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INEQUALITIES FOR A SIMPLEX AND ANY POINT
L1 XIAOYAN, LENG GANGSONG AND TANG LIHUA

(communicated by V. Volenec)

Abstract. By applying an analytic inequality and the polar moment of inertia inequality in E",
we establish some inequalities for the volume, facet areas and distances between any point of E”
and vertices of an n— simplex

1. Introduction

Geometric inequalities for convex bodies have been a very attractive subject for
a long time. Specially, the inequalities for simplices which are the simplest and the
most useful polytopes have been studied extensively (see [3, 7, 11, 13, 17, 19] ). A
great number of elegant results have been obtained. The well-known monograph [12] of
Mitrinovi¢ and Pecari¢ and Volenec had collected what were already many impressive
results before 1989. Ali [1], Gerber [4], Petty and Waterman [14], Slepian[16] established
a number of inequalities for the distances from any point to vertices and the volume
of a simplex. In this paper, we establish some new inequalities for a simplex and any
point, which combine the facet areas with the volume and the distances from any point
to vertices of a simplex, which are motivated by the well-known Klamkin’s inequality
for polar moment of inertia. Some of own results are just the generalizations to several
dimensions of the Klamkin’s inequality.

Let Q be an n—simplex in n—dimensional Euclidean Space E" with ver-
tices Ag,Ay, A, (ie, Q = (Ag,Ay,---A,) ) with the volume V, and Q; =
(Ao, -+ ,Ai—1,Aiy1, -+ ,A,) its facet which lies in a hyperplane 7;, F; the facet
area of Q; (i.e., (n — 1)— dimensional volume), F = Z?:o F;, R; the distance from a
point P of E" to A; (i=0,1,---,n).

The aim of this paper is to establish some new inequalities combining R;, F;
(i=0,1,---,n) with V. Our main results are the following theorems.

THEOREM 1. Let Q be an n— simplex in E", P any point in E", R; = ||PA{|,
and F =%, F;. Then

1
n—1

Zn:F,-R% > C(n) HF , (1.1)
i=0 i=0

Mathematics subject classification (2000): 52A40, 52A20.
Key words and phrases: Simplex, moment of inertia, mass-point system, volume inequality.

© ey, Zagreb 547

Paper MIA-08-50



548 LI XIAOYAN, LENG GANGSONG AND TANG LIHUA

S (F—=2F)R?> (n—1)C F; _, (1.2)
> o(117)

i=0
n|2 n—1
where C(n) =n {—3] and equalities hold if Q is a regular n— simplex and P is
the center of Q. "

REMARK 1. Taking n = 2 in (1.1), we obtain the well-known Klamkin’s inequality.

THEOREM 2. Let Q be an n— simplex in E", P any pointin E", R; = ||PA;|,
and F =Y, F;, then

n

—1
S (Fg+-+F; —2F)R; > n+1 n*v2, (1.3)
i=0
—1
> Fi(F —2F)R? > n+1 n*v2, (1.4)
n -1 2
(F—2FRe > D e (1.5)
— ! n+1

and equalities hold if Q is a regular n— simplex and P is the center of Q.

REMARK 2. According to the symmetry of inequalities (1.2) and (1.3), they can
be described respectively as follows.

_1
n n—1
D (R§+Ri+-- + R —2R)F; > (n—1)C (HF) . (12)
i=0
: -1

> (RG+R+-- + R, —2RF] > n*v2. (1.3%)

P n+1
Suppose that r;(i = 0,1--- ,n) is the radius of the ith escribed hypersphere of Q, ;
the altitude of Q from the vertex A;, i.e., the distance from A; to ;. According to the

known fact [12]
nV nV

ri = m7 i = Fi>
it is clear the inequalities (1.4) and (1.5) can be written in the following equivalent
forms:

THEOREM 3. Suppose that Q is an n— simplex with the radii of escribed spheres
r0,¥1, -+ , Iy and with altitudes hy, hy, - - - , h,, respectively. Then

and equalities hold if Q is a regular n— simplex and P is the center of Q.
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This paper, except for the introduction, is divided into three sections. In Section 2,
we establish an analytic inequality in E", and discuss its applications. In Section 3, we
give some polar moment of inertia inequalities to prove above theorems. In section 4,
we prove these theorems by using the obtained results from the section 2 and section 3.
Finally, we present a conjecture for the distance from any point to every vertices of an
n— simplex.

2. An analytic inequality and its applications

In paper [9], to study Pedoe inequality, Leng and Tang proved an inequality as
follows:

Ifx;>0 (i=1,2,---,n),n>2,0<x; <3 and >/ x;=1,then

n n

ST1(L2) o ir 2 o

i=1 j=I
e
Chen, Yong and Xia in [2] gave an elegant proof of the inequality (2.1). Huang [3],
Shi [15] and Xu [18] have studied this inequality and its applications. Summing and
extending their results, we obtain the following generalization of the inequality (2.1)
(Theorem 4).
First, suppose that xj,xp, - - - ,x, are n positive real numbers. We define the k-th
elementary symmetric polynomial E; of xi,x,--- ,x, by

k
Ek()C):Ek(xh...’xn): Z H'xij k:1,"',l’l.

1<i1<---<ik<nj:l

THEOREM 4. Let k,n be the natural numbers, k <n—1, x; >0, i=1,2,--- n,
Shxi=L1 If m<n—k+1, then

(ot o) (e

and equality holds if x1 =xy = =X, = -
Taking m = 2 in Theorem 4, we infer the following corollary.

COROLLARY 1. Let x; > 0, i = 1,2, ,n, n > 2, > | x; = 1. Then, for
ke{l,2,-,n—1},

Ek(%z,---,$2)><z>(nz)’: (2.3)

and equality holds if x| =x; = -+ =x, = %

It should be noted that Corollary 1 is not true if k = n (when k = n = 3, there is
a counter example).

Taking k = n—1 in Corollary 1, we obtain the following inequality ( the condition
0<wx;<3,i=1,2,--,n, have been eliminated ).
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COROLLARY 2. Let x; >0, i=1,2,---,n, n>2, >."_ x; =1, then
n n 1 -
Y II(=-2)=zn0-2) (2.4)
N s Xj
i=1 Jj=1
i
and equality holds if x| =x; = -+ =x, = %

To prove Theorem 4, we need the following lemma.

LEMMA 1. Let k,n be natural numbers, n > 2, k <n—1, m > 0. If x; > 0,
yi>O> i= 1727"' 1, x1+X2:yl+y2> Xi = Yj» ]:3747 » 1, then

1 1 1 1
El—m ——m|—-E|——m--,——m
X1 Xn Y1 Yn

X1+x2 1 1 1 )
= X2— —x1)Er—1 -m,——m,--,——m|. (25
Xlxzylyz( =) (xl +x2 X3 Xn 23)
1 1 1 1
Proof. Put P=FE(—-m,---,— —m| —Ex| ——m,---,——m]. By
X1 Xn Y1 Yn

the definition of Ej, it follows that
Ek(xl, ...,xn) = X1XQEk_2(X3, ...,x,,)+(x1+x2)Ek_1(X3, ...7)Cn)+Ek(X3, ...,)Cn), (26)

Ek(-xla e 7xﬂ) = -xlEkfl(xla e a-xn) + Ek(-x23 e a-xn)' (27)
Applying (2.6) and (2.7), and noting that y;y, — x1x2 = (x2 — y1)(y1 — x1), we have

P mE - e ) B (£ e )

1 1 1 1 1
= ——— | [(x1 +x2) —m|E | ——-my-,——m
X1xX2  y1y2 Xp +x2 X3 Xn

1 1
+ (X1 +x2)Ex—1 <— —m,ee, — —mﬂ
x3

X1+ x 1 1 1
=2 2(X2—y1)(y1—x1)Ek—1( —m,——m,~-~,——m>. O
X1X2Y1y2 X1+ X2 X3 X

Proof of the Theorem 4. We use induction on k.
When k = 1,n > m, according to the Cauchy inequality, we obtain

1 1 1 n? 5
—t+ =+t —= =
X1 X3 Xn X1+x2+---4+x,

1 1
E; (——m,-~-,——m) > n? — mn.

X1 Xn

)
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Hence (2.2) holds for k = 1.

Let us assume that (2.2) holds for k— 1(k > 2), namely, for n > (k—1)+m—1=
k+m—2 (k> 2), (2.2) holds. We will prove that (2.2) holds for k, namely, for
n=zk+m—1(k>2), (2.2)holds.

Ifxi=x=---=x,= %, then

1 1 n
El=——-m .. = —E(n—m.- .n—m)= —m
k <x1 m, o m) c(n—m,--- n—m) (k) (n —m)~,

(2.2) holds. Otherwise, there exist a real number x; larger than % and a real number

smaller than % among Xxp,---,Xx,. Without loss of generality, we can assume that

x < % < xp. Put

1 1 .
yi= -, y2:x1+XZ——7 y]:x]7]:3747’n
n n

According to Lemma 1, we have

1 1 1 1 X1 +x2 1
El—m-, ——m| -E|——-m--,——m| = X —— | x
X1 Xn V1 Yn X1X2Y1)Y2 n

1 1 1 1
><(;—xl)Ek_l(xl+x2—m,x—3—m,-~-,x—”—m). (2.8)

Since n 2 k+m—1, n —1 > k+ m — 2. By inductive hypothesis, we have

1 1 1 -1
Ey4 < m, ——m,...,— — m> > <n )(n —1-mt>0 (29

X1+x2 X3 Xn

From (2.8) and (2.9), we infer

1 1 1 1
Ek<——m,~-~,——m> >Ek(——m,~-~,——m>.
X1 Xn Y1 Yn

Suppose that there exists some y; not equal to % among y»,--- ,V,, then we continue
the above process, and at most n — 1 times adjustment, we obtain

1 1 n
El=——m. ... —— >E(n—m,-- n—m)= —m)*.
% <x1 mye- -, x m) c(n—m,--- n—m) (k) (n—m)
Hence (2.2) holds for &, as desired. O

To prove the theorems of Section 1, we give the following lemma by applying the
Theorem 4.

LEMMA 2. Let Q = (Ao, Ay, --A,) be an n— simplex with facet areas F;, (i =
0,1,---,n), and let

F — 2F; F}+-++ F2—2F}
Ai: la Hi = 0 an L.
i
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Then
SI[x= e+ Dm-1y, (2.10)

i=0 j=0
i

S TIw= (4 -1, 2.11)
i=0 j=0
J#

and equalities hold if Q is a regular n— simplex and P is the center of Q.

Fi . .
Proof. Taking x; = F(l =0,1,---,n) and applying Corollary 2 for these n + 1
positive real numbers xo, X1, - - - ,X,, the inequality (2.10) follows.
F?

Taking x; = ——— 1
S Ny By 2>

and applying Corollary 2, the desired(2.11) holds. [J

3. The polar moment of inertia inequality in E”

To prove the theorems in Section 1, we establish the polar moment of inertia
inequality in E", which are generalizations to several dimensions of the well-known
polar moment of inertia inequality of Klamkin [6]. In this section, let > = {A;(4;),i =
0,1,--- N} be a mass-point system in E", the points A; are endowed with corre-
sponding weights A; >0 (i =0,1,---,N, and N > n), respectively.

THEOREM 5. Let Q = (Ao, Ay, ---A,) be an n—simplex, and Q; = (Ao, -,
Ai—1,Air1, -+, Ay) be its facet with area F;, P any point in E", R; = |PA;|| (i =
0,1,---,n). If Ao, A1, -+ , Ay are n+ 1 real positive constants, then

n n n—1 n n
(Z %) (Z mg) >t | [TA D AR (.1)
i=0 i=0 j=0 i—0

and the equality holds if the inertial ellipsoid of >, is a hyperspere and P is the centroid
of 3.
To prove Theorem 5, we need the following Zhang and Yang’s inequality for mass-

point system, which has played an important role in recent investigations of geometric
inequalities of finite point sets [8, 10, 12].

LEMMA 3. (Zhangand Yang [20] ). Let > = {A;(4), i=0,1,--- N} (N >n)

be a mass-point system in E", and denote by Vj;,...;, the k— dimensional volume of the

k— simplex spanned by the points A, A, --- ,Aj, of > (0 <ip <ip <--- <ix <N).
Put
N
My = oo ki M Vi Moo= A
0<i0<l‘1<-~<l‘k<N i=0
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If k,1€{0,1,--- ,n}, k<, then

! n— 01073

and equality holds if the inertial ellipsoid of Y, is a hypersphere.

For the proof of Lemma 3 the reader is referred to [12]. We also need the following
lemma.

LEMMA 4. Let Ao, A1, -+ ,Ay be N + 1 given points in E", a; = ||A4;] (0 <
i<j<N), Panypointin E", R; = ||[PA;|]| (i=0,1,--- ,N). If Ao, A1, , Ay are
real positive constants, then

i=0 i=0

0<i<j<N
and equality holds if P is the centroid of .

For the proof of Lemma 4 the reader is referred to [12].

Proof of Theorem 5. Taking k =1, I =n—1, A; = m; > 0 inthe inequality(3.2)
of Lemma 3, it implies

M1 = Z Ailjaizﬂ Mn—l = AO)LI o 'An : Zki_lFia
i=0

0<i<j<n

and
n—1

n n—2
> hidiaj > "4 (n!)? (Zx,) M, . (3.4)

0<i<j<n i=0

Combining Lemma 4 with (3.4), it yields that

(54) (322)

divided by (3"}, 2;)" 2, therefore, the Theorem 5 is proved. [J

n—1

n—1 n—2
> Y Ak > n" 4 (n!)? (Z/l,-) M,_\,

0<i<j<n i=0

4. Proofs of the Theorems

Proof of the Theorem 1. Taking A; = F; (i = 0,1,--- ,n) in Theorem 5, (1.1)
follows immediately. Let

n n

G:H(F—ZF})-ZFfiZFi.

j=0 i=0
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Then (2.10) of Lemma 2 can be written in the following equivalent form:
o> (n+1)(n—1)" HF (4.1)

Taking A; = F—2F;(i =0,1,--- ,n) in Theorem 5 and noting that Yy A; = (n—1)F,
we infer

n

> (F—2F)R;

i=0

n—1
n" 412 " - F?

> .F! F —2F; d . (42
e (T -an) (S5 ) 6o

i=0 i=0

Without loss of generality, we may assume that
FO Fl/}Fn>0

Then
O<F—-2Fy<F-2F <---<F—-2F,,

it follows
(F—2F) 'Fo > (F—2F)"'F| >--- > (F-2F,)"'F, > 0.

Applying Chebishev’s inequality, we get

R
zFfle_:zF (F - 27)]
i=0 !
1 n n F,
z n+l (;Fz> (i—O F2Fi>

1 . F
= F- . 4.3
From (4.2) and (4.3), we have
n—1
n n—4.,12
(Z(F - 2F,-)R,.2> > % e (4.4)
i=0

Combining (4.4) with (4.1), we obtain the desired inequality (1.2). O

Proof of the Theorem 2. Let

n

n
— 2 e 2* 2 M Flz
5_H(FO+ + F; — 2F7) §F5+...+F572Fi2'

The inequality (2.11) of Lemma 2 can be rewritten in the form

5= (n+1)(n— 1)”ﬁF?. (4.5)
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Taking A; = (F3 + - -+ + F2 — 2F?) in the in Theorem 5 and applying (4.5), we infer

n n—1

S (Fi+ ..+ F, —2F)R? >
i=0

n?n"—*4 o
n—1 Fl+.. +F2

HF2
n'Znn—4

- (n+1)(n—1)" - Z()F o)

7 n—-1

2

On the other hand, takingfor N =n+1, I =n, k=n—1, and m; = n’% in Lemma
2, we find

HF2 .
n n

> y2n=1), 4.7

Z, V27 nP(n+ 1) (*.7)

Combining (4.6) with (4.7), the desired inequality (1.3) follows.
Now, taking A; = F;(F — 2F;) > 0 in Theorem 5 and noting the obvious fact

zn:/l,- = F? —ZiFiz <(n— 1)Zn:F2
i=0 i=0 i=0

and applying (4.1) and (4.7), we deduce

n n—1 (H Fi >
Fi(F — 2F,-)Rl-2] >

i=0 Zt OA'
n?n = (n+1)(n—1)" I_IF2 .
{”4(”_ 1) 2}
Z > 14 )
(n—1) 30 F? n+1

the inequality (1.4) of the Theorem 2 is proved.
Further, taking A; = (F — 2Fl~)2 in Theorem 5, noting that

Zn:)t,- = (n—3)F2+4Zn:F3 (n—1)? ZFZ
i—0 i=0
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and applying Cauchy inequality and (4.1) and (4.7), we deduce

) oy n'ZHF 2F;)? Z)L_IFZ

(F —2F,)’R; >
; Zt OA’

2

n'2 11740.

=
(n+1)(n—1)2 370,
"o (n4 1) (n—1)20-D. HFZZ

im0 F?
n—1
> {n“(n— l)Vz} .

n+1

WV

We complete the proof of (1.5) of Theorem 2. [

Finally, we can conjecture that the following linear inequality for R; (i = 0, 1, - - -
is true.

n

> (F=2F)R: > (n— 1)n?

i=0

n
-V
n+1

It is not difficult to prove the above inequality if n = 2.

[16]
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