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Abstract. In this paper we study and characterize those Diophantine inequalities ax mod b � x
whose set of solutions is a pseudo-symmetric numerical semigroup.

Following the notation used in [11], a modular Diophantine inequality is an expres-
sion of the form ax mod b � x . The set S(a, b) of integer solutions of this inequality
is a numerical semigroup, that is, it is a subset of N (the set of nonnegative integers)
closed under addition, 0 ∈ S(a, b) and N \ S(a, b) has finitely many elements. We
say that a numerical semigroup is modular if it is the set of solutions to a modular
Diophantine inequality. As shown in [11], not every numerical semigroup is of this
form.

If S is a numerical semigroup, then the greatest integer not in S is the Frobenius
number of S , denoted by g(S) . We say that S is irreducible (see [5]) if it cannot be
expressed as an intersection of two numerical semigroups that contain it properly. The
numerical semigroup S is symmetric (respectively pseudo-symmetric) if it is irreducible
with odd (respectively even) Frobenius number. These semigroups have been widely
studied (see for instance [2] and the references given there). An inequality ax mod b � x
is symmetric (respectively pseudo-symmetric) if S(a, b) is a symmetric (respectively
pseudo-symmetric) numerical semigroup. In [6] we initiated the study of symmetric
modular Diophantine inequalities, in this paper we focus on pseudo-symmetricmodular
Diophantine inequalities.

Every numerical semigroup S is finitely generated and thus there exist positive
integers n1, . . . , np such that S = 〈 n1, . . . , np〉 = {a1n1+ . . .+apnp | a1, . . . , ap ∈ N} .
If no proper subset of {n1, . . . , np} generates S , then we say that {n1, . . . , np} is a
minimal system of generators of S . The minimal system of generators of a numerical
semigroup is unique (see [7]) and its cardinality is known as the embedding dimension
of S , denoted by e(S) .

Observe that S(1, b) = N and that the inequality ax mod b � x has the same
solutions as the inequality (a mod b)x mod b � x . Thus we will assume that a and
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b are integers such that 2 � a < b . In the rest of the paper we will use d and d′ to
denote the integers gcd{a, b} and gcd{a − 1, b} , respectively.

In Theorem 10 we will explicitly describe a minimal system of generators of
S(a, b) when this semigroup is pseudo-symmetric. As a consequence of this result we
will obtain that these numerical semigroups have embedding dimension three. Theorem
14 characterizes pseudo-symmetric modular numerical semigroups in terms of its gen-
erators and Frobenius number. We finish this paper by describing those positive integers
that are the Frobenius numbers of pseudo-symmetric modular numerical semigroup.

The following result is a consequence of Corollaries 6, 16 and 17, and Lemma 11
in [11].

LEMMA 1.
1) If x ∈ Z \ S(a, b) , then b − x ∈ S(a, b) .
2) Let x be a positive integer. Then x ∈ S(a, b) and b − x ∈ S(a, b) if and only if

x ∈
{

k
b
d
| 0 � k � d − 1} ∪ {k b

d′ | 0 � k � d′ − 1

}
.

3) b − d − d′ � g(S(a, b)) .
4) S(a, b) is symmetric if and only if g(S(a, b)) = b − d − d′ .
5) S(a, b) is pseudo-symmetric if and only if g(S(a, b)) = b − d − d′ − 1 .

As an immediate consequence of 3) and 4) in Lemma 1, we obtain the following
result.

LEMMA 2. S(a, b) is symmetric if and only if b − d − d′ �∈ S(a, b) .

In the literature one can find several characterizations of the concept of symmetric
numerical semigroup. The most common is the following (see for instance [1]).

LEMMA 3. A numerical semigroup S is symmetric if and only if x ∈ Z\S implies
g(S)− x ∈ S .

LEMMA 4. S(a, b) is pseudo-symmetric if and only if b − d − d′ − 1 �∈ S(a, b) .

Proof. If S(a, b) is pseudo-symmetric, then by 5) in Lemma 1, we have that
b − d − d′ − 1 �∈ S(a, b) . In order to prove the converse, it suffices to show that
g(S(a, b)) = b− d− d′− 1 and then use 5) in Lemma 1. We first see that b− d− d′ ∈
S(a, b) . If this were not the case, then in view of Lemma 2, S(a, b) would be symmetric
and by 4) in Lemma 1, g(S(a, b)) = b − d − d′ . As 2 � a < b , we have that
1 �∈ S(a, b) . From Lemma 3, we deduce that b− d− d′− 1 ∈ S(a, b) , in contradiction
with the hypothesis. Hence b − d − d′ ∈ S(a, b) and by 3) in Lemma 1, we deduce
that g(S(a, b)) = b − d − d′ − 1 . �

As with symmetric numerical semigroups, one can find in the literature several
characterizations of the pseudo-symmetric property. The following appears in [3].

LEMMA 5. A numerical semigroup S is pseudo-symmetric if and only if g(S) is
even and {x, g(S)− x} ⊆ Z \ S implies that x = g(S)

2 .
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LEMMA 6. If S(a, b) is pseudo-symmetric, then

S(a, b) =
〈

b
d
,

b
d′ , d + d′ + 1,

b + d + d′ + 1
2

〉
.

Proof. By 5) in Lemma 1, we know that g(S(a, b)) = b − d − d′ − 1 . Hence
b−d−d′−1

2 �∈ S(a, b) , which in view of 1) in Lemma 1 implies that b+d+d′+1
2 = b −

b−d−d′−1
2 ∈ S(a, b) . As b − d − d′ − 1 �∈ S(a, b) , by using again 1) in Lemma 1,

we have that d + d′ + 1 ∈ S(a, b) . Besides, a b
d mod b = 0 and a b

d′ mod b � b
d′ ,

and consequently { b
d , b

d′ } ⊆ S(a, b) . This proves that { b
d , b

d′ , d + d′ + 1, b+d+d′+1
2 } ⊆

S(a, b) and consequently 〈 b
d , b

d′ , d + d′ + 1, b+d+d′+1
2 〉 ⊆ S(a, b) . For the other

inclusion, let x ∈ S(a, b) and t = max{k ∈ N | x − k(d + d′ + 1) ∈ S(a, b)} . Then
x − (t + 1)(d + d′ + 1) �∈ S(a, b) . By using Lemma 5, we have one of the following
two cases.

1) If b − d − d′ − 1 − (x − (t + 1)(d + d′ + 1)) ∈ S(a, b) , then b − (x − t(d +
d′ + 1)) ∈ S(a, b) . As x− t(d + d′ + 1) ∈ S(a, b) , by 2) in Lemma 1, we deduce that
x ∈ 〈 b

d , b
d′ , d + d′ + 1〉 .

2) If x − (t + 1)(d + d′ + 1) = b−d−d′−1
2 , then x = t(d + d′ + 1) + b+d+d′+1

2 ∈
〈 d + d′ + 1, b+d+d′+1

2 〉 . �

This result is telling us that if S(a, b) is pseudo-symmetric, then e(S(a, b)) � 4 .
We do not highlight this result, since in Corollary 11 we will see that e(S(a, b)) = 3 .

LEMMA 7. S(a, b) is pseudo-symmetric if and only if 0 < a(d+d′+1) mod b <
d + d′ + 1 .

Proof. If S(a, b) is pseudo-symmetric, then byLemma6,we know that d+d′+1 ∈
S(a, b) and thus 0 � a(d + d′ + 1) mod b � d + d′ + 1 . If a(d + d′ + 1) mod b = 0 ,
then a(b − d − d′ − 1) mod b = 0 , which implies that b − d − d′ − 1 ∈ S(a, b) , in
contradiction with what we obtained in Lemma 4. If a(d+d′+1) mod b = d+d′ +1 ,
then a(b−d−d′−1) mod b = b−d−d′−1 . Again this leads to b−d−d′−1 ∈ S(a, b) ,
which is impossible.

If 0 < a(d + d′ + 1) mod b < d + d′ + 1 , then a(b − d − d′ − 1) mod b =
b − (a(d + d′ + 1) mod b) > b − d − d′ − 1 , meaning that b − d − d′ − 1 �∈ S(a, b) .
By Lemma 4, we can assert that S(a, b) is pseudo-symmetric. �

The following result is a reformulation of [11, Lemma 4].

LEMMA 8. S(a, b) = S(b + 1 − a, b) .

The following result is the key to understand that the condition imposed in Theorem
10 is not restrictive.

LEMMA 9. If S(a, b) is pseudo-symmetric, then 1 ∈ {d, d′} .

Proof. Assume that d �= 1 �= d′ . As gcd{a, a − 1} = 1 , we deduce that d �= d′ .
We distinguish two cases.
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1) Assume that d > d′ � 2 . Observe that there exist positive integers u , v
and k such that a = ud , a − 1 = vd′ , b = kdd′ and (thus) ud − vd′ = 1 . Hence
S(a, b) = S(ud, kdd′) . By Lemma 7 we know that 0 < ud(d + d′ + 1) mod kdd′ <
d + d′ + 1 and consequently 0 < d(u(d + d′ + 1) mod kd′) < d + d′ + 1 . Thus
0 < u(d+d′+1) mod kd′ < d+d′+1

d � 2 . This implies that u(d+d′+1) mod kd′ = 1 .
Then there exists q ∈ N such that u(d + d′ + 1) = qkd′ + 1 . Hence qkd′ + 1 =
ud+ud′+u = 1+vd′+ud′+u = 1+u+(u+v)d′ . This leads to qkd′ = u+(u+v)d′ ,
which implies that d′ divides u , in contradiction with ud − vd′ = 1 and d′ � 2 .

2) Assume that d′ > d � 2 . ByLemma8,we know that S(a, b) = S(b+1−a, b) .
Moreover, gcd{a, b} = gcd{b+1−a−1, b} and gcd{a−1, b} = gcd{b+1−a, b} .
Hence S(b + 1 − a, b) is under the conditions of case 1), and we obtain again a
contradiction. �

REMARK 1. Observe that as a consequence of Lemmas 8 and 9, every pseudo-
symmetric modular numerical semigroup is of the form S(a, b) with 2 � a < b and
gcd{a − 1, b} = 1 .

THEOREM 10. Let a and b be positive integers such that 2 � a < b and
gcd{a − 1, b} = 1 . Let d = gcd{a, b} . Then S(a, b) is pseudo-symmetric if and
only if 0 < a(d + 2) mod b < d + 2 . Moreover, if this is the case, then S(a, b) =
〈 b

d , d + 2, b+d+2
2 〉 and g(S(a, b)) = b − d − 2 .

Proof. The first part is a consequence of Lemma 7; the second of Lemma 6 and 5)
in Lemma 1. �

It is well known (see for instance [3]) that if S is a numerical semigroup with
e(S) � 2 , then it is symmetric and thus it is not pseudo-symmetric. As a consequence
of Theorem 10 we obtain the following result.

COROLLARY 11. If S(a, b) is pseudo-symmetric, then e(S(a, b)) = 3 .

In the following examples we highlight the results obtained so far.
EXAMPLE 1.
• Observe that gcd{6, 20} �= 1 �= gcd{5, 20} . Hence by Lemma 9, S(6, 20) is

not pseudo-symmetric.
• Observe that S(5, 8) does not fulfill the conditions to apply Theorem 10.

However, by Lemma 8, S(5, 8) = S(4, 8) and we can use Theorem 10 with S(4, 8) .
As (4×6) mod 8 = 0 , we can assert that S(5, 8) (= S(4, 8) ) is not pseudo-symmetric.

• Observe that S(6, 9) is under the conditions of Theorem 10. Moreover, (6 ×
5) mod 9 = 3 , which in view of Theorem 10 implies that S(6, 9) is pseudo-symmetric,
S(6, 9) = 〈 3, 5, 7〉 and g(S(6, 9)) = 4 .

Note that by Theorem10we know that everymodular pseudo-symmetricnumerical
semigroup S has the form 〈 n

t , t + 2, n+t+2
2 〉 and with g(S) = n − t − 2 . Our next

goal will be Theorem 14 in which we give the conditions that a couple of integers n
and t must fulfill so that 〈 n

t , t + 2, n+t+2
2 〉 is a pseudo-symmetric modular numerical

semigroup with Frobenius number n − t − 2 .
The following result can be deduced from [4].
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LEMMA 12. Let S = 〈 n1, n2, n3〉 be a numerical semigroup. If gcd{n1, n2}n3 ∈
〈 n1, n2〉 , then S is symmetric.

LEMMA 13. Let n and t be positive integers such that t divides n . If S =
〈 n

t , t + 2, n+t+2
2 〉 is a pseudo-symmetric numerical semigroup and g(S) = n − t − 2 ,

then n
t is odd.

Proof. Since S is pseudo-symmetric, we have that g(S) = n− t− 2 is even. If n
t

is even, then so is t + 2 . As 2 n+t+2
2 = t n

t + t + 2 ∈ 〈 n
t , t + 2〉 , from Lemma 12 we

deduce that S is symmetric, contradicting that S is pseudo-symmetric. �

THEOREM 14. Let t < n be two positive integers such that t divides n . Then S =
〈 n

t , t + 2, n+t+2
2 〉 is a pseudo-symmetric modular numerical semigroup with Frobenius

number n − t − 2 if and only if n
t is odd and gcd{t + 2, n

t } = 1 .

Proof. Necessity. By Lemma 13 we know that n
t is odd. Since S is a numerical

semigroup gcd{ n
t , t + 2, n+t+2

2 } = 1 . From the equality 2 n+t+2
2 = t n

t + t + 2 , we
deduce that gcd{ n

t , t + 2} = 1 .
Sufficiency. If gcd{t + 2, n

t } = 1 , then there exists u ∈ {1, . . . , n
t − 1} such that

u(t + 2) ≡ 1 mod n
t . Note that gcd{u, n

t } = 1 . We prove that S = S(ut, n) and that
S(ut, n) is a pseudo-symmetric modular numerical semigroup with Frobenius number
n − t − 2 . Observe that gcd{ut, n} = t gcd{u, n

t } = t . Moreover, u(t + 2) = qn
t + 1

for some q ∈ N , whence ut − 1 + 2u = qn
t . We deduce that gcd{ut − 1, n

t } = 1 ,
since otherwise gcd{2u, n

t } �= 1 , and as n
t is odd, this would lead to gcd{u, n

t } �= 1 ,
which contradicts what we have seen above. Since gcd{ut − 1, n

t } = 1 , we have
that gcd{ut − 1, n} = 1 . Observe now that ut(t + 2) mod n = ut(t + 2) mod t n

t =
t(u(t + 2) mod n

t ) = t and thus 0 < ut(t + 2) mod n < t + 2 . By using Theorem 10,
we conclude that S = S(ut, n) , S is pseudo-symmetric and g(S) = n − t − 2 . �

EXAMPLE 2. If we apply the preceding theorem to n = 20 and t = 4 , we have
that 〈 5, 6, 13〉 is a modular pseudo-symmetric numerical semigroup with Frobenius
number 14.

In [9] it is shown that every positive integer is the Frobenius number of a numerical
semigroup of embedding dimension less than or equal to three. In [8] the same result
is achieved for irreducible numerical semigroups, but imposing that the embedding
dimension is less than or equal to four. Moreover, in this last paper it is pointed out that
there exists no irreducible numerical with embedding dimension three and Frobenius
number twelve. Thus one might wonder for which positive integers g there exists an
irreducible numerical semigroup with Frobenius number g and embedding dimension
three. The following result gives a partial answer to this problem.

COROLLARY 15. Let g be a positive integer. Then there exists a pseudo-symmetric
modular numerical semigroupwith Frobenius number g if and only if there exist positive
integers k and k′ such that k is odd, k � 3 , gcd{k′ +2, k} = 1 and g = kk′− k′−2 .

Proof. By using Remark 1 and Theorems 10 and 14, we deduce that there exists
a pseudo-symmetric modular numerical semigroup with Frobenius number g if and
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only if g = n − t − 2 with t < n positive integers such that n
t is an odd integer and

gcd{t + 2, n
t } = 1 . We conclude the proof by taking t = k′ and n = kk′ .

We finish this work with an example in which we give some families of positive
integers g for which there exist a pseudo-symmetricmodular numerical semigroupwith
Frobenius number g (and thus with embedding dimension three).

EXAMPLE 3.
(1) If we apply Corollary 15 with k = 3 , then the condition gcd{k′ + 2, 3} = 1 is

equivalent to k′ �≡ 1 mod 3 .
• If k′ = 3t with t ∈ N \ {0} , then Corollary 15 states that there exist pseudo-
symmetric modular numerical semigroups with Frobenius number g , for all g ∈
{4 + 6t | t ∈ N} .
• If k′ = 2+3t , with t ∈ N , then we can say the same for all g ∈ {2+6t | t ∈ N} .

(2) If we use Corollary 15 with k = 5 , then • for k′ = 5t with t ∈ N \ {0} , we
obtain g ∈ {18 + 20t | t ∈ N} ,
• for k′ = 1 + 5t with t ∈ N , we get g ∈ {2 + 20t | t ∈ N} ,
• for k′ = 2 + 5t with t ∈ N , g ∈ {6 + 20t | t ∈ N} ,
• for k′ = 4 + 5t with t ∈ N , we have that g ∈ {14 + 20t | t ∈ N} .
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