ‘Avf}’l\/‘

n=v+1

p o0 n k—1
zﬁgy_g;(@:ﬁﬁ (% o 5)

1 1
v Z " 1>(nP_ (n+1)1’)

n=v+1

oty Y (E)“”*”n"“(n% )

] 1 11
)l k)
nP (n—|—1)l’ n n+1

Proof of the claim. The above inequality is equivalent to

w1y -] _ p
) AR D)

Claim.

or

(n+ 1) —n?
pln+ 1y
RS TRy
r == () e -0 (G)
=G -G ]
=) )T
f”(n)—%,[((,fﬂ))z(nil H*(”%)(”1)(nil)p_2(ni1)2}
_%(nil)p_z[nnl(pl)]<0

Therefore [’ is decreasing in n. limf’(n) = 0,so f isincreasing in n. We may write

L= (n/(n+ DY

YRSy

Thus

o/ DY 1)

limf (n) = i (nr 1)) 1) =1
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and (iv) of Theorem 1 is satisfied.

n n—1
fn,v+1 :f;,v+l *f;fl,v+1 - Z fm' - Z fnfl,i

i=v+1 i=v+1
72": 1 7”2‘1117;1*\/ n-v-1
Sty s ey
J ( Jrl)pnil 1 ‘ n—yv n—v—l‘
5.=n
—~(v+ rli(n+ 1)y np
n—1 n—1
(n—v) /1 1 1
1)? il
(n+1) [v_o (v+ 1)y (nl’ (n+1)1’) +an(v+l)l’}
n—1 n—1
1 1 (n—v) n+ 1\» 1
frd 1[7 _—
(17 (5 (n+1)P)§(V+1)P+( =) ;(erl)P
n—1
1 1 1
< pH1(
(n+1) (nl’ (n+1)1’)v (v+1)ﬂ+0(1)
+1
:0(1)n((" ) 1)+0
Since
imaf (21 )=,
(v) of Theorem 1 is satisfied.
J6: k 1 Z nlfnn lml,v+l|
n=v+1
7((v+1) )k—l i ( n )k—l‘ n-v n-v-1I
B v o M+ 1)y (n+ 1) ne
- 1 1 1
<> - (n+1)p)+ > =
n=v+1 n=v+1
- 1 1
< Z n|l— — +0(1)
vt (nP (n+1)P)
= 1 n
= = o)
1
n=v+1 n (n+1)P
= 1 1 - 1
=2 + 2 o(1)
—1 —1
n=v+1 n (n+1)P n=v+1 (Vl+1)
1
= +0(1) = 0(1),
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and (vi) of Theorem 1 is satisfied. O

COROLLARY 7. Let {p,} be a positive sequence, F a Rhaly p-Cesaro matrix
satisfying
P
B — 0(1).
(n+1)Ppy

Then, if > a, is summable |N,p,|i is it summable |F|i, k > 1.

Proof. Set B = (N,p,) in Corollary 6 to obtain the above condition. As in the
proof of Corollary 2, conditions (ii) - (iv) of Corollary 6 are automatically satisfied. [

COROLLARY 8. If Y a, is summable |C, 1
k>1.

To prove Corollary 8 observe that the condition of Corollary 7 is automatically
satisfied.

It is not possible to use Theorem 1 with B = F', since condition (ii) of Theorem
1 is violated.

A Norlund matrix (N, p,) is a lower triangular matrix with nonzero entries a,; =

pn—k/Pn .

COROLLARY 9. Let {p,} be a positive sequence, A a triangle satisfying

(i) Pulam| = O(1),

(”) pIPn _pOPn+1 = 0(1))

and conditions (iii) - (viii) of Theorem 1. Then, if, >_ a, is summable |N,py|x it
is summable |Alg, k > 1.

&, then it is summable |F|y,

With B = (N, p,), the conditions of Theorem 1 reduce immediately to those of
Corollary 9.

COROLLARY 10. Let A be a triangle satisfying
nlanm| = O(1),

and conditions (iii) - (vi) of Theorem 1. Then, if > a, is summable |C, 1|, it is
summable |Alg, k> 1.

Proof. In Corollary 2 seteach p, =1. U
THEOREM 2. Let {g,} be a positive sequence, B be a triangle satisfying

. qn o
D Gl =01
(i)
)k—l

bni1 — bun
w5 (g o).

n=v+1
n
Z QV*I l;/
vr
v—2 nQn—l

n—2
() > ar
r=0

=0(1),
bnnbn+1,n+l ( )

=0(1),
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and
ngqn Ov-1qn ¢,
0 X () b| =
( ) Z Qn Z Qn 1 v

o((3) )

Then, if > a, is summable |B|, it is summable |N,qp|i, k > 1.

Proof. In Theorem 1 set A = (N, p,). Then conditions (i), (ii), (vii), and (viii)
of Theorem 1 become conditions (i), (i), (iv), and (v) of Theorem 2, respectively.
Conditions (iv) and (vi) of Theorem 1 reduce to condition (iii) of Theorem 2.

For any matrix A, it is well known that Ayd,y = @ny — an—1.v. With A = (N, q,),

n—1
E E E : qn Z qn
A a = dyy—Aa 1 = ’ ‘ = = -,
‘ Y nv‘ | " " V| n Qn 1 QnQn—l V=0 1 Qn

and condition (iii) of Theorem 1 is satisfied.

Also,
Byt = 4nQv
v Qnanl7
SO
n—1 n—1 q q Q q n—1 q
~ v nv n n
a a7 1 ( ) = qv = —,
;‘ whnirit] = Z Qv/ 0,01 QnQH; Y0

and condition (v) is satisﬁed. D

COROLLARY 11. Let B be a triangle satisfying

1
) —— =0(1),
(i) o] (1)
.. bn+1 n bnn
ii) |——| =0(1),
( ) bnnbn+l,n+l ( )
n—2 n
v A -
(lll) Z ‘ Z mb‘}r = 0(1),
r=0 v=2
and

. v sk .

(iv) Z ’ Z mbw k, i 1S
n=r+2 v=r+2

summable |C, 1|,k > 1.

= O(1). Then, if > ay is summable |B

Proof. Seteach g, = 1 in Theorem 2. Then conditions (i), (i), (iv) and (v) of
Theorem 2 become conditions (i) - (iv) of Corollary 11, respectively.
It remains to show that condition (iii) of Theorem 2 is satisfied.

quk 5 A (L) S~ o+ > ()

n=v+1 n=v+1
_ o) _
_0(1)(v+1)n:ZV+1 Ay o(1).
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COROLLARY 12. Let {p,},{qn} be positive sequences satisfying
N Py
(i) Z— =0()

and Cnpn
I A L (vgy)*!

Then, if > ay, is summable |N,p,|i it is summable |N,qn|,k > 1.

Proof. In Theorem 2 set B = (N, p,). Then conditions (i) and (iii) of Theorem
2 become conditions (i) and (ii) of Corollary 12, respectively.

As in the proof of Corollary 1, conditions (if), (iv) and (v) of Theorem 2 are
automatically satisfied. [J

Corollary 12 can also be proved using Corollary 2, but with more effort, since more
conditions need to be verified.
Corollary 12 is the sufficiency part of the theorem of [1].
COROLLARY 13. Let {g,} be a positive sequence satisfying
N n

i) —=0(1

() = o)

and

- W\ vgy )<
i > oa () = 0(7( 4v) ).
=" o) o 0%
Then, if > ay, is summable |C,1|; it is summable |N, q,|r, k > 1.

Corollary 13 follows immediately from Corollary 12 by setting each p, = 1.

COROLLARY 14. Let {p,} be a positive sequence satisfying

Pﬂ
= 0(1).
o~ OW)

Then, if > ay, is summable |N,p,|i, it is summable |C,1|;, k> 1.

Proof. In Corollary 12, set each g, = 1 to obtain the above condition, and observe
that condition (if) of Corollary 12 is automatically satisfied. O

Combining Corollaries 13 and 14 we have the following.

COROLLARY 15. If {p,} is a positive sequence satisfying

n Pn
"Pn _0(1) and = 0(1),
Py npn

then |C, 1|y and |N,py|x are equivalent for k > 1.
A series will be called k-absolutely convergent if

an_1|an|k < 00.

Using some of the corollaries of Theorem 1, and Theorem 2, it is possible to determine
a number of matrices which sum all k-absolutely convergent series.
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COROLLARY 16. Every Rhaly generalized Cesaro matrix sums all k-absolutely
convergent series.

Proof. In Corollary 3 set B = [. Then all of the conditions are automatically
satisfied. [

COROLLARY 17. Every Rhaly p-Cesaro matrix sums all k-absolutely convergent
series.

Proof. Set B = I in Corollary 6. Then all of the conditions are automatically
satisfied. [

COROLLARY 18. Let (N, p,) be a weighted mean matrix with nonnegative weights
and pg > 0. Then, if {p,} satisfies

£ my ot
n=v+1 Puy \Py PI\C/ ’

then (N,p,) sums every k-absolutely convergent series.

Proof. Substitute B = I in Theorem 2. Then conditions (i), (i), (iv), and (v)
are automatically satisfied, and condition (iif) is the condition of this corollary. [

We shall now determine some weighted mean matrices that satisfy the condition
of Corollary 18.

COROLLARY 19. Let p, satisfy

npy P,
— =0(1 =0(1).
P, o(l) and o o(1)

Then (N,p,) sums every k-absolutely convergent series.

Proof.

oo

oo 32 s () =omn 5 () gl

=v+1 n=v+1

and the condition of Corollary 18 is satisfied. [

In particular, (C, 1) sums every k-absolutely convergent sequence.
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COROLLARY 20. Let {p,} be nonincreasing with limit 6 > 0. Then (N, p,) sums
every k-absolutely convergent series.

Proof. Note that P, > (n+ 1)p, and P, < (n+ 1)po. Thus

P]\(/ — ! Pn\* P]\(/ - Pn
—1 Z (_) - —1 Z o(1)
(va) n=v+1 Pyt \Py (va) n=v+1 PyPn
P\ k-1 k—1
o) -on(e)
Pv Pv
=0(1),

Since py, >0 >0. O
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