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Abstract. In this paper, we shall extend Bourin’s theorem for unitarily invariant norm in the
framework of operator theory on a Hilbert space by applying the Mond-Pečarić method for
convex functions. Moreover we obtain the operator norm version. Among others, we show that
if A and Z are positive operators on a Hilbert space H such that 0 < mI � Z � MI for some
scalars 0 < m < M , then for each α > 0

‖(AZpA)
1
p ‖ � α r(ZA

2
p ) + β(m, M, p,α)‖A‖

2
p for all p > 1

for some suitable constant β(m, M, p,α) , where ‖ · ‖ is the operator norm and r(·) is the
spectral radius.

1. Introduction

Let A and B be two n × n matrices. The spectral radii of AB and BA are equal.
If the product AB is normal, then we have

|||AB||| � |||BA|||
for every unitarily invariant norm.

In [3], Bourin showed the following reverse inequality for unitarily invariant norm
under a general setting:

THEOREM A. Let A , B and Z be n × n matrices. Suppose that AB is positive
semi-definite and Z is positive definite such that 0 < m1n � Z � M1n for some scalars
0 < m < M . Then

|||ZAB||| � M + m

2
√

Mm
|||BZA|||

for every unitarily invariant norm ||| · ||| .
We recall the celebrated Kantorovich inequality [8, 11]: If Z is positive definite

such that 0 < m1n � Z � M1n for some scalars 0 < m < M , then (Z−1x, x)(Zx, x) �
(M+m)2

4Mm for every unit vector x ∈ H . We call the constant (M+m)2

4Mm the Kantorovich
constant. We here cite Furuta’s textbook [6] as a pertinent reference to Kantorovich

Mathematics subject classification (2000): 47A30, 47A63.
Key words and phrases: Kantorovich inequality, operator inequality, spectral radius, operator norm,

Kantorovich constant.

c© � � , Zagreb
Paper MIA-08-48

529



530 JUN ICHI FUJII, YUKI SEO AND MASARU TOMINAGA

inequalities. It follows that the constant in Theorem A is just the square root of the
Kantorovich constant.

As an application, he showed the following reverse inequality of the well-known
inequality r(A) � ‖A‖ , where r(·) is the spectral radius and ‖ · ‖ is the operator norm.

THEOREM B. If A is positive semidefinite and Z is positive definite such that
0 < m1n � Z � M1n for some scalars 0 < m < M , then

‖ZA‖ � M + m

2
√

Mm
r(ZA).

In this note, we shall extend Theorem B due to Bourin in the framework of operator
theory on a Hilbert space by applying the Mond-Pečarić method for convex functions
[10, 12]. Moreover we show the operator norm version of Theorem A. In particular, we
obtain the following difference version which is parallel to Theorem B: If A and Z are
positive operators on a Hilbert space H such that 0 < mI � Z � MI for some scalars
0 < m < M , then

‖ZA‖ − r(ZA) � (M − m)2

4(M + m)
‖A‖.

2. Preliminary

Let Z be a positive operator on a Hilbert space H and x a unit vector in H . By
Jensen’s inequality, we have the relation between the continuous power mean and the
continuous arithmetic one :

(Zx, x) � (Zpx, x)
1
p for all p > 1 . (1)

By using the Mond-Pečarić method, we have the following reverse inequality of (1)
[13]:

LEMMA 1. If Z is a positive operator on H such that 0 < mI � Z � MI for
some scalars 0 < m < M , then for each α > 0

(Zpx, x)
1
p � α(Zx, x) + β(m, M, p,α) for all p > 1 (2)

holds for every unit vector x ∈ H , where

β(m, M, p,α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p−1
p

(
Mp − mp

αp(M − m)

) 1
p−1

if
Mp−mp

pMp−1(M−m)
� α

+
α(Mmp−mMp)

Mp−mp
� Mp−mp

pmp−1(M−m)
,

(1 − α)M if 0 < α � Mp − mp

pMp−1(M − m)
,

(1 − α)m if α � Mp − mp

pmp−1(M − m)
.

(3)
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Proof. For the sake of reader’s convenience,wegive a proof. Put β = β(m, M, p,α)
and f (t) = (at + b)

1
p − αt for a = Mp−mp

M−m and b = Mmp−mMp

M−m , then we have

f ′(t) = a
p (at + b)

1
p−1 −α . It follows that the equation f ′(t) = 0 has exactly one solu-

tion t0 = 1
a (

αp
a )

p
1−p − b

a . If m � t0 � M , then we have β = maxm�t�M f (t) = f (t0)

since f ′′(t) = a2(1−p)
p2 (at + b)

1
p−2 < 0 and the condition m � t0 � M is equivalent

to the condition Mp−mp

pMp−1(M−m) � α � Mp−mp

pmp−1(M−m) . If M � t0 , then f (t) is increasing

on [m, M] and hence we have β = maxm�t�M f (t) = f (t0) = (1 − α)M for t0 = M .
Similarly, we have β = maxm�t�M f (t) = f (t0) = (1 − α)m for t0 = m if t0 � m .
Hence it follows that

(at + b)
1
p − αt � β for all t ∈ [m, M] .

Since tp is convex for p > 1 , it follows that tp � at + b for t ∈ [m, M] . By the
spectral theorem, we have Zp � aZ + b and hence (Zpx, x) � a(Zx, x) + b for every
unit vector x ∈ H . Therefore we have

(Zpx, x)
1
p − α(Zx, x) � (a(Zx, x) + b)

1
p − α(Zx, x)

� max
m�t�M

f (t) = β(m, M, p,α).

By Lemma 1, we have the following estimates of both the difference and the ratio
between the continuous power mean and the continuous arithmetic one:

LEMMA 2. If Z is a positive operator on H such that 0 < mI � Z � MI for
some scalars 0 < m < M , then for each p > 1

(Zpx, x)
1
p � K(m, M, p)

1
p (Zx, x) (4)

and

(Zpx, x)
1
p − (Zx, x) � −C(mp, Mp,

1
p
) (5)

hold for every unit vector x ∈ H , where a generalized Kantorovich constant K(m, M, p)
[4, 5, 7] is defined as

K(m, M, p) =
mMp − Mmp

(p − 1)(M − m)

(
p − 1

p
Mp − mp

mMp − Mmp

)p

and C(m, M, p) [9, 14] is defined as

C(m, M, p) = (p − 1)
(

Mp − mp

p(M − m)

) p
p−1

+
Mmp − mMp

M − m
.

Proof. If we choose α such that β(m, M, p,α) = 0 in Lemma 1, then we have

α = K(m, M, p)
1
p . If we put α = 1 in Lemma 1, then we have β(m, M, p, 1) =

−C(mp, Mp, 1
p ) .

We remark that K(m, M, 2) coincides with the Kantorovich constant (M+m)2

4Mm if
p = 2 .
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3. Reverse inequality for operator norm

Firstly, we state our main theorem, which is a generalization of Theorem B.

THEOREM 1. If A and Z are positive operators on H such that 0 < mI � Z � MI
for some scalars 0 < m < M , then for each α > 0

‖(AZpA)
1
p ‖ � α r(ZA

2
p ) + β(m, M, p,α)‖A‖ 2

p for all p > 1 ,

where β(m, M, p,α) is defined by (3 ) .

Proof. For every unit vector x ∈ H , it follows that

((AZpA)
1
p x, x) � (AZpAx, x)

1
p by Hölder-McCarthy inequality and 0 < 1

p < 1

=
(

Zp Ax
‖Ax‖ ,

Ax
‖Ax‖

) 1
p

‖Ax‖ 2
p

�
(
α
(

Z
Ax

‖Ax‖ ,
Ax

‖Ax‖
)

+ β(m, M, p,α)
)
‖Ax‖ 2

p by Lemma 1

= α(ZAx, Ax)‖Ax‖ 2
p−2 + β(m, M, p,α)‖Ax‖ 2

p

= α

(
A

1
p ZA

1
p

A1− 1
p x

‖A1− 1
p x‖

,
A1− 1

p x

‖A1− 1
p x‖

)
‖Ax‖ 2

p−2‖A1− 1
p x‖2

+ β(m, M, p,α)‖Ax‖ 2
p

and

‖Ax‖ 2
p−2‖A1− 1

p x‖2 = (A2x, x)
1
p−1(A2− 2

p x, x)

� (A2x, x)
1
p−1(A2x, x)1− 1

p = 1 by 0 < 1 − 1
p < 1.

By combining two inequalities above, we have

((AZpA)
1
p x, x) � α ‖A 1

p ZA
1
p ‖ + β(m, M, p,α)‖Ax‖ 2

p

= α r(A
1
p ZA

1
p ) + β(m, M, p,α)‖Ax‖ 2

p

� α r(ZA
2
p ) + β(m, M, p,α)‖A‖ 2

p

for every unit vector x ∈ H and hence we have the desired inequality.

REMARK 1. If A and Z are positive operators, then it follows that

r(ZA
2
p ) � ‖(AZpA)

1
p ‖ for all p > 1 . (6)

As a matter of fact, by Araki’s inequality [1, 2], we have

r(ZA
2
p ) = r(A

1
p ZA

1
p ) = ‖A 1

p ZA
1
p ‖ � ‖(AZpA)

1
p ‖

for all p > 1 . Therefore, Theorem 1 can be considered as a reverse inequality to the
inequality (6 ) .
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The following theorem is a variant of Theorem 1 with 2-variables.

THEOREM 2. If A and Z are positive operators on H such that 0 < mI � Z � MI
for some scalars 0 < m < M , then for each α > 0

‖(AZpA)
1
q ‖ � α r(Z

p
q A

2
q ) + β(m

p
q , M

p
q , q,α)‖A‖ 2

q for all p > 1 and q > 1 ,

where β(m, M, p,α) is defined by (3 ) .

Proof. For every unit vector x ∈ H , we have

((AZpA)
1
q x, x) � (AZpAx, x)

1
q by 0 < 1

q < 1

=
(

(Z
p
q )q Ax

‖Ax‖ ,
Ax

‖Ax‖
) 1

q

‖Ax‖ 2
q

�
(
α
(

Z
p
q

Ax
‖Ax‖ ,

Ax
‖Ax‖

)
+ β(m

p
q , M

p
q , q,α)

)
‖Ax‖ 2

q .

The rest of the proof is proved in a similar way as the proof of Theorem 1.

THEOREM 3. Let Z be a positive operator on H such that 0 < mI � Z � MI
for some scalars 0 < m < M . Then for each p > 1

‖(AZpA)
1
p ‖ � K(m, M, p)

1
p r(ZA

2
p ) (7)

holds for every positive operator A on H .
In addition, (7 ) is equivalent to (4 ) in Lemma 2.

Proof. By using (4) of Lemma 2 instead of Lemma 1 in the proof of Theorem 1,
we obtain (7). Conversely, for every unit vector x ∈ H , if we put A = x ⊗ x in (7),
then we have (4) of Lemma 2.

We have the following corollary as a special case of (7) in Theorem 3, which is an
operator version of Theorem B:

COROLLARY 1. If A and Z are positive operators on H such that 0 < mI �
Z � MI for some scalars 0 < m < M , then

‖ZA‖ � M + m

2
√

Mm
r(ZA).

Proof. If we put p = 2 in Theorem 3, then we have

‖(AZ2A)
1
2 ‖ � K(m, M, 2)

1
2 r(ZA).

Since ‖(AZ2A)
1
2 ‖ = ‖(ZA)∗(ZA)‖ 1

2 = ‖ZA‖ and K(m, M, 2)
1
2 =

(
(M+m)2

4Mm

) 1
2

=
M+m

2
√

Mm
, we have the desired inequality.
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THEOREM 4. Let Z be a positive operator on H such that 0 < mI � Z � MI
for some scalars 0 < m < M . Then for each p > 1

‖(AZpA)
1
p ‖ � r(ZA

2
p ) − C(mp, Mp,

1
p
)‖A‖ 2

p (8)

holds for every positive operator A on H .
In addition, (8 ) is equivalent to (5 ) in Lemma 2.

Proof. By using (5) of Lemma 2 instead of Lemma 1 in the proof of Theorem 1,
we obtain (8). Conversely, for every unit vector x ∈ H , if we put A = x ⊗ x in (8),
then we have (5) of Lemma 2.

We have the following corollary as a special case of (8) in Theorem 4.

COROLLARY 2. If A and Z are positive operators on H such that 0 < mI �
Z � MI for some scalars 0 < m < M , then

‖ZA‖ − r(ZA) � (M − m)2

4(M + m)
‖A‖. (9)

Proof. If we put p = 2 in Theorem 4, then we have (9) since C(m2, M2, 1
2 ) =

(M−m)2

4(M+m) .

The following corollary is an operator norm version of Theorem A.

COROLLARY 3. If A and B are two operators such that AB � 0 is positive
and Z is a positive operator on H such that 0 < mI � Z � MI for some scalars
0 < m < M , then

‖ZAB‖ � M + m

2
√

Mm
‖BZA‖.

Proof. By Corollary 1 it follows that

‖ZAB‖ � M + m

2
√

Mm
r(ZAB) =

M + m

2
√

Mm
r(BZA) � M + m

2
√

Mm
‖BZA‖.

REMARK 2. It follows that Corollary 3 implies Corollary 1. In fact, if we replace
A by A

1
2 and B by A

1
2 in Corollary 3 respectively, then we have

‖ZA‖ � M + m

2
√

Mm
‖A 1

2 ZA
1
2 ‖ =

M + m

2
√

Mm
r(A

1
2 ZA

1
2 ) =

M + m

2
√

Mm
r(ZA).
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