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Abstract. In this paper, a family of functional means with a parameter and their basic properties
are introduced, some characterizations of extended mean values are obtained.

In a recent paper[1], Soon-Yeong Chung had considered the functional mean
Mf (x, y;μ) and the harmonic functional mean Nf (x, y;μ) of any two positive numbers
x and y with respect to a probability measure μ on [0, 1] for a continuous function
f (t) on (0,∞) by

Mf (x, y;μ) = f −1[
∫ 1

0
f (λx + (1 − λ )y) dμ(λ )]

and
Nf (x, y;μ) = [Mf (1/x, 1/y;μ)]−1.

It had been shown that variousmeans can be expressed as Mf (x, y;μ) or Nf (x, y;μ)
for appropriate functions f .

Stolarsky[4], Leach and Scholander[2][3], Sun[5] had studied the so-called extended
mean value which is a two-parametermean of two positive numbers x and y as follows:

Ep,q(x, y) = (q(xp − yp)/p(xq − yq))1/(p−q), pq(p − q)(x − y) �= 0;

Ep,0(x, y) = ((xp − yp)/p(log x − log y))1/p, p(x − y) �= 0;

Ep,p(x, y) = e−1/p(xx/yy)1/(x−y), p(x − y) �= 0;

E0,0(x, y) = (xy)1/2, x �= y;

Ep,q(x, x) = x, x = y.

Clearly, E2p,p(x, y) and Ep,1(x, y) are just the well known power mean and Sto-
larsky mean respectively.

The purpose of this paper is to consider a generalization of the functional mean
Mf (x, y;μ) and it is used to find some characterizations of the extended mean values.
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1. Functional Means With A Parameter

DEFINITION. Let f (t) be a continuous function on (0,∞) which is strictly mono-
tone, let μ be a probability measure on [0, 1] , and let p be an arbitrarily fixed
nonzero number. For any two positive numbers x and y we define a functional
mean Mf (x, y;μ; p) with a parameter p with respect to the probability measure μ by

Mf (x, y;μ; p) = f −1[
∫ 1

0
f ((λxp + (1 − λ )yp)1/p) dμ(λ )].

If p = 1 , then Mf (x, y;μ; p) = Mf (x, y;μ) .
It is clear that the mean value Mf (x, y;μ; p) is uniquely determined and lies

between x and y when x �= y . It is also true that Mf (x, x;μ; p) = x for every x > 0
and Mf (x, y;μ; p) �= Mf (y, x;μ; p) unless μ is equally distributed on [0, 1] . When μ
is the Lebesgue measure we simply write Mf (x, y; p) instead of Mf (x, y;μ; p) .

It is not difficult to find that the main results in [1] can be restated in like manner.
In what follows, we always assume p is a fixed nonzero number.

THEOREM 1.1. In order that

Mf (x, y;μ; p) = Mg(x, y;μ; p)

for all x, y > 0 and all probability measure μ on [0, 1] it is necessary and sufficient
that

f (x) = αg(x) + β , x ∈ (0,∞)

for some constants α(α �= 0) and β . We write f ∼ g instead of f (x) = αg(x)+β , x ∈
(0,∞) for some α �= 0 and β .

THEOREM 1.2. In order that

Mf (kx, ky;μ; p) = kMf (x, y;μ; p)

for every x, y, k > 0 and every probability measure μ on [0, 1] , it is necessary and
sufficient that either f (t) ∼ tr for some r �= 0 or f (t) ∼ log t .

THEOREM 1.3. Let f and g be continuous and strictly on (0,∞) . Then a
necessary and sufficient condition in order that

Mf (x, y;μ; p) � Mg(x, y;μ; p)

for all x, y and μ , is that g ◦ f −1 is convex.

By Theorem 1.3 we can easily obtain a new proof of the Theorem in [2].

THEOREM 1.4. For any function f on (0,∞) which is continuous and strictly
monotone the functional mean Mf (x, y;μ; p) is continuous on (0,∞) × (0,∞) and
increasing in the sense that

if x1 � x2 and y1 � y2, then Mf (x1, y1;μ; p) � Mf (x2, y2;μ; p)
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for any probability measure μ on [0, 1] .

Now we define the functional harminic mean Nf (x, y;μ; p) for positive numbers
x and y by

Nf (x, y;μ; p) = [Mf (1/x, 1/y;μ; p)]−1.

In particular, if μ is a Lebesgue measure we simply write Nf (x, y; p) instead of
Nf (x, y;μ; p) .

EXAMPLE. (1) For f (t) = 1/tp−q , where q is a nonzero number, we have

Mf (x, y; p) = Ep,q(x, y)

and
Nf (x, y; p) = [Mf (1/x, 1/y; p)]−1 = [Ep,q(x, y)]−1 · xy.

Hence, we obtain
Nf (x, y; p) · Mf (x, y; p) = xy.

(2) Let μ be a probability measure concentrated on {0, 1} with

μ({λ}) =
{

1/3, λ = 0,
2/3, λ = 1.

Then

Mf (x, y;μ; p) =
∫ 1

0
(λxp + (1 − λ )yp)1/p dμ(λ ) = (2x + y)/3,

so that
Nf (x, y;μ; p) = 3xy/(x + 2y).

Hence, we obtain
Nf (x, y;μ; p) · Mf (x, y;μ; p) = xy.

In general, we have

THEOREM 1.5. If f (t) is a continuous function on (0,∞) which is strictly mono-
tone and is equivalent to a homogeneous function in the sense that

f (kt) = α(k)f (t) + β(k), t > 0, k > 0

for some real functions α(k) �= 0 and β(k) , then

Nf (x, y;μ; p) · Mf (y, x;μ; p) = xy

for all x, y > 0 and for every probability measure μ .

If μ is Lebesgue measure then Mf (x, y; p) = Mf (y, x; p) , and it follows that

Nf (x, y; p) · Mf (x, y; p) = xy.

All the proofs of the above five theorems are similar to those expressed in [1] and
hence are omitted.

REMARK. The equality (2.2) in Theorem 2.1 of [1] should be corrected as follows:

Nf (x, y;μ) · Mf (y, x;μ) = [G(x, y)]2.

Moreover, the same correction should be made in Example (ii) before the Theorem 2.1
of [1].
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2. Characterizations of extended mean values

In this section, p is always an arbitrarily fixed nonzero number, q, r, s are arbitrary
nonzero numbers and distinct from p . Moreover, we may assume that the function f (t)
which is concerned with Mf (x, y; p) , is always strictly monotone, and f ′′(t) is a
continuous function on (0,∞) .

LEMMA 1. If

g(x, y) :=
∫ 1

0
f ((λxp + (1 − λ )yp)1/p) dλ

for all positive x and y, then

gxx(c, c) = f ′′(c)/3 + (p − 1)f ′(c)/6c

where c is an arbitrarily fixed real number.

The proof follows immediately from differentiation under the integral sign.

LEMMA 2. If
Mf (x, y; p) = Er,s(x, y)

holds for all positive x and y , then

f ′′(t) + (2p − (r + s) + 1)f ′(t)/t = 0

holds for t ∈ (0,∞) .

Proof. By assumption we have∫ 1

0
f ((λxp + (1 − λ )yp)1/p) dλ = f ((s(xr − yr)/r(xs − ys))1/(r−s)).

Set g(x, y) =
∫ 1

0 f ((λxp + (1 − λ )yp)1/p) dλ . It follows that

g(x, y) = f ((s(xr − yr)/r(xs − ys))1/(r−s)).

Differentiating both sides on x twice and setting x = c, y = c in the resulting equality
by applying L’Hôpital’s rule yields

gxx(c, c) = f ′′(c)/4 + (r + s − 3)f ′(c)/12c.

By Lemma 1 we obtain

f ′′(c)/3 + (p − 1)f ′(c)/6c = f ′′(c)/4 + (r + s − 3)f ′(c)/12c,

and therefore
f ′′(c) + (2p − (r + s) + 1)f ′(c)/c = 0.

Since c is an arbitrarily fixed positive number, we can replace c by a positive real
variable t in the above equality. Hence we have

f ′′(t) + (2p − (r + s) + 1)f ′(t)/t = 0

on (0,∞) . �
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THEOREM 2.1. Let A(�= 0) and B be arbitrary real constants.
(1) Mf (x, y; p) = Ep,q(x, y) holds for all positive x and y if and only if f (t) =

A/tp−q + B .
(2) Mf (x, y; p) = Ep,p(x, y) holds for all positive x and y if and only if f (t) =

A log t + B .
(3) Mf (x, y; p) = Ep,0(x, y) holds for all positive x and y if and only if f (t) =

A/tp + B .
(4) Mf (x, y; p) = E0,0(x, y) holds for all positive x and y if and only if f (t) =

A/t2p + B .

Proof.
(1) Suppose Mf (x, y; p) = Ep,q(x, y) holds for all positive x and y . Then by

Lemma 2 we have
f ′′(t) + (p − q + 1)f ′(t)/t = 0

on (0,∞) . This implies
f (t) = A/tp−q + B

on (0,∞) .
On the contrary, suppose f (t) = A/tp−q +B and t = (λxp +(1−λ )yp)1/p . Then

f −1(t) = (A/(t − B))1/(p−q) , and so

Mf (x, y; p) = f −1[
∫ 1

0 f ((λxp + (1 − λ )yp)1/p) dλ ]
= f −1[A

∫ 1
0 (λxp + (1 − λ )yp)q/p−1 dλ + B]

= (
∫ 1

0 (λxp + (1 − λ )yp)q/p−1 dλ )1/(q−p)

= (q(xp − yp)/p(xq − yq))1/(p−q)

= Ep,q(x, y)

for all positive x, y .
(2) Suppose Mf (x, y; p) = Ep,p(x, y) holds for all positive x and y . Then by

Lemma 2 we have
f ′′(t) + f ′(t)/t = 0

on (0,∞) . This implies
f (t) = A log t + B

on (0,∞) .
On the contrary, suppose f (t) = A log t + B and t = (λxp + (1− λ )yp)1/p . Then

f −1(t) = exp((t − B)/A) , and so

Mf (x, y; p) = f −1[A
∫ 1

0 log(λxp + (1 − λ )yp)1/p dλ + B]
= exp((1/p)

∫ 1
0 log(λxp + (1 − λ )yp) dλ )

= exp((xp log x − yp log y)/(xp − yp) − (1/p))
= (xxp

/yyp
)1/(xp−yp)e−1/p

= Ep,p(x, y)

for all positive x, y .
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(3) Suppose Mf (x, y; p) = Ep,0(x, y) holds for all positive x and y . Then by
Lemma 2 we have

f ′′(t) + (p + 1)f ′(t)/t = 0

on (0,∞) . This implies
f (t) = A/tp + B

on (0,∞) .
On the contrary, suppose f (t) = A/tp + B and t = (λxp + (1 − λ )yp)1/p . Then

f −1(t) = (A/(t − B))1/p , and so

Mf (x, y; p) = f −1[A
∫ 1

0 (λxp + (1 − λ )yp)−1 dλ + B]
= (

∫ 1
0 (λxp + (1 − λ )yp)−1 dλ )−1/p

= ((xp − yp)/p(log x − log y))1/p

= Ep,0(x, y)

for all positive x, y .
(4) Suppose Mf (x, y; p) = E0,0(x, y) holds for all positive x and y . Then by

Lemma 2 we have
f ′′(t) + (2p + 1)f ′(t)/t = 0

on (0,∞) . This implies

f (t) = A/t2p + B

on (0,∞) .
On the contrary, suppose f (t) = A/t2p + B and t = (λxp + (1 − λ )yp)1/p . Then

f −1(t) = (A/(t − B))1/2p , and so

Mf (x, y; p) = f −1[A
∫ 1

0 (λxp + (1 − λ )yp)−2 dλ + B]
= (

∫ 1
0 (λxp + (1 − λ )yp)−2 dλ )−1/2p

= (xy)1/2

= E0,0(x, y)

for all positive x, y . �

THEOREM 2.2. Let p �= r and {r, s} �= {0, 0} . Then there exists no f (t) such
that Mf (x, y; p) = Er,s(x, y) holds for all positive numbers x and y .

Proof. Suppose there exists some f (t) such that Mf (x, y; p) = Er,s(x, y) holds for
all positive x and y . Then by Lemma 2 we have

f ′′(t) + (2p − (r + s) + 1)f ′(t)/t = 0

on (0,∞) . This implies

f (t) = A/t2p−r−s + B

on (0,∞) , where A and B are arbitrary real constants with A �= 0 .
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However, if f (t) = A/t2p−r−s + B and t = (λxp + (1 − λ )yp)1/p then f −1(t) =
(A/(t − B))1/(2p−r−s) and it follows that

Mf (x, y; p) = f −1[A
∫ 1

0 (λxp + (1 − λ )yp)(r+s)/p−2 dλ + B]
= (

∫ 1
0 (λxp + (1 − λ )yp)(r+s)/p−2 dλ )1/(r+s−2p)

= ((r + s − p)(xp − yp)/p(xr+s−p − yr+s−p))1/(2p−r−s)

= Ep,r+s−p(x, y)

for all positive x, y .
This leads to a contradiction and hence the theorem is proved. �

REMARK. It is not difficult to prove that Mf (x, y; p) = Ep,r+s−p(x, y) holds for all
positive numbers x and y if and only if f (t) = A/t2p−r−s + B , where A and B are
arbitrary real constants with A �= 0 .
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