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Abstract. The well-known Maclaurin’s inequalities are generalized as follows: If x and y are
two positive n -tuples, and y and x/y are similarly ordered, then

P[1]
n (x)/P[1]

n (y) � P[2]
n (x)/P[2]

n (y) � · · · � P[k]
n (x)/P[k]

n (y) � · · · � P[n]
n (x)/P[n]

n (y),

where P[k]
n (a) is the k -th symmetric mean of a (see[15], p. 283]). The method used in this

paper is based on the computational method of descending dimension. As applications, several
generalizations for the results of Izumi et al [20], Marshall and Olkin [7], Vasić et al [21], Beesack
et al [22], Yang et al [5] are showed.

1. Introduction

We need the following notation and symbols:

x := (x1, . . . , xn); xr := (xr
1, . . . , x

r
n);�n

+ := {x|xi � 0, i = 1, . . . , n};
�n

++ := {x|xi > 0, i = 1, . . . , n}; x, y ∈ �n,

yi �= 0 (i = 1, . . . , n), x/y := (x1/y1, . . . , xn/yn);

1 ∓ x := (1 ∓ x1, . . . , 1 ∓ xn); x
′
i := (x1, . . . , xi−1, xi+1, . . . , xn);

Ek(x) :=
∑

1�i1<···<ik�n

k∏
j=1

xij (1 � k � n),

where Ek(x) is called k− th elementary symmetric function of x and defined E0(x)=1.

DEFINITION 1. Two n -tuples x and y are said to be similarly ordered if and only
if for i, j(1 � i, j � n) we have (xi − xj)(yi − yj) � 0 ; if this inequality is reversed,
then x and y are said to oppositely ordered. (See [2] [15, p. 230].)
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DEFINITION 2. The k -th symmetric mean of x ∈ �n
++ is defined by

P[k]
n (x) :=

[
Ek(x)
(n
k)

]1/k

(1 � k � n),

where ( n
k ) = n!/[k!(n− k)!] . Especially, P[1]

n (x) = An(x) and P[n]
n (x) = Gn(x) are the

arithmetic mean and the geometric mean of x , respectively.
As is well known, the chain of inequalities due to Maclaurin states that

P[1]
n (x) � P[2]

n (x) � · · · � P[k]
n (x) � · · · � P[n]

n (x), (1)

where x ∈ �n
++ . It must be noted that (1) is not only very interesting, but also

useful in the theory of inequalities, and the result evoked the interest of many authors,
and different proofs as well as many extensions, refinements and variants have been
published. For example, in 1984 Wang and Wang [3] (also see [4]) established a Ky Fan
type chain similar to (1) as follows:

P[1]
n (x)

P[1]
n (1 − x)

� P[2]
n (x)

P[2]
n (1 − x)

� · · · � P[k]
n (x)

P[k]
n (1 − x)

� · · · � P[n]
n (x)

P[n]
n (1 − x)

, (2)

where x ∈ {x | xi ∈ (0, 1/2], i = 1, ..., n} . In [18] Wang, Li and Chen also established
some results similar to (1) and (2). Recently, Wen and Shi [19] obtained an amusing
strengthening for (1): If x ∈ �n

++ , n � 3 , 2 � k � n − 1 , then the largest p and the
smallest q , satisfying

[An(x)]p[Gn(x)]1−p � P[k]
n (x) � q An(x) + (1 − q )Gn(x), (3)

are pn, k = (n− k)/[k(n− 1)] and qn, k = [n/(n− 1)][1− (k/n)]1/k , respectively. In [9]
Wen et al discussed the separation of power means and its applications. We shall estab-
lish an extension of Maclaurin’s inequalities (1) by means of the computational method
of descending dimension. The method first was elaborated at the end of 20th century;
and developed by the present authors of this paper; it has played an important role in
establishing inequalities (see [8-11][14][19]). It seems that the following inequalities
(4) has the true meaning from some mathematical and aesthetical points of view. The
main result to be proved in this paper is as follows:

THEOREM 1. Let x and y ∈ �n
++ , and let y and x/y be similarly ordered. Then

P[1]
n (x)

P[1]
n (y)

� P[2]
n (x)

P[2]
n (y)

� · · · � P[k]
n (x)

P[k]
n (y)

� · · · � P[n]
n (x)

P[n]
n (y)

. (4)

Equalities occur if and only if x1/y1 = x2/y2 = · · · = xn/yn . In other words, if
0 < y1 � y2 � · · · � yn and 0 < x1/y1 � x2/y2 � · · · � xn/yn , inequalities (4) are
equivalent to

E1(x)
E1(y)

� [
E2(x)
E2(y)

]1/2 � · · · � [
Ek(x)
Ek(y)

]1/k � · · · � [
En(x)
En(y)

]1/n. (4*)

Equalities occur if and only if x1/y1 = x2/y2 = · · · = xn/yn .
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REMARK 1. We take y = (1, 1, . . . , 1) ∈ �n
++ in (4), since y and x/y become

similarly ordered such that (4) or (4 ∗ ) reduces the original Maclaurin’s inequalities (1)
and hence (4) or (4 ∗ ) is a generalization of inequalities (1).

REMARK 2. Since for any x ∈ �n
++(n � 2) , there exits y ∈ �n

++ such that y and
x/y are similarly ordered (see Theorem 2), therefore combining (4) with (1), we obtain
that

P[k]
n (x) � P[k]

n (y)

P[k+1]
n (y)

· P[k+1]
n (x) � P[k+1]

n (x), (k = 1, . . . , n − 1).

It follows from this fact that (4) strengthens (1).
In Section 4, we shall apply Theorem1 to generalize some well-known inequalities,

e.g., the following inequality (5) and others. In order to interpret the significance of
this main theorem, we will still display some geometric results of convex body.

2. Preliminaries

In this section we establish the following lemmas which will be used:

LEMMA 1. Let x, y, w ∈ �n
++ , and let y and x/y be similarly ordered. Then the

function

f (r) :=
(∑n

i=1 wixr
i∑n

i=1 wiyr
i

)1/r

, (r ∈ �)
is increasing with r , where

f (0) :=
(∏n

i=1 xwi
i∏n

i=1 ywi
i

)1/
(∑n

i=1
wi

)
.

In other words, if r1, r2 ∈ �, r1 < r2 then

f (r1) � f (r2). (5)

Equality occurs if and only if x1/y1 = x2/y2 = · · · = xn/yn .

In fact, this famous result can be found in [12, pp. 48-49] [7] [15, p. 169] [18] and
the references cited therein.

LEMMA 2. (The generalized Bernoulli’s inequality [8] ) Let a, t ∈ �, a > 1.
(I) If t > −1 , then

(1 + t)a � 1 + at. (6)
(II) If t � −2 − c0/a , then

(1 + t)|1 + t|a−1 � 1 + at. (7)

(III) If t � −2 − c0 , then

(1 + t)|1 + t|a−1 < 1 + at. (8)

Here c0 = 2.5911211476 · · · is a unique positive real root of equality ln(1 + c) =
1 + (1 + c)−1 . Equalities in (6) and (7) occur if and only if t = 0 .

Note that the inequality (6) is a well-known result [12, p. 65] [15, p. 5]. However,
it seems that both (7) and (8) are new in literature.
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LEMMA 3. (See[15, p. 286]) Let y ∈ �n
++ (n � 2) and 1 � k � n − 1 . Then

[Ek(y)]2 > Ek−1(y)Ek+1(y). (9)

LEMMA4. Let x, y ∈ �n
++ (n � 2), x

′
n := (x1, x2, . . . , xn−1), y

′
n := (y1, y2, . . . , yn−1) ,

and
0 < x1/y1 � x2/y2 � · · · � xn−1/yn−1 � xn/yn.

Then [
Ek(x′n)
Ek(y′n)

]1/k

� xn

yn
, (k = 1 . . . , n − 1) . (10)

In fact, it is easy to see that

Ek

(
x
′
n

)
=

∑
1�i1<···<ik�n−1

k∏
j=1

yij

(
xij

yij

)
�

∑
1�i1<···<ik�n−1

k∏
j=1

yij

(
xn

yn

)
=
(

xn

yn

)k

Ek

(
y
′
n

)
,

which means that (10).

LEMMA 5. Let y := (u, . . . , u︸ ︷︷ ︸
n−p

, c, . . . , c︸ ︷︷ ︸
p

) ∈ �n
++, where 0 � p � n , n � 2 , and

c is a positive constant. Then, for the function

Fk(u) := k · Ek(y)
Ek−1(y)

− (k + 1) · Ek+1(y)
Ek(y)

, 1 � k � n − 1,

we have

lim
u→0

Fk(u) :=

{
0, k � p + 1,

c, k � p.
(11)

Proof. For any integral number r : 0 � r � n , we have

Er(y) =
∑

i+j=r,0�i�n−p,0�j�p

(
n − p

i

)(
p
j

)
uicj. (12)

From i + j = r, 0 � i � n − p, 0 � j � p, we get 0 � i � r, r − p � i � n − p . Thus

max{0, r − p} � i � min{r, n − p}. (13)

Combining (10) with (9) we have

Er(y) =
min{r, n−p}∑

i=max{0, r−p}

(
n − p

i

)(
p

r − i

)
uicr−i. (14)

When r > p , we can rewrite (14) as

Er(y) =
(

n − p
r − p

)
ur−pcp + o

(
ur−p

)
; (15)

when 1� r � p , we can rewrite (14) as

Er(y) =
(

p
r

)
cr + O(u), (16)
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where o (u) is an infinitesimal of higher order than u; O (u) is an infinitesimal of the
same order as u (as u → 0 ), respectively, and when r = 0 , then E0(y) = 1 , and (16)
also holds, but we get O(u) ≡ 0 .

From (15), (16) and the definition of Fk (u) , we will discuss 4 cases as follows:
Case 1 : If k > p + 1 , then k − 1 > p, k > p, k + 1 > p , and

Fk (u) = k ·
(n−p

k−p

)
uk−pcp + o

(
uk−p

)
( n−p

k−1−p

)
uk−1−pcp + o (uk−1−p)

− (k + 1) ·
( n−p

k+1−p

)
uk+1−pcp + o

(
uk+1−p

)
(n−p

k−p

)
uk−pcp + o (uk−p)

.

It is easy to calculate that lim u→0Fk (u) = 0 .
Case 2 : If k = p + 1 , then k − 1 � p , k > p , k + 1 > p and

Fk(u) = k ·
(n−p

k−p

)
uk−pcp + o

(
uk−p

)( p
k−1

)
ck−1 + O (u)

− (k + 1) ·
( n−p

k+1−p

)
uk+1−pcp + o

(
uk+1−p

)
(n−p

k−p

)
uk−pcp + o (uk−p)

.

Similarly, we have lim u→0Fk (u) = 0 .
Case 3 : If k = p , then k − 1 � p, k � p, k + 1 > p , and

Fk (u) = k ·
(p

k

)
ck + O (u)( p

k−1

)
ck−1 + O (u)

− (k + 1) ·
( n−p

k+1−p

)
uk+1−pcp + o

(
uk+1−p

)(p
k

)
ck + O (u)

.

It is easy to calculate that lim u→0Fk (u) = p · [cp/(pcp−1)
]

= c .
Case 4 : If 1 � k � p − 1 , then k − 1 � p, k � p, k + 1 � p , and

Fk (u) = k ·
(p

k

)
ck + O (u)( p

k−1

)
ck−1 + O (u)

− (k + 1) ·
( p

k+1

)
ck+1 + O (u)(p

k

)
ck + O (u)

.

It is easy to calculate that

lim
u→0

Fk (u) = k ·
(p

k

)
ck( p

k−1

)
ck−1

− (k + 1) ·
( p

k+1

)
ck+1(p

k

)
ck

= c.

Summarizing these discusses, we have completed the proof of Lemma 5.

LEMMA 6. Let y ∈ �n
++ (n � 2) , 0 < yi � c (i = 1, . . . , n) ,where c is a positive

constant. Then, for every, k (1 � k � n − 1) ,

k · Ek(y)
Ek−1(y)

− (k + 1) · Ek+1(y)
Ek(y)

� c. (17)

Proof. We first consider a special case as follows:
(A) When k = 1 , then

the left hand side of (17) =
n∑

i=1

yi −
2
∑

1�i<j�n yiyj∑n
i=1 yi

=
∑n

i=1 y2
i∑n

i=1 yi
�
∑n

i=1 cyi∑n
i=1 yi

= c.

Therefore, (17) holds.
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(B) When 2 � k � n − 1 , we denote the left-hand side of (17) by gk(y) , i.e.,

gk(y) := gk

(
y
′
n, yn

)
:= k · Ek(y)

Ek−1(y)
− (k + 1) · Ek+1(y)

Ek(y)
,

where we used y = (y1, . . . , yn−1, yn) := (y
′
n , yn) . For simplicity we denote Er(y

′
n) by

Er (0 � r � n) , where y
′
n = (y1, . . . , yn−1) ∈ �n−1

++ . It follows from the given relation
( see [1, p. 34] ) Ek(y) = ynEk−1 + Ek that

gk(y) = k · ynEk−1 + Ek

ynEk−2 + Ek−1
− (k + 1) · ynEk + Ek+1

ynEk−1 + Ek
, (18)

∂gk

∂yn
= k · (Ek−1)2 − Ek · Ek−2

(ynEk−2 + Ek−1)2
− (k + 1) · (Ek)2 − Ek+1 · Ek−1

(ynEk−1 + Ek)2
. (19)

By Lemma 2, we obtain that (Ek−1)2 − Ek · Ek−2 > 0 and (Ek)2 − Ek+1 · Ek−1 > 0 .
Now we fix y′n arbitrarily, so we may use the following symbol:

H(yn) :=
ynEk−1 + Ek

ynEk−2 + Ek−1
−
[
k + 1

k
· (Ek)2 − Ek+1 · Ek−1

(Ek−1)2 − Ek · Ek−2

]1/2

It is easy to verify that

∂gk

∂yn
> 0 (= 0; < 0) ⇐⇒ H(yn) > 0 (= 0; < 0) . (20)

From Lemma 2 we obtain that

dH
dyn

=
(Ek−1)2 − Ek · Ek−2

(ynEk−2 + Ek−1)2
> 0

thus H(yn) is strictly increasing with yn .
Note that for every y ∈ �n

++ : 0 < yi � c (i = 1, . . . , n) , there exists u : 0 < u <
c such that u � yi � c (i = 1, . . . , n) .

Case 1 : If H(u) � 0 , then, for every yn : u � yn � c, H(yn) � H(u) � 0.
Using (20), we have ∂gk/∂yn � 0 . Thus gk(y) is strictly increasing with yn such that
max gk(y) = gk(y

′
n, c) .

Case 2 : If H(c) � 0 , then, for every yn : u � yn � c, H(yn) � H(c) � 0.
Using (20), we have ∂gk/∂yn � 0 . Thus gk(y) is strictly decreasing with yn such that
max gk(y) = gk(y

′
n, u) .

Case 3 : If H(u) < 0, H(c) > 0 , from the continuity and the strict increase of
H(yn) on [u, c] , then there exits a unique u0 ∈ (u, c) such that H(u0) = 0 . When
u � yn � u0 , we can obtain that H(yn) � H(u0) = 0 . Using (20), we have ∂gk/∂yn �
0 . Therefore gk(y) is strictly decreasing with yn such that max gk(y) = gk(y

′
n, u) .

Similarly, when u0 � yn � c , we can obtain that maxgk(y) = gk(y
′
n, c) .

Summing up the above, gk(y) has maximum at yn = u or yn = c . Similarly, for
every yi : u � yi � c, 1 � i � n − 1, gk(y) has maximum if and only if yi = u or
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yi = c . In other words, there exists p : 0 � p � n such that every y ∈ �n
++ : u � yi �

c (i = 1, . . . , n) , we have

gk(y) � gk(u, . . . , u︸ ︷︷ ︸
n−p

, c, . . . , c︸ ︷︷ ︸
p

) = Fk(u)

where Fk(u) was defined by Lemma 5, and we used the symmetry of gk(y) . By Lemma
4, lim u→0Fk (u) � c , thus letting u → 0 in both sides gk(y) � Fk (u) , we get the
double-inequality

gk(y) � lim
u→0

Fk(u) � c,

namely, (17) is valid. This completes the proof of Lemma 6.

3. Proof of Theorem 1

Now we prove our main result as follows:
If n = 1 , the conclusion is clear. Assume that n � 2 below. We only prove that

for every k : 1 � k � n − 1 , we have[
Ek (x)
Ek(y)

]1/k

�
[
Ek+1 (x)
Ek+1(y)

]1/(k+1)

. (21)

Equality holds if and only if x1/y1 = x2/y2 = · · · = xn/yn .
We give an inductive proof of (21) as follows:
(A) If n = 2 , then k = 1 and (21) reduces that

x2 + x1

y1 + y2
�
√

x1x2

y1y2
. (22)

(22) can be deduced from Lemma 1 (taking w1 = w2 = 1, r1 = 0, r2 = 1) , and
equality holds if and only if x1/y1 = x2/y2 .

(B) Assume that Theorem 1 holds for n − 1(n � 3) . We prove that (21) holds
for n � 3 as follows:

Case 1 : If k = n − 1 , then (21) is equivalent to the following

⎡
⎣∑n

i=1

(
x−1
i

∏n
j=1 xj

)
∏n

i=1

(
y−1
i
∏n

j=1 yj

)
⎤
⎦

1/(n−1)

�
[∏n

i=1 xi∏n
i=1 yi

]1/n

,

namely, [∑n
i=1 x−1

i∑n
i=1 y−1

i

]1/(−1)

�
[∏n

i=1 xi∏n
i=1 yi

]1/n

(23)

Inequality (23) can be deduced from Lemma 1 (taking w1 = · · · = wn = 1, r1 =
−1, r2 = 0) , and equality holds if and only if x1/y1 = x2/y2 = · · · = xn/yn .
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Case 2 : If 1 � k � n−2 , we shall prove that inequality (21) holds. Recall that we
used symbols in Lemma 4: x

′
n := (x1, x2, . . . , xn−1) , y

′
n := (y1, y2, . . . , yn−1) ∈ �n−1

++ .
We shall also use the following symbols:

Tk :=

[
Ek(x

′
n)

Ek(y
′
n)

]1/k

, t :=
xn/yn

Tk
, uk := P[k]

n−1(y
′
n).

Since y and x/y are similarly ordered, without loss of generality, we assume that

0 < y1 � y2 � · · · � yn, 0 <
x1

y1
� x2

y2
� · · · � xn

yn
.

From Lemma 4 we have
t − 1 � 0. (24)

By using the inductive hypothesis, for k � 2 we have

Tk−1 � Tk � Tk+1. (25)

It is easy to calculate that
(n−1

k−1)
(n

k)
=

k
n
,

(n−1
k )

(n
k)

=
n − k

n
. (26)

From the above definitions and the facts we get

Ek(x) = xnEk−1
(
x′n
)

+ Ek
(
x′n
)

(by [1, p. 34])

= xnEk−1
(
y′n
)
(Tk−1)

k−1 + Ek
(
y′n
)
(Tk)

k (by the definition of Tk)

= xn

(
n − 1
k − 1

)
(uk−1)

k−1 (Tk−1)
k−1 +

(
n − 1

k

)
(uk)

k (Tk)
k (by the definition of uk)

=
1
n

(
n
k

)[
kxn (uk−1)

k−1 (Tk−1)
k−1 + (n−k) (uk)

k (Tk)
k
]
(by the equalities (26))

� 1
n

(
n
k

)[
kxn (uk−1)

k−1 (Tk)
k−1 + (n − k) (uk)

k (Tk)
k
]
; (by the inequalities (25))

=
1
n

(
n
k

)
(Tk)

k
[
kynt (uk−1)

k−1 +(n−k) (uk)
k
]
(by the definition of t).

(27)
If k = 1 , for every T0 �= 0 , the equality in (27) holds, so we have (27) for

1 � k � n − 2 . Similarly, from the inductive assumption, i.e., (25), for every
k : 1 � k � n − 2 , we have Tk � Tk+1 and

Ek+1 (x)

=
1
n

(
n

k+1

)[
(k + 1) xn (uk)

k (Tk)
k + (n − k − 1) (uk+1)

k+1 (Tk+1)
k+1
]

� 1
n

(
n

k+1

)[
(k+1) xn (uk)

k (Tk)
k + (n−k−1) (uk+1)

k+1 (Tk)
k+1
]
(by inequalities (25))

=
1
n

(
n

k+1

)
(Tk)

k+1
[
(k+1)ynt (uk)

k + (n−k−1) (uk+1)
k+1
]
(by the definition of t).

(28)
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Using an argument similar to (27) and replacing x by y , we can obtain that

Ek(y) =
1
n

(
n
k

)[
kyn (uk−1)

k−1 + (n − k) (uk)
k
]
, (29)

Ek+1(y) =
1
n

(
n

k + 1

)[
(k + 1) yn (uk)

k + (n − k − 1) (uk+1)
k+1
]
. (30)

Combining (27), (28) and (29) with (30) we have

[
Ek(x)
Ek(y)

]1/k

� Tk

[
kynt (uk−1)

k−1 + (n − k) (uk)
k

kyn (uk−1)
k−1 + (n − k) (uk)

k

]1/k

= Tk

[
1 +

kyn (uk−1)
k−1

kyn (uk−1)
k−1 + (n − k) (uk)

k · (t − 1)

]1/k
(31)

[
Ek+1 (x)
Ek+1(y)

]1/(k+1)

� Tk

[
(k + 1) ynt (uk)

k + (n − k − 1) (uk+1)
k+1

(k + 1) yn (uk)
k + (n − k − 1) (uk+1)

k+1

]1/(k+1)

= Tk

[
1+

(k + 1) yn (uk)
k

(k + 1) yn (uk)
k + (n − k − 1) (uk+1)

k+1 · (t − 1)

]1/(k+1)

.

(32)
For the argument of (21), from (31) and (32) it is enough to prove that[

1 +
kyn (uk−1)

k−1

kyn (uk−1)
k−1 + (n − k) (uk)

k · (t − 1)

](k+1)/k

� 1 +
(k + 1) yn (uk)

k

(k + 1) yn (uk)
k + (n − k − 1) (uk+1)

k+1 · (t − 1).

(33)

From Bernoulli’s inequality (6) and (24) we get that

the left-hand side of (33) � 1 +
(k + 1) yn (uk−1)

k−1

kyn (uk−1)
k−1 + (n − k) (uk)

k · (t − 1) . (34)

It follows from (33) and (34) that we need to prove that

(k + 1)yn (uk−1)
k−1

kyn (uk−1)
k−1 + (n − k) (uk)

k � (k + 1)yn (uk)
k

(k + 1)yn (uk)
k + (n − k − 1) (uk+1)

k+1

⇐⇒ kyn + (n − k)
(uk)

k

(uk−1)
k−1 � (k + 1) yn + (n − k − 1)

(uk+1)
k+1

(uk)
k

⇐⇒ (n − k)
(uk)

k

(uk−1)
k−1 − (n − k − 1)

(uk+1)
k+1

(uk)
k � yn. (35)
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Since for every k : 1 � k � n − 2 we have

(uk)
k

(uk−1)
k−1 =

(
n−1
k−1

)(
n−1
k

) · Ek (y′n)
Ek−1 (y′n)

=
k

n − k
· Ek (y′n)
Ek−1 (y′n)

;

(uk+1)
k+1

(uk)
k =

(
n−1
k

)(
n−1
k+1

) · Ek+1 (y′n)
Ek (y′n)

=
k + 1

n − k − 1
· Ek+1 (y′n)

Ek (y′n)
,

herefore (35) is equivalent to that

k · Ek (y′n)
Ek−1 (y′n)

− (k + 1) · Ek+1 (y′n)
Ek (y′n)

� yn. (36)

As pointed out that y′n ∈ �n−1
++ , 0 < yi � yn (i = 1, . . . , n − 1) , n − 1 � 2, 1 �

k � n − 2 , thus (36) holds from Lemma 6. In other words, the desired inequality (21)
holds.

From the above process of argument, we know that the equality in (21) holds if
and only if

x1

y1
=

x2

y2
= · · · =

xn−1

yn−1
= Tk = Tk+1,

(for every k : 1 � k � n − 1), t = 1, i.e., Tk = xn/yn

⇐⇒ x1

y1
=

x2

y2
= · · · =

xn

yn
.

The proof of Theorem 1 is complete.

REMARK 3. Thorem 1 remains valid if x, y ∈ �n
++ is replaced by x ∈ �n

+, y ∈
�n

++ .
REMARK 4. The fundamental idea of proving Theorem 1 is as follows: The

problem for proving analytic inequalities of higher dimension reduces to the problem
of lower dimension (even one dimension) first and then the problem can be treated by
means of routine calculus. This method is called the computionalmethod of descending
dimension. This method can treat not only the different analytic inequalities of higher
dimension, but also the optimizing problems of inequalities. The present authors have
used it many a time. (See [8-11][13-14][19].)

4. Some applications

First we establish a chain of inequalities similar to (2).

THEOREM 2. Let x ∈ �n
+ . Then

A (x)
An (1 + x)

=
P[1]

n (x)

P[1]
n (1 + x)

� P[2]
n (x)

P[2]
n (1 + x)

� · · ·

� P[k]
n (x)

P[k]
n (1 + x)

� · · · � P[n]
n (x)

P[n]
n (1 + x)

=
Gn (x)

Gn (1 + x)
.

(37)

Equalities occur if and only if x1 = x2 = · · · = xn .
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Proof. For any i, j : 1 � i, j � n , we have

[(1 + xi) − (1 + xj)]
(

xi

1 + xi
− xj

1 + xj

)
=

(xi − xj)2

(1 + xi) (1 + xj)
� 0.

Since Theorem 1 holds, therefore (34) also holds. And equality condition is that
x1/ (1 + x1) = · · · = xn/ (1 + xn) , i.e., x1 = x2 = · · · = xn . This completes our
proof.

THEOREM 3. (The generalization of inequality (5)) Let x , y ∈ �n
++ , and let x , y

be similarly ordered. Then function in r(r ∈ �)

f k (r) := f k(r, x, y) :=
[
Ek (xr)
Ek(yr)

]1/r

, (1 � k � n)

is increasing with r , where f k (0) := limr→0 f k (r) = [Gn(x)/Gn(y)]k , where Gn(· · · )
is the geometric mean (see Definition 2 ). In other words, if r1 < r2 , then

f k(r1) � f k(r2). (38)

Equality occurs if and only if x1/y1 = x2/y2 = · · · = xn/yn or k = n .

Proof. By using induction we first prove that if r > 1 then

Ek(xr)
Ek(yr)

�
[
Ek(x)
Ek(y)

]r

, (1 � k � n) . (39)

Without loss of generality, assume that

0 < y1 � y2 � · · · � yn, 0 <
x1

y1
� x2

y2
� · · · � xn

yn
.

(A) When n = 1, 2 or k = 1 , using inequality (5) we deduce (39). And (39)
reduces to an equality when k = n , thus (39) is still valid.

(B) Now suppose (38) has been proved for integers less than n , then (39) is valid
for n − 1 (n � 3) , 2 � k < n and 1 � k � n − 1 . We shall prove that (38) holds for
2 � k < n (n � 3) . By using the following relations

Ek(xr) = yr
nEk−1(y

′r
n )
(

xn

yn

)r Ek−1(x
′r
n )

Ek−1(y
′r
n )

+ Ek(y
′r
n )

Ek(x
′r
n )

Ek(y
′r
n )

,

Ek(yr) = yr
nEk−1(y

′r
n ) + Ek(y

′r
n ),

Ek−1(x
′r
n )

Ek−1(y
′r
n )

�
[

Ek−1(x
′
n)

Ek−1(y
′
n)

]r

,
Ek(x

′r
n )

Ek(y
′r
n )

�
[

Ek(x
′
n)

Ek(y
′
n)

]r

,

(by the inductive assumption and the power mean inequality)

p1a1 + p2a2

p1 + p2
�
(

p1a1 + p2a2

p1 + p2

)r

(r > 1) ,



594 JOSIP PEČARIĆ, JIAJIN WEN, WAN-LAN WANG AND TAO LU

taking

p1 = yr
nEk−1(y

′r
n ), p2 = Ek(y

′r
n ),

a1 =
xn

yn

[
Ek−1(x

′r
n )

Ek−1(y
′r
n )

]1/r (
� xn

yn
· Ek−1(x′n)
Ek−1(y′n)

)
,

a2 =

[
Ek(x

′r
n )

Ek(y
′r
n )

]1/r (
� Ek(x′n)

Ek(y′n)

)
,

we have

Ek (xr)
Ek(yr)

=

[
yr
nEk−1(y

′r
n ) ·

(
xn
yn

)r
· Ek−1(x

′r
n )

Ek−1(y
′r
n )

+ Ek(y
′r
n ) · Ek(x

′r
n )

Ek(y
′r
n )

]
[
yr
nEk−1(y

′r
n ) + Ek(y

′r
n )
]

�

[
yr
nEk−1(y

′r
n ) · xn

yn
· Ek−1(x

′
n)

Ek−1(y′n)
+ Ek(y

′r
n ) · Ek(x

′
n)

Ek(y′n)

]
[
y′rn Ek−1(y

′r
n ) + Ek(y

′r
n )
]r

=
{

xn

yn
· Ek−1(x′n)
Ek−1(y′n)

+
Ek(x′n)/Ek(y′n) − (xn/yn)[Ek−1(x′n)/Ek−1(y′n)]

yr
nEk−1(y

′r
n )/Ek(y

′r
n ) + 1

}r

.

(40)
By using Theorem 1 and Lemma 4, for the difference in (40), we have

Ek(x′n)
Ek(y′n)

− xn

yn
· Ek−1(x′n)
Ek−1(y′n)

�
[
Ek−1(x′n)
Ek−1(y′n)

]k/(k−1)

− xn

yn
· Ek−1(x′n)
Ek−1(y′n)

� 0. (41)

Based on (40) and (41), for (39) it suffices to prove that

yr
nEk−1(y

′r
n )

Ek(y
′r
n )

+ 1 � ynEk−1(y′n)
Ek(y′n)

+ 1,

or,
yr−1
n Ek−1(y

′r
n )

Ek−1(y′n)
� Ek(y

′r
n )

Ek(y′n)
. (42)

Because y′n and y
′r
n /y′n are similarly ordered, from Theorem 1 we get

Ek−1(y
′r
n )

Ek−1(y′n)
�
[

Ek(y
′r
n )

Ek(y′n)

](k−1)/k

. (43)

To prove (42), from (43) it is enough to prove that

yr−1
n

[
Ek(y

′r
n )

Ek(y′n)

](k−1)/k

� Ek(y
′r
n )

Ek(y′n)
,

or,

y−r
n

[
Ek(y

′r
n )
]1/k

� y−1
n

[
Ek(y′n)

]1/k
. (44)
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In fact, by (yi/yn)r � yi/yn (i = 1, . . . , n − 1) we have

y−r
n

[
Ek(y

′r
n )
]1/k

=

⎡
⎣ ∑

1�i1<···<ik�n−1

k∏
j=1

(yij/yn)r

⎤
⎦1/k

�

⎡
⎣ ∑

1�i1<···<ik�n−1

k∏
j=1

(yij/yn)

⎤
⎦1/k

= y−1
n

[
Ek(y′n)

]1/k
.

This is just our desired (44). From induction principle, the inequality (39) holds.
We prove that (38) holds as follows: When 0 < r1 < r2 , then r2/r1 > 1 , From

(39) and yr1 and xr1/yr1 are similarly ordered we obtain that

E
(
(xr1)r)

Ek((yr1)r)
�
[
Ek (xr1)
Ek(yr1)

]r

, r =
r2

r1
> 1,

or,

f k (r2) =

⎧⎪⎨
⎪⎩
⎡
⎣Ek

(
(xr1)r2/r1

)
Ek
(
(yr1)r2/r1

)
⎤
⎦

1/(r2/r1)
⎫⎪⎬
⎪⎭

1/r1

�
[
Ek (xr1)
Ek(yr1)

]1/r1

= f k (r1) .

When r1 < r2 < 0 , then 0 < −r2 < −r1 . From y−1 and x−1/y−1 are similarly
ordered, we have

f k (r2) =

⎧⎪⎨
⎪⎩
⎡
⎣Ek

((
x−1
)−r2

)
Ek

(
(y−1)−r2

)
⎤
⎦

1/(−r2)
⎫⎪⎬
⎪⎭

−1

�

⎧⎪⎨
⎪⎩
⎡
⎣Ek

((
x−1
)−r1

)
Ek

(
(y−1)−r1

)
⎤
⎦

1/(−r1)
⎫⎪⎬
⎪⎭

−1

= f k (r1) .

When r1 � 0 � r2 , from the continuity of f k (r) on � we get

f k (r1) � f k (0) � f k (r2) .

From the above argument, we deduce that (38) is valid, and the equality condition is
x1/y1 = x2/y2 = · · · = xn/yn or k = n . The proof of (38) has been proved.

REMARK 5. It is easy to see that when k = 1 , (38) is equivalent to inequality (5).
It follows from this that (38) is a true generalization of inequality (5).

Recall that Pečarić et al established the following interesting result in [17]:
If x ∈ �n

++ , then

An (x) =
E1 (x)
(n
1)

� E2(x1/2)
(n
2)

� · · · � Ek(x1/k)
(n
k)

� · · · � En(x1/n)
(n
n)

= Gn (x) . (45)

THEOREM 4. Let x, y ∈ �n
++ , and let y and x/y be similarly ordered. Then

An (x)
An(y)

=
E1 (x)
E1(y)

� E2(x1/2)
E2(y1/2)

� · · · � Ek(x1/k)
Ek(y1/k)

� · · · � En(x1/n)
En(y1/n)

=
Gn(x)
Gn(y)

. (46)

Equalities occur if and only if x1/y1 = x2/y2 = · · · = xn/yn .



596 JOSIP PEČARIĆ, JIAJIN WEN, WAN-LAN WANG AND TAO LU

Proof. From Theorem 1, for every k : 1 � k � n − 1 , we have

Ek (x)
Ek(y)

�
[
Ek+1(x)
Ek+1(y)

]k/(k+1)

. (47)

And for k : 1 � k � n−1 , y1/k and x1/k/y1/k are similar ordered, combining this with
(47) we get

Ek
(
x1/k

)
Ek(y1/k)

�
[
Ek+1(x1/k)
Ek+1(y1/k)

]k/(k+1)

. (48)

Recall the definition of the function f k(r, x, y) in Theorem 3, we can rewrite (48)
in the form

Ek(x1/k)
Ek(y1/k)

� f k+1

(
k + 1

k
, x1/(k+1), y1/(k+1)

)
. (49)

Because y1/(k+1) and x1/(k+1)/y1/(k+1) are similar ordered, from (k + 1)/k > 1 and
Theorem 3, we obtain that

f k+1

(
k + 1

k
, x1/(k+1), y1/(k+1)

)
� f k+1

(
1, x1/(k+1), y1/(k+1)

)
=

Ek+1(x1/(k+1))
Ek+1(y1/(k+1))

. (50)

Combining (50) with (49), so (46) is proved, and the equality condition is also true.
The proof of Theorem 4 is complete.

THEOREM 5. Let A = (aij) and B = (bij) be two n×n positive definite Hermitian
matrices, and let λ = (λ1, . . . , λn) and μ = (μ1, . . . ,μn) , where the components λi

and μi are eignevalues of A and B , respectively. If λ and μ are similarly ordered,
then

tr(A)
tr(B)

�
[
E2[A]
E2[B]

]1/2

� · · · �
[
Ek[A]
Ek[B]

]1/k

� · · · �
[
detA
detB

]1/n

. (51)

Equalities hold iff λ1/μ1 = λ2/μ2 = · · · = λn/μn, where tr(
) and det(
) are the
trace and determinant of matrix 
 , and Ek[
] denotes the sum of all principal k -rowed
minors.

In fact, since for matrix A , we have Ek[A] = Ek(λ )(1 < k < n), tr(A) =
E1(λ ), detA = En(λ ); for B, we also have the same result, it follows from Theorem 1
that the chain (48) of inequalities holds. And equality condition is also valid.

Let σN(P) := {P1, . . . , PN} (N > n) be a set in the k -dimensional Euclidean
space En. For any k + 1 points in σN(P) , we can construct a k -dimensional simplex
with these points as vertices. Denote by Nk(P)(k = 1, . . . , n) the sum of the squares
of all k -dimensional contents of these k -dimensional simplexes. In [5][13][23] the
following interesting results have been obtained:

[Nk (P)]l

[Nl (P)]k
�

[
(n − l)! · (l!)3

]k
[
(n − k)! · (k!)3

]l (n!N)l−k (1 � k < l � n) . (52)

The following result is an extension of (52):
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THEOREM 6. Let σN(P) := {P1, . . . , PN} and σN(Q) := {Q1, . . . , QN} be two
sets in En (N > n � 2) , and let ai > 0 and bi > 0 be the semi-axises of the so-called
′′ dense ellipsoid ′′ . If a2 = (a2

1, . . . , a
2
n) and b2 = (b2

1, . . . , b
2
n), and a2 and a2/b2

are similarly ordered, then[
Nk(P)
Nk(Q)

]l

�
[

Nl(P)
Nl(Q)

]k

, (1 � k < l � n) . (53)

Equality holds iff a2
1/b2

1 = · · · = a2
n/b2

n, i.e., two dense ellipsoids are similar.

Proof. By inequality (3.1) of [5] we observe that

Ek(a2) =
(k!)2

N
· Nk(P), Ek(b2) =

(k!)2

N
· Nk(Q).

Thus
Ek(a2)
Ek(b2)

=
Nk(P)
Nk(Q)

. (54)

From (4∗) we have[
Ek(a2)
Ek(b2)

]1/k

�
[
El(a2)
El(b2)

]1/l

, (1 � k < l � n) . (55)

Combining (55) with (54), (53) can be deduced, and equality condition is also obtained
from Theorem 1.

REMARK 6 If ai > 0, bi > 0 are replaced by ai � 0, bi � 0, then we have

[Nk(P)]l [Nl(Q)]k � [Nk(Q)]l [Nl(P)]k .

But “a2 and a2/b2 are similarly ordered ” reads “ (b2
i − b2

j )(a
2
i b

2
j − a2

j b
2
i ) � 0, (i, j =

1, 2, . . . , n). ”
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