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Abstract. The purpose of this paper is to introduce and study a new system of set-valued varia-
tional inclusions with H -monotone operators in Hilbert spaces. By using the resolvent operator
method associated with H -monotone operator due to Fang and Huang, we construct a new itera-
tive algorithm for solving this kind of system of set-valued variational inclusions. We also prove
the existence of solutions for the system of set-valued variational inclusions and the convergence
of iterative sequences generated by the algorithm.

1. Introduction

In recent years, a significant number of publications have appeared that define gen-
eralizations of the variational inequality problems and complementarity problems (see,
for example, [1-20] and the references therein). One of themost important generalization
of these new problem classes is the variational inclusion, which has wide applications in
mechanics and physics, optimization and control, nonlinear programming, economics
and transportation equilibrium, and engineering sciences, etc.

In [17, 18], Verma introduced and studied some systems of variational inequalities
and developed some iterative algorithms for approximating the solutions of system of
variational inequalities in Hilbert spaces. Recently, Kim and Kim [13] introduced a
new system of generalized nonlinear mixed variational inequalities and obtained some
existence and uniqueness results of solution for the system of generalized nonlinear
mixed variational inequalities in Hilbert spaces. Very recently, Cho et al. [3] introduced
and studied a new system of nonlinear variational inequalities in Hilbert spaces. They
proved some existence and uniqueness theorems of solutions for the system of nonlinear
variational inequalities and constructed an iterative algorithm for approximating the
solution of the system of nonlinear variational inequalities. Some related works, we
refer to [5, 10-12, 19].

On the other hand, monotonicity was extended and applied in recent years because
of its importance in the theory of variational inequalities, complementarity problems,
and variational inclusions. In a recent paper [4], Fang and Huang introduced a new class
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of monotone operators—H -monotone operators and defined the resolvent operator
associated with an H -monotone operator. The authors of [4] also established the
Lipschitz continuity of the resolvent operator and studied a new class of variational
inclusions in Hilbert spaces by using the resolvent operatormethod. Very recently, Fang
and Huang [6] introduced a new system of nonlinear variational inclusions involving
H -monotone operators in Hilbert spaces and proved some existence and uniqueness
theorems of solutions for the system of nonlinear variational inclusions.

Motivated and inspired by above works, in this paper, we introduce and study a
new system of set-valued variational inclusions with H -monotone operators in Hilbert
spaces. By using the resolvent operator method associated with H -monotone operator
due to Fang and Huang [4], we construct a new iterative algorithm for solving this
kind of system of set-valued variational inclusions. We also prove the existence of
solutions for the system of set-valued variational inclusions and the convergence of
iterative sequences generated by the algorithm. The present results improve and extend
many known results in the literature.

2. Preliminaries

Let H be a real Hilbert space endowed with a norm ‖ · ‖ and an inner product
〈 ·, ·〉 , respectively, 2H denotes the family of all the nonempty subsets of H . In the
sequel, let us recall some concepts.

DEFINITION 2.1 Let T, H : H → H be two single-valued operators. T is said to
be:
(i) monotone, if

〈Tx − Ty, x − y〉 � 0, ∀x, y ∈ H ;

(ii) strictly monotone, if T is monotone and

〈Tx − Ty, x − y〉 = 0

if and only x = y ;
(iii) strongly monotone, if there exists some constant r > 0 such that

〈Tx − Ty, x − y〉 � r‖x − y‖2, ∀x, y ∈ H ;

(iv) strongly monotone. with respect to H if, there exists some constant γ > 0 such
that

〈Tx − Ty, Hx − Hy〉 � γ ‖x − y‖2, ∀x, y ∈ H ;

(v) Lipschitz continuous, if there exists some constant s > 0 such that

‖Tx − Ty‖ � s‖x − y‖, ∀x, y ∈ H .

DEFINITION 2.2 A multi-valued operator M : H → 2H is said to be:
(i) monotone, if

〈 x − y, u − v〉 � 0, ∀u, v ∈ H , x ∈ Mu, y ∈ Mv;
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(ii) maximal monotone, if M is monotone and (I + λM)(H ) = H for all λ > 0 ,
where I denotes the identity mapping on H .

DEFINITION 2.3 ([4]) Let H : H → H be a single-valued operator and M :
H → 2H be a multi-valued operator. M is said to be H -monotone if M is monotone
and (H + λM)(H ) = H holds for very λ > 0 .

REMARK 2.1 If H = I , then the definition of I -monotone operators is that of
maximal monotone operators. In fact, the class of H -monotone operators has close
relation with that of maximal monotone operators.

EXAMPLE 2.1 ([4])Let H : H → H be a strictlymonotone single-valued operator
and M : H → 2H an H -monotone operator. Then M is maximal monotone.

DEFINITION 2.4 Let H : H → H be a single-valued operator. H is said to be
coercive if

lim
‖x‖→∞

〈Hx, x〉
‖x‖ = +∞.

DEFINITION 2.5 Let A : H → H be a single-valued operator. A is said to be
bounded if A(B) is bounded for every bounded subset B of H . A is said to be hemi-
continuous if for any fixed x, y, z ∈ H , the function t 	→ 〈A(x + ty), z〉 is continuous
at 0+ .

EXAMPLE 2.2 ([4]) Let M : H → 2H be a maximal monotone operator and
H : H → H be a bounded, coercive, hemi-continuous and monotone operator. Then
M is H -monotone.

The following example shows that a maximal monotone operator need not be
H -monotone for some H .

EXAMPLE 2.3 ([4]) Let H = R, M = I , and H(x) = x2 for all x ∈ H . Then
it is easy to see that I is maximal monotone and the range of H + I is [−1/4, +∞) .
Therefore, I is not H -monotone.

LEMMA 2.1. ([4]) Let H : H → H be a strictly monotone operator and
M : H → 2H be an H -monotone operator. Then the operator (H + λM)−1 is
single-valued.

By Lemma 2.1, we can define the resolvent operator JH
M,λ as follows:

DEFINITION 2.6 ([4]) Let H : H → H be a strictly monotone operator and
M : H → 2H be an H -monotone operator. The resolvent operator JH

M,λ : H → H
is defined by:

JH
M,λ (u) = (H + λM)−1(u), ∀u ∈ H.

REMARK 2.2 When H = I , Definition 2.6 reduces to the definition of the resolvent
operator of a maximal monotone operator ([20]).

LEMMA 2.2. ([4]) Let H : H → H be a strongly monotone operator with
constant r and M : H → 2H be an H -monotone operator. Then the resolvent
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operator JH
M,λ : H → H is Lipschitz continuous with constant 1/r , i.e.,

‖JH
M,λ (u) − JH

M,λ (v)‖ � 1
r
‖u − v‖, ∀u, v ∈ H .

We define a Hausdorff pseudo-metric Ĥ : 2H × 2H → (−∞, +∞)∪ {+∞} by

Ĥ(A, B) = max{sup
u∈A

inf
v∈B

‖u − v‖, sup
u∈B

inf
v∈A

‖u − v‖}

for any given A, B ∈ 2H . Note that if the domain of Ĥ is restricted to closed bounded
subsets, then Ĥ is the Hausdorff metric.

DEFINITION 2.7 A set-valued mapping A : H → 2H is said to be Ĥ -Lipschitz
continuous if there exists a constant η > 0 such that

Ĥ(A(u), A(v)) � η‖u − v‖
for all u, v ∈ H .

3. System of Variational Inclusions and Iterative Algorithm

In this section, we shall introduce a new system of set-valued variational inclusions
with H -monotone operators and construct a new iterative algorithm for solving this
kind of system of set-valued variational inclusions in Hilbert spaces. In what follows,
unless other specified, we always suppose that H1 and H2 are two real Hilbert
spaces, K1 ⊂ H1 and K2 ⊂ H2 are two nonempty, closed and convex sets. Let
F : H1 × H2 → H1 , G : H1 × H2 → H2 , H1 : H1 → H1, H2 : H2 → H2 be four
nonlinear operators, M : H1 → 2H1 be an H1 -monotone operator and N : H2 → 2H2

be an H2 -monotone operator. Let A : H1 → 2H1 and B : H2 → 2H2 . The system of
set-valued variational inclusions is formulated by finding (a, b) ∈ H1×H2 , u ∈ A(a) ,
and v ∈ B(b) such that {

0 ∈ F(a, v) + M(a);

0 ∈ G(u, b) + N(b).
(3.1)

Some examples of problem (3.1) are as follows.
(I) If M(x) = ∂ϕ(x) and N(y) = ∂φ(y) for all x ∈ H1 and y ∈ H2 , where

ϕ : H1 → R ∪ {+∞} and φ : H2 → R ∪ {+∞} are two proper, convex and lower
semi-continuous functionals, and ∂ϕ and ∂φ denote the subdifferential operators of
ϕ and φ , respectively, then problem (3.2) reduces to the following problem: find
(a, b) ∈ H1 × H2 , u ∈ A(a) , and v ∈ B(b) such that{ 〈F(a, v), x − a〉 + ϕ(x) − ϕ(a) � 0, ∀x ∈ H1,

〈G(u, b), y− b〉 + φ(y) − φ(b) � 0, ∀y ∈ H2,
(3.2)

which is called a system of set-valued mixed variational inequalities. Some special
cases of problem (3.2) can be found in [19].

(II) If M(x) = ∂ϕ(x) and N(y) = ∂φ(y) for all x ∈ H1 and y ∈ H2 , where
ϕ : H1 → R ∪ {+∞} and φ : H2 → R ∪ {+∞} are two proper, convex and lower
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semi-continuous functionals, and ∂ϕ and ∂φ denote the subdifferential operators of
ϕ and φ , respectively, then problem (3.2) reduces to the following problem: find
(a, b) ∈ H1 × H2 such that{ 〈F(a, b), x− a〉 + ϕ(x) − ϕ(a) � 0, ∀x ∈ H1,

〈G(a, b), y − b〉 + φ(y) − φ(b) � 0, ∀y ∈ H2,
(3.3)

which is called system of nonlinear variational inequalities considered by Cho, Fang,
Huang and Hwang [3]. Some special cases of problem (3.3) were studied by Kim and
Kim [13], and Verma [17].

(III) If M(x) = ∂δK1(x) and N(y) = ∂δK2(y) for all x ∈ K1 and y ∈ K2 , where
A ⊂ H1 and B ⊂ H2 are two nonempty, closed and convex subsets, and δK1 and δK2

denote the indicator functions of K1 and K2 , respectively, then problem (3.2) reduces
to the following system of variational inequalities: find (a, b) ∈ K1 × K2 such that{ 〈F(a, b), x− a〉 � 0, ∀x ∈ K1,

〈G(a, b), y− b〉 � 0, ∀y ∈ K2,
(3.4)

which is just the problem in [11] with both F and G are single-valued.
(IV) If H1 = H2 = H , K1 = K2 = K , F(x, y) = ρT(y) + x − y and

G(x, y) = γT(x)+ y− x for all x, y ∈ H , where T : K → H ia a nonlinear mapping,
ρ > 0 and γ > 0 are two constants, then problem (3.4) reduces to the following
system of variational inequalities: find (a, b) ∈ K × K such that{ 〈 ρT(b) + a − b, x − a〉 � 0, ∀x ∈ K,

〈 γT(a) + b − a, x − b〉 � 0, ∀x ∈ K,
(3.5)

which is the system of nonlinear variational inequalities considered by Verma [18].
(V) If A and B are both identity mappings, then problem (3.1) reduces to the

following problem: find (a, b) ∈ H1 × H2 such that{
0 ∈ F(a, b) + M(a);

0 ∈ G(a, b) + N(b),

which is called the system of variational inclusions considered by Fang and Huang [6].
In order to construct our algorithm, we give a characterization of solution of

problem (3.1) as follows:

LEMMA 3.1. Let H1 : H1 → H1 and H2 : H2 → H2 be two strictly monotone
operators, M : H1 → H1 be H1 -monotone, and N : H2 → H2 be H2 -monotone.
Then (a, b, u, v) is a solution of problem (3.1) if and only if (a, b, u, v) satisfies the
relation {

a = JH1
M,ρ[H1(a) − ρF(a, v)],

b = JH2
N,λ [H2(b) − λG(u, b)],

(3.6)

where ρ > 0 and λ > 0 are two constants.
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Proof. The fact directly follows from Definition 2.6.

The relation (3.6) allows us to suggest the following iterative algorithm.
Algorithm 3.1
Step 1. Choose (a0, b0) ∈ H1 × H2 and choose u0 ∈ A(a0) and v0 ∈ B(b0) .
Step 2. Let {

an+1 = JH1
M,ρ[H1(an) − ρF(an, vn)],

bn+1 = JH2
N,λ [H2(bn) − λG(un, bn)].

(3.7)

Step 3. Choose un+1 ∈ A(an+1) and vn+1 ∈ B(bn+1) such that{ ‖un+1 − un‖ � (1 + (1 + n)−1)Ĥ1(A(an+1), A(an)),

‖vn+1 − vn‖ � (1 + (1 + n)−1)Ĥ2(B(bn+1), B(bn)),
(3.8)

where Ĥi(·, ·) is the Hausdorff pseudo-metric on 2Hi for i = 1, 2 .
Step 4. If an+1 , bn+1 , un+1 , and vn+1 satisfy (3.7) to sufficient accuracy, stop;

otherwise, set n := n + 1 and return to Step 2.

4. Existence and Convergence

In this section, we will prove the existence of solutions for problem (3.1) and
the convergence of iterative sequences generated by Algorithm 3.1. For the following
theorem, define C(H ) to be the collection of all closed subsets of H .

THEOREM 4.1. Let H1 : H1 → H1 be a strongly monotone and Lipschitz contin-
uous operator with constants γ1 and τ1 , respectively, H2 : H2 → H2 be a strongly
monotone and Lipschitz continuous operator with constants γ2 and τ2 , respectively,
M : H1 → 2H1 be H1 -monotone, and N : H2 → 2H2 be H2 -monotone. Suppose that
A : H1 → C(H1) is Ĥ1 -Lipschitz continuous and B : H2 → C(H2) is Ĥ2 -Lipschitz
continuous with constants η1 and η2 , respectively. Let F : H1×H2 → H1 be a non-
linear operator such that for any given (a, b) ∈ H1×H2 , F(·, b) is strongly monotone
with respect to H1 and Lipschitz continuous with constants r1 and s1 , respectively,
and F(a, ·) is Lipschitz continuous with constant θ . Let G : H1 × H2 → H2 be
a nonlinear operator such that for any given (x, y) ∈ H1 × H2 , G(x, ·) is strongly
monotone with respect to H2 and Lipschitz continuous with constant r2 and s2 , and
G(·, y) is Lipschitz continuous with constant ξ . If there exist constants ρ > 0 and
λ > 0 such that ⎧⎪⎨

⎪⎩
γ2

√
τ2
1 − 2ρr1 + ρ2s2

1 + λξη1γ1 < γ1γ2,

γ1
√
τ2
2 − 2λ r2 + λ 2s2

2 + ρθη2γ2 < γ1γ2,
(4.1)

then problem (3.1) admits a solution (a, b, u, v) and sequences {an} , {bn} , {un} ,
and {vn} converge to a , b , u , and v , respectively, where {an} , {bn} , {un} , and
{vn} is the sequences generated by Algorithm 3.1.
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Proof. It follows from (3.7) and Lemma 2.2 that

‖an+1 − an‖ = ‖JH1
M,ρ[H1(an) − ρF(an, vn)] − JH1

M,ρ[H1(an−1) − ρF(an−1, vn−1)]‖
� 1

γ1
‖H1(an) − H1(an−1) − ρ(F(an, vn) − F(an−1, vn−1))‖

� 1
γ1
‖H1(an) − H1(an−1) − ρ(F(an, vn) − F(an−1, vn))‖

+
ρ
γ1
‖F(an−1, vn−1) − F(an−1, vn)‖

(4.2)
and

‖bn+1 − bn‖ = ‖JH2
N,λ [H2(bn) − λG(un, bn)] − JH2

N,λ [H2(bn−1) − λG(un−1, bn−1)]‖

� 1
γ2
‖H2(bn) − H2(bn−1) − λ (G(un, bn) − G(un−1, bn−1))‖

� 1
γ2
‖H2(bn) − H2(bn−1) − λ (G(un, bn) − G(un, bn−1))‖

+
λ
γ2
‖G(un, bn−1) − G(un−1, bn−1)‖.

(4.3)
By assumptions, we have

‖H1(an) − H1(an−1) − ρ(F(an, vn) − F(an−1, vn))‖2

= ‖H1(an) − H1(an−1)‖2 − 2ρ〈F(an, vn) − F(an−1, vn), H1(an) − H1(an−1)〉
+ ρ2‖F(an, vn) − F(an−1, vn)‖2

� (τ2
1 − 2ρr1 + ρ2s2

1)‖an − an−1‖2

(4.4)
and

‖H2(bn) − H2(bn−1) − λ (G(un, bn) − G(un, bn−1))‖2

= ‖H2(bn) − H2(bn−1)‖2 − 2λ 〈G(un, bn) − G(un, bn−1), H2(bn) − H2(bn−1)〉
+ λ 2‖G(un, bn) − G(un, bn−1)‖2

� (τ2
2 − 2λ r2 + λ 2s2

2)‖bn − bn−1‖2.
(4.5)

Furthermore, it follows from (3.8) and the Lipschitz continuity of F , G , A , and B
that

‖F(an−1, vn−1) − F(an−1, vn)‖ � θ‖vn − vn−1‖ � θ(1 + n−1)η2‖bn − bn−1‖, (4.6)

and

‖G(un, bn−1)−G(un−1, bn−1)‖ � ξ‖un − un−1‖ � ξ(1 + n−1)η1‖an − an−1‖. (4.7)
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It follows from (4.2) − (4.7) that⎧⎪⎨
⎪⎩

‖an+1−an‖ � γ−1
1

√
τ2
1−2ρr1+ρ2s2

1‖an−an−1‖+ρθη2γ−1
1 (1+n−1)‖bn−bn−1‖,

‖bn+1−bn‖ � γ−1
2

√
τ2
2−2λ r2+λ 2s2

2‖bn−bn−1‖+λξη1γ−1
2 (1+n−1)‖an−an−1‖.

(4.8)
Now (4.8) implies that

‖an+1 − an‖ + ‖bn+1 − bn‖
�

(
γ−1
1

√
τ2
1 − 2ρr1 + ρ2s2

1 + λξη1γ−1
2 (1 + n−1)

)
‖an − an−1‖

+
(
γ−1
2

√
τ2
2 − 2λ r2 + λ 2s2

2 + ρθη2γ−1
1 (1 + n−1)

)
‖bn − bn−1‖

� kn(‖an − an−1‖ + ‖bn − bn−1‖)

(4.9)

where

kn = max{γ−1
1

√
τ2
1 − 2ρr1 + ρ2s2

1 + λξη1γ−1
2 (1 + n−1),

γ−1
2

√
τ2
2 − 2λ r2 + λ 2s2

2 + ρθη2γ−1
1 (1 + n−1)}.

Let

k = max{γ−1
1

√
τ2
1 − 2ρr1 + ρ2s2

1 + λξη1γ−1
2 , γ−1

2

√
τ2
2 − 2λ r2 + λ 2s2

2 + ρθη2γ−1
1 }.

Then kn → k as n → ∞ . By (4.1), we know that 0 < k < 1 and so (4.9) implies
that {an} and {bn} are both Cauchy sequences. Thus, there exist a ∈ H1 and b ∈ H2

such that an → a and bn → b as n → ∞ .
Now we prove that un → u ∈ A(a) and vn → v ∈ B(b) . In fact, from (4.6) and

(4.7), we know that {un} and {vn} are also Cauchy sequences. Therefore, there exist
u ∈ H1 and v ∈ H2 such that un → u and vn → v as n → ∞ . Further,

d(u, A(a)) = inf{‖u − t‖ : t ∈ A(a)}
� ‖u − un‖ + d(un, A(a))

� ‖u − un‖ + Ĥ1(A(an), A(a))
� ‖u − un‖ + η1‖an − a‖ → 0.

Hence, since A(a) is closed, we have u ∈ A(a) . Similarly, v ∈ B(b) .
By continuity, a, b, u, v satisfy the following relation{

a = JH1
M,ρ[H1(a) − ρF(a, v)],

b = JH2
N,λ [H2(b) − λG(u, b)].

By Lemma 4.1, (a, b, u, v) is a solution of problem (3.1). This completes the proof.

REMARK 4.1 From Theorem 4.1, we can get some existence results of solutions
for problems (3.2) − (3.5).
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REMARK 4.2 From Definition 2.1, we know that

r1 � s1τ1, r2 � s2τ2.

REMARK 4.3 If ρ = λ > 0 such that∣∣∣∣ρ − γ2[r1γ2 − γ 2
1 ξη1]

s2
1γ 2

2 − ξ 2η2
1γ 2

1

∣∣∣∣ <

√
γ 2
2 [r1γ2 − γ 2

1 ξη1]2 − (s2
1γ 2

2 − ξ 2η2
1γ 2

1 )γ 2
2 (τ2

1 − γ 2
1 )

s2
1γ 2

2 − ξ 2η2
1γ 2

1

,

√
(s2

1γ 2
2 − ξ 2η2

1γ 2
1 )(τ2

1 − γ 2
1 ) < r1γ2 − γ1ξη1, ρξη1 < γ2, ξη1γ1 < s1γ2

and∣∣∣∣ρ − γ1[r2γ1 − γ 2
2 θη2]

s2
2γ 2

1 − θ2η2
2γ 2

2

∣∣∣∣ <

√
γ 2
1 [r2γ1 − γ 2

2 θη2]2 − (s2
2γ 2

1 − θ2η2
2γ 2

2 )γ 2
1 (τ2

2 − γ 2
2 )

s2
2γ 2

1 − θ2η2
2γ 2

2

,√
(s2

2γ 2
1 − θ2η2

2γ 2
2 )(τ2

2 − γ 2
2 ) < r2γ1 − γ2θη2, ρθη2 < γ1, θη2γ2 < s2γ1,

then condition (4.1) holds.

Acknowledgment. The authors would like to express their deep gratitude to Pro-
fessor R. U. Verma for his helpful comments and suggestions.

RE F ER EN C ES

[1] S. ADLY, Perturbed algorithm and sensitivity analysis for a general class of variational inclusions, J.
Math. Anal. Appl. 201 (1996), 609–630.

[2] R. AHMAD AND Q. H. ANSARI, An iterative algorithm for generalized nonlinear variational inclusions,
Appl. Math. Lett. 13 5 (2000), 23–26.

[3] Y. J. CHO, Y. P. FANG, N. J. HUANG AND H. J. HWANG, Algorithms for systems of nonlinear variational
inequalities, J. Korean Math. Soc. 41 (2004), 489–499.

[4] Y. P. FANG AND N. J. HUANG, H -Monotone operator and resolvent operator technique for variatonal
inclusions, Appl. Math. Comput. 145 (2003), 795–803.

[5] Y. P. FANG AND N. J. HUANG, Existence results for systems of strongly implicit vector variational
inequalities, Acta Math. Hungar. 103(2004), 265–277.

[6] Y. P. FANG AND N. J. HUANG, H -monotone operators and system of variational inclusions, Commun.
Appl. Nonlinear Anal. 11 1 (2004), 93–101.

[7] N. J. HUANG, Generalized nonlinear variatonal inclusions with noncompact valued mappings, Appl.
Math. Lett. 9(3) (1996), 25–29.

[8] N. J. HUANG, Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinear implicit
quasi-variational inclusions, Comput. Math. Appl. 35 10 (1998), 1–7.

[9] N. J. HUANG, A new completely general class of variational inclusions with noncompact valued map-
pings, Comput. Math. Appl. 35 10 (1998), 9–14.

[10] N. J. HUANG AND Y. P. FANG, Fixed point theorems and a new system of multivalued generalized order
complementarity problems , Positivity 7 (2003), 257–265.
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