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GEOMETRIC MEANS AND HADAMARD PRODUCTS
BAaO Q1 FENG AND ANDREW TONGE

(communicated by T. Ando)

Abstract. Ando [1] proved that for m commuting positive definite matrices, the m-fold Hadamard
product of their geometric mean is bounded above by their Hadamard product. We obtain a natural
extension to the non-commutative case.

In what follows, if M is a positive definite n X n matrix and o € R, then M* will
denote its unique positive ™ power. In 1979, Ando [1] developed a robust definition
of the geometric mean of two positive definite n X n matrices M| and M, that had
been introduced by Pusz and Woronowicz [5]:

1/2

G(My, My) = M. (M;l/2

12
MM 1/2) M2,

The geometric mean is symmetric in M, M, , monotone in each variable and satisfies
the arithmetic-geometric mean inequality

1
G(Ml,Mz) gA(Ml,Mz) = E(Ml +M2).

Given 0 < o < 1, the geometric mean is generalized to the o -mean G\ (M, M) :

1/2

G (M, My) := MY* (M Py Py em)?.

The usual geometric mean is just G(!/2) (M1, M,). In stead of the arithmetic-geometric
mean inequality the Young inequality holds for ¢ -mean:

G (M, My) < A (M, M) := aM; + (1 — a)M,.

Ando [1] also researched the interaction of this geometric mean with the Hadamard (or
Schur) product. If M = (m;;), N = (n;;) are matrices of the same size, their Hadamard
product M o N is the matrix of entry-wise products:

M o N := (myn;).
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Ando [1, Theorem 13] proved that for positive definite n x n matrices M, N we have
G(M,N)o G(M,N) < MoN, (Ay)
which, in the commutative case, reduces to
(MN)Z o (MN)? < MoN.

Using a different method, he succeeded in generalizing his inequality to the case of
several commuting positive definite n x n matrices [1, Theorem 12]:

ﬁo (ﬁMi> ' < HOMi- (A2)

1 i=1 i=1

However, at the time, the notion of geometric mean for several non-commuting matrices
was not available; therefore, inequality (A;) was not developed beyond the case of two
matrices.

In 1994, M. Sagae and K. Tanabe [6] successfully developed an approach to the
geometric mean — in fact, the weighted geometric mean — of several positive definite
matrices. The main purpose of this paper is to blend the ideas of Ando and the concepts
of Sagae and Tanabe to extend inequality (A;) to the case of several positive definite
n X n matrices. As a result, we are able to provide a simpler proof of inequality (A;).

The definition G,,(M,M>,...,M,) of the geometric mean of an m-tuple of
positive definite matrices (M, M>,...,M,,) (m > 2) was given by Sagae and Tanabe
in 1994.

When m = 2, define

G, (M1, My) := G™)(My, M>).

Suppose that the definition for the case m — 1 has been well established. Now given
an m-tuple of positive numbers (wy,wy, ..., w,) summing to 1, define

m—1

W
Gw(MlaM27 .. 7Mm) = G( 7 ]) (GW‘(MMMZa v 7Mmfl)7Mm)

where
m—1

m—1 m—1
W= wl/E wj, wa/ g w_,-,...,wm_l/g wj
J=1 J=1 J=1

In order to work effectively with the general geometric mean of Sagae and Tanabe,
it is convenient to introduce the (o, ..., o) - power mean for (k + 1) -tuple positive
definite matrices. Suppose that M; (i > 1) are positive definite n X n matrices and
o; (i = 1) are real scalars. Starting with the two matrix basis, we can continue
recursively to define

G(Ocl.,~~~~,f><k)(Ml7 M) = G(ak)(G(al:~~~~,ak—l)(M17 M), M)
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i+1 .
When o; =1 — (Wj+1 / ZJ’; w_,-) fori=1,...,m—1, we have

Gl (M. My) = Gy,(My, ..., My,).

This general definition of geometric mean has many good properties, but in the
case of equal weights it is not symmetric for £ > 2 (see [3]). For us, it will be significant
that the weighted geometric mean satisfies an arithmetic-geometric mean inequality.

THEOREM ([6], Theorem 1) Let w be an m -tuple of positive numbers (Wi, wa, ..., Wy,)
summing to 1 and let M;(1 < i < m) be positive definite n X n matrices. Then

Gu(My, ... . M) AWMy, ..., M) :=wiMy + - + wiMj.

The inequality is strict unless My = - - - = M.
From inequality (A;) it is natural to conjecture that when M; (i = 1,2,3) are
positive definite matrices (possibly non-commuting), the inequality

GW(M17M2,M3) ] GW(MI,M27M3) o GW(M17M2,M3) < Ml OM2 OM3

holds true. The answer is positive, and in fact the order of the matrices is unimportant.
This is to some extent surprising, since Ando’s proof of inequality (A;) depends on the
symmetry of the geometric mean of two matrices. The main result in this paper is:

THEOREM 1. Let w be an m-tuple of positive numbers (Wi, wa, ..., Wy,) summing
to 1 andlet M; (1 < i < m) be positive definite n x n matrices. If (i1,i2,...,in),
G1sJ2y -« sjm)y -5 (kiyka,... kn) are arbitrary m-permutations of {1,2,...,m},
then

Gy(Mi, ..., M) 0 Gu(Mj,, ..., My,) 00 Gu(My,, ..., My,) < [ [ oM.

i—1

In order to obtain the proof of Theorem 1, we need to develop some properties of
tensor products of matrices. If M = (m;;) is an k x [ matrix and N = (n;;) isan s x ¢
matrix, then their tensor (or Kronecker) product is the ks x It matrix

mllN e mUN
MeN:=| :
muN -+ myN
The tensor product of finitely many matrices can be defined by induction.

The basic properties of the tensor product can be found in [2, p. 15] and [1, p.
224]. We need two more properties that we were unable to find in the literature.

PROPOSITION 1. (i) Let M; (1 < i < k) be mxm matrices andlet N; (1 < i< k)
be n x n matrices. Then

ﬁ(M,- @ N;) = (HMi> ® (ﬁN,) .

i=1 i=1 i=1
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(ii) Let M; be positive definite n; x n; matrices (1 < i < k). Then, for any real
number o,

k o k
(H ®M,-> = [[om?.
i=1 i=1
Proof. (i) This follows easily by induction from the observation that
(A® B)(C®D) = (AC) ® (BD),

which can be verified immediately from the definition of the tensor product of matrices.

(i) Again, this follows by induction from the case of the product of two matrices.
Since M; and M, are positive definite, we can write (see [4, Theorem 2.5.4]) M; =
UiSU, and M, = U;TU,, using appropriate unitary matrices U; and U,, and positive
definite diagonal matrices S and T. By (i),

M @M, = (U @U)(S@T) (U, @U) = (U, @ U)" (S®T)(U; ® Us)

and, since U; ® U, is unitary, the functional calculus (see [1, p. 212]) allows us to
write

(M @ My)* = (U; @ Up)*(S® T)*(U; @ Uy)
= (U @U;)(8* @ T*) (U, @ Us) = (UiSU)* @ (UsTU,)* = M @ My. [

In [1], Ando pointed out a fundamental commutativity relation between the geo-
metric mean and tensor product of two positive definite matrices, namely

G(M1®M2,N1®N2):G(M1,N1)®G(M2,N2). (1)

In fact, this can readily be extended to the o -power mean. The analog of identity (1)
is

G\ (M, ® My, N, @ Ny) = G\ (My,Ny) @ G'*) (My, Ns), (2)

and this follows easily from Proposition 1.
A multi-stage induction argument leads to a simple, but powerful extension of
identity (2):

PROPOSITION 2. Let Mj; (1 < i < m, 1 <j < k) be positive definite n x n
matrices, and let w be an m-tuple of positive numbers (wy,wa, ..., Wy,) summing to
1. Then

k k k
G, H®Mlj7" H®Mmj :H®GW(M1J>"'7MV’€/)'
=1 ) =1

j,
Proof. With the help of Proposition 1, a preliminary induction shows that

Gles O(m71>(M1®N1’”"Mm®Nm):G(al ..... oc,,,,l)(Mhm?Mm)@G(al ,,,,, a’”’l)(Nl,...,Nm),
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and then a second induction gives
k k
G(O1nsOm—1) H @Myj, . . ., H M, | = H ®G(Oﬁl~,m~,amfl)(Mlj7 o 7Mmj)~
=1 j

Setting o; = 1 — (Wj+1 / Zj’i} wj) for i = 1,...,m — 1 yields the statement of
Proposition 2. We omit the simple details. [

In many situations, properties of tensor products transfer to Hadamard products.
This is thanks to an important connection between the two products (e.g. see [1, Lemma
4]): there is a positive linear map ®; from n*-dimensional space to n-dimensional
space of matrices such that, for all n x n matrices M; (1 < i < k),

k k
(O <H ®Mi> = H oM,;. (3)
i=1 i=1

With this, we can quickly identify the key to our proof of Theorem 1:

PROPOSITION 3. Let My (1 < i < m, 1 < j < k) be positive definite n X n
matrices, and let w be an m-tuple of positive numbers (wy,wa, ..., Wy,) summing to
1. Then

and

Proof. By Sagae and Tanabe’s arithmetic-geometric mean inequality and Proposi-
tion 2,

k k k m
[I® GuMy,... M) =Gy [ []® My T My | <D wi]]® My
j=1 j=1 j=1 =l j=1

The Hadamard product inequality follows by (3) from the tensor productinequality. [

Proof of Theorem 1. In Proposition 3, let

(M117-'-7Mm1) - (Mil7"'7Mim)7
(Mlza cee 7Mn12) = (1‘4]'1, - ?Aljm)a

(Mlm7M2m> cee 7Mmm) = (Mk17 cee 7Mkm)~
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Then, since the Hadamard product is commutative,

m

Gy(Mi, ...\ M,) 00 Gu(My,, ..., My,) = [[ o Gu(My;, ..., My;)
j=1
m m
< ZwiHOMlj
i=1 j=1
m m m
=Y wi[[oM;=][[om:. O
=1 j=1 i=1

It is clear that inequality (A;) is an immediate corollary of Theorem 1. Let

(i1, 125y im)y (1sJ2s-«-sgm)s -+, (ki,k2,...,ky) be arbitrary m-permutations of
{1,2,...,m}. If M; (1 <i<m)commuteand w; =w, =---=w, = 1/m, then
Gv(M;,....M,;,) =G,(M;,....M,,)

L
m m

=Gy(My,, ..., My,) = | [[M:
i=1
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