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ON SHAFER–FINK INEQUALITIES

LING ZHU

(communicated by A. M. Fink)

Abstract. In this paper, a new upper bound for inverse sine is established.We would point out
that the numbers, 3 and π , 6 and π(

√
2 + 1

2 ) , in Shafer-Fink inequalities, are optimal.

1. Introduction

Mitrinović [1,p.247] gives us a result which belongs to R. E. Shafer:

THEOREM 1. If x > 0 , then

arc sin x >
6(
√

1 + x −√
1 − x)

4 +
√

1 + x +
√

1 − x
>

3x

2 +
√

1 − x2
. (1)

Fink [2] shows a upper bound for inverse sine,and obtains the following theorem:

THEOREM 2. If 0 � x � 1 ,then

3x

2 +
√

1 − x2
� arc sin x � πx

2 +
√

1 − x2
. (2)

Furthermore, 3 and π are the best constants in (2).

In this paper, we further improve the upper bound of inverse sine and obtain two
results.

THEOREM 3. If 0 � x � 1 ,then

6(
√

1 + x −√
1 − x)

4 +
√

1 + x +
√

1 − x
� arc sin x �

π(
√

2 + 1
2 )(

√
1 + x −√

1 − x)
4 +

√
1 + x +

√
1 − x

. (3)

Furthermore, 6 and π(
√

2 + 1
2 ) are the best constants in (3).
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In view of the fact π(
√

2+ 1
2 )(

√
1+x−√

1−x)
4+

√
1+x+

√
1−x

� πx

2+
√

1−x2
for x ∈ [0, 1] ,combining (2)

and (3) gives

THEOREM 4. If 0 � x � 1 ,then

3x

2 +
√

1 − x2
� 6(

√
1 + x −√

1 − x)
4 +

√
1 + x +

√
1 − x

� arc sin x

�
π(
√

2 + 1
2 )(

√
1 + x −√

1 − x)
4 +

√
1 + x +

√
1 − x

� πx

2 +
√

1 − x2
.

(4)

Furthermore, 3 and π , 6 and π(
√

2 + 1
2 ) are the best constants in (4).

Now,we build a function with a parameter. According to the monotony of this
function with respect to θ , Theorem 2 and Theorem 3 will be proved in the same way.

2. One Lemma

LEMMA 1. Let θ ∈ [0, π
2 ) ,then f (θ) = (π−2θ)(2+sinθ)

cos θ strictly decreases as θ
increases on [0, π

2 ) .

Proof of Lemma 1 . Since

f ′(θ) =
(π − 2θ)(1 + 2 sin θ) − 2 cosθ(2 + sin θ)

cos2 θ
=:

g(θ)
cos2 θ

,

we get that the existence of theorem can be ensured when proving the following in-
equality

g(θ) = (π − 2θ)(1 + 2 sin θ) − 2 cosθ(2 + sin θ) < 0, θ ∈ [0,
π
2

). (5)

In fact,
g′(θ) = 2 cosθ(π − 2θ − 2 cosθ) =: 2 cosθp(θ),

where, p(θ) = π − 2θ − 2 cosθ . Since p′(θ) = −2 + 2 sin θ < 0 for θ ∈ [0, π2 ) , we
obtain that the function p(θ) strictly decreases as θ increases on [0, π2 ) . At the same
time, p( π2 ) = 0 ,then p(θ) > 0 and g′(θ) > 0 . Now,g( π2 ) = 0 ,we have g(θ) < 0 for
θ ∈ [0, π2 ) . That is, (5) holds.

3. A new proof of Theorem 2

In view of the fact that 3x

2+
√

1−x2
= arc sin x for x = 0 , the proof of Theorem 2

can be completed when proving the following result.

COROLLARY 1. If 0 < x � 1 ,then

3x

2 +
√

1 − x2
< arc sin x � πx

2 +
√

1 − x2
. (6)

Furthermore, 3 and π are the best constants in (6).
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Proof of Corollary 1 . Now, 0 < x � 1 . Let x = cosθ , then θ ∈ [0, π
2 ) and (6)

is equivalent to
3 cosθ

2 + sin θ
<

π
2
− θ � π cos θ

2 + sin θ
or

6 <
(π − 2θ)(2 + sin θ)

cosθ
� 2π. (7)

In fact, f (θ) = (π−2θ)(2+sin θ)
cos θ strictly decreases as θ increases on [0, π2 ) by Lemma 1,

then
f (
π
2
− 0) < f (θ) � f (0).

Since f ( π2
−) = 6 and f (0) = 2π , we have that (7) holds. At the same time, 3 and π

are the best constants in (6).

4. The proof of Theorem 4

In view of the fact that 6(
√

1+x−√
1−x)

4+
√

1+x+
√

1−x
= arc sin x for x = 0 , the existence of

Theorem 3 is ensured when proving the result as follows.

COROLLARY 2. If 0 < x � 1 ,then

6(
√

1 + x −√
1 − x)

4 +
√

1 + x +
√

1 − x
< arc sin x �

π(
√

2 + 1
2 )(

√
1 + x −√

1 − x)
4 +

√
1 + x +

√
1 − x

. (8)

Furthermore, 6 and π(
√

2 + 1
2 ) are the best constants in (8).

Proof of Corollary 2 . Now, 0 < x � 1 . Let
√

1 + x =
√

2 cosα,
√

1 − x =√
2 sinα ,then α ∈ [0, π4 ) , x = cos 2α and (8) is equivalent to

6
√

2(cosα − sinα)
4 +

√
2(cosα + sinα)

<
π
2
− 2α �

π(
√

2 + 1
2 )
√

2(cosα − sinα)

4 +
√

2(cosα + sinα)

or
6 · 2 cos(α + π

4 )
4 + 2 sin(α + π

4 )
<

π
2
− 2α �

π(
√

2 + 1
2 )2 cos(α + π

4 )
4 + 2 sin(α + π

4 )
. (9)

Now, let α + π
4 = θ , then θ ∈ [ π4 , π

2 ) and (9) is equivalent to

6 cosθ
2 + sin θ

< π − 2θ �
π(
√

2 + 1
2 ) cos θ

2 + sin θ
, θ ∈ [

π
4
,
π
2

)

or

6 <
(π − 2θ)(2 + sin θ)

cosθ
� π(

√
2 +

1
2
), θ ∈ [

π
4
,
π
2

). (10)

In fact, f (θ) = (π−2θ)(2+sin θ)
cos θ strictly decreases as θ increases on [ π4 , π

2 ) by Lemma
1, then

f (
π
2
− 0) < f (θ) � f (

π
4

).



574 LING ZHU

Since f ( π2
−) = 6 and f ( π4 ) = π(

√
2 + 1

2 ) ,we obtain (10). At the same time, 6 and
π(
√

2 + 1
2 ) are the best constants in (8).
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