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CONTINUITY PROPERTIES OF RIESZ POTENTIALS

FOR FUNCTIONS IN Lp(·) OF VARIABLE EXPONENT

TOSHIHIDE FUTAMURA AND YOSHIHIRO MIZUTA

(communicated by B. Opic)

Abstract. Our aim in this paper is to deal with 0 -Hölder continuity for Riesz potentials of
functions belonging to Lebesgue’s Lp space of variable exponent, in the borderline case of
Sobolev’s theorem. We are also concerned with exponential integrability for Riesz potentials.

1. Introduction

Let Rn denote the n -dimensional Euclidean space. We consider theRiesz potential
of order α for a locally integrable function f on Rn , which is defined by

Uα f (x) =
∫

|x − y|α−nf (y)dy.

Here 0 < α < n . Following Kováčik and Rákosník [9], we consider a positive
continuous function p(·) : Rn → [1, λ ) , 1 < λ < ∞ , and a measurable function f
satisfying ∫

|f (y)|p(y)dy < ∞.

RecentlyDiening [3] has established embedding results for Riesz potentials of such func-
tions. For related results, see also Edmunds-Rákosník [4], Futamura-Mizuta-Shimomura
[6] and Růžička [13]. In these discussions, the continuity of Hardy-Littlewood maximal
functions is a crucial tool (see Diening [2]).

In case p(·) is a constant p0 and p0 > n/α , well known Sobolev’s theorem says
that Uα f is continuous in Rn (see e.g. [1], [10], [12]). Our first aim in this paper is to
discuss the continuity for α -potentials of functions in Lp(·) spaces when p(x) � n/α
for x ∈ Rn and p(·) satisfies a so called 0 -Hölder condition, as an extension of
Harjulehto-Hästö [7].

We also study exponential integrabilities of α -potentials when they are not con-
tinuous, as an extension of Trudinger’s exponential integrability (see Hedberg [8] and
Adams-Hedberg [1]).
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2. Continuity of potentials

Throughout this paper, let C denote various constants independent of the variables
in question.

Let G be a bounded open set in Rn and B(x0, r0) ⊂ G , where B(x0, r0) denotes
the open ball centered at x0 of radius r0 > 0 . Consider a positive continuous function
p(·) on G . In this and the next sections let us assume that :

(p1) infG\B(x0,r0) p(x) > p− = n/α and p+ = supG p(x) < ∞ ;

(p2) p(y) � p− +
a log(log(1/|x0 − y|))

log(1/|x0 − y|) +
ã

log(1/|x0 − y|) for y ∈ B(x0, r0),

where a � 0 and ã is a real number. In our discussions we may assume that

(p3) p(y) � p− +
a log(log(1/|x0 − y|))

log(1/|x0 − y|) +
C

log(1/|x0 − y|) for y ∈ B(x0, r0) .

Set

ωa′,a′′(r) =
a′ log(log(1/r))

log(1/r)
+

a′′

log(1/r)

and ωa′,a′′(0) = 0 . If a′ > 0 or a′ = 0 and a′′ > 0 , then we can find r∗ > 0 so
small that ωa′,a′′ is nondecreasing on the interval [0, 2r∗] and

ωa′,a′′(s + t) � ωa′,a′′(s) + ωa′,a′′(t) (1)

for 0 � s � t � r∗ .
Let 1/p′(x) = 1 − 1/p(x) and 1/p′− = 1 − 1/p− .
We begin with the following result.

LEMMA 1. If a > (n − α)/α2 , then∫
G∩B(x,δ)

|x − y|p′(y)(α−n)dy � C(log(1/δ))1−aα2/(n−α)

for all x ∈ G and δ ∈ (0, 2−1) .

Proof. First note that

p′(y) − p′− = − p(y) − p−
(p(y) − 1)(p− − 1)

= −p(y) − p−
(p− − 1)2

+
(p(y) − p−)2

(p(y) − 1)(p− − 1)2
.

Since p− − 1 = (n − α)/α , by conditions on p , we can find C > 0 so that

p′(y) � p′− − ωa′,−C(|x0 − y|) (a′ = aα2/(n − α)2) (2)

for all y ∈ B(x0, r0) . For simplicity, set

ω(r) = ωa′,−C(r) =
aα2

(n − α)2

log(log(1/r))
log(1/r)

− C
log(1/r)

.
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Noting that ω is nondecreasing and doubling on [0, r0] by (1) , we have for 0 < δ �
|x0 − x|/2 and x ∈ B(x0, r0/2)∫

B(x,δ)
|x − y|p′(y)(α−n)dy �

∑
j

∫
B(x,2−j+1δ)\B(x,2−jδ)

|x − y|p′(y)(α−n)dy

�
∑

j

(2−jδ)(α−n)(p′−−ω(2−jδ))σn(2−j+1δ)n

� C
∑

j

(2−jδ)−(α−n)ω(2−jδ)

� C
∑

j

(log 1/(2−jδ))−aα2/(n−α)

� C
∫ δ

0
(log(1/t))−aα2/(n−α)t−1dt

= C(log(1/δ))1−aα2/(n−α),

since a > (n − α)/α2 , where σn denotes the volume of the unit ball. If y ∈
G \ B(x, |x0 − x|/2) , then |x0 − y| � 3|x − y| , so that∫

B(x,δ)\B(x,|x0−x|/2)
|x − y|p′(y)(α−n)dy � C

∫
G∩B(x0,3δ)

|x0 − y|p′(y)(α−n)dy

� C(log(1/δ))1−aα2/(n−α)

when |x0 − x|/2 � δ � r0/4 . Therefore it follows that∫
B(x,δ)

|x − y|p′(y)(α−n)dy � C(log(1/δ))1−aα2/(n−α)

for 0 < δ < 1/2 and x ∈ B(x0, r0/2) .
Noting from condition (p1) that p0 = infy∈G\B(x0,r0/4) p(y) > n/α , we see that∫

G∩B(x,δ)
|x − y|p′(y)(α−n)dy � Cδ (αp0−n)/(p0−1)

for x ∈ G \ B(x0, r0/2) and δ > 0 .
Now the proof is completed. �
Define the Lp(·)(G) norm by

‖f ‖p(·) = ‖f ‖p(·),G = inf{λ > 0 :
∫

G

∣∣∣∣ f (y)
λ

∣∣∣∣
p(y)

dy � 1}

and denote by Lp(·)(G) the space of allmeasurable functions f on G with ‖f ‖p(·) < ∞ .

THEOREM 1. Let f be a nonnegative measurable function on a bounded open set
G with ‖f ‖p(·) � 1 . If a > (n − α)/α2 , then Uα f is continuous in G . Further,

|Uα f (x) − Uα f (z)| � C(log(1/|x − z|))−A

whenever x, z ∈ G and |x − z| < 1/2 , where A = (aα2/(n − α) − 1)/p′− .
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REMARK 1. In view of Sobolev’s theorem, we see that Uα f is continuous in
G\ {x0} . Harjulehto-Hästö [7] have also discussed the continuity of Sobolev functions.

Proof of Theorem 1. First note that∫
G

f (y)p(y)dy � 1 (3)

since ‖f ‖p(·) � 1 by the assumption. Then, for 0 < μ < 1 , we have by Young’s
inequality and Lemma 1∫

G∩B(x,δ)
|x − y|α−nf (y)dy � μ

∫
G∩B(x,δ)

{
(|x − y|α−n/μ)p′(y) + f (y)p(y)

}
dy

� μ

(
μ−p′−

∫
G∩B(x,δ)

|x − y|(α−n)p′(y)dy + 1

)

� μ
(
Cμ−p′−(log(1/δ))1−aα2/(n−α) + 1

)
whenever x ∈ G and 0 < δ < 1/2 . Now, considering μ such that μp′− =
(log(1/δ))1−aα2/(n−α) , we find∫

G∩B(x,δ)
|x − y|α−nf (y)dy � C(log(1/δ))−A. (4)

Hence, if x, z ∈ G and |x − z| < 1/4 , then we have∫
G∩B(x,2|x−z|)

|x − y|α−nf (y)dy � C(log(1/|x − z|))−A.

On the other hand we find∫
G\B(x,2|x−z|)

||x − y|α−n − |z − y|α−n|f (y)dy

� C|x − z|
∫

G\B(x,2|x−z|)
|x − y|α−n−1f (y)dy.

This can be estimated along the same lines as above. For simplicity set δ = 2|x− z| <
1/2 . Then, for μ � 1 , letting

E = {y ∈ G \ B(x, 2|x − z|) : |x − y|α−n−1 � μ},
we have by Young’s inequality and (2)∫

G\{B(x0,δ)∪B(x,δ)}
|x − y|α−n−1f (y)dy

� μ
∫

G\{B(x0,δ)∪B(x,δ)}

{
(|x − y|α−n−1/μ)p′(y) + f (y)p(y)

}
dy

� Cμ

(∫
E\B(x0,δ)

(|x − y|α−n−1/μ)p′(y)dy + 1

)

� Cμ

(∫
E\B(x0,δ)

(|x − y|α−n−1/μ)p′−−ω(δ)dy + 1

)
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� Cμ

(
μ−p′−+ω(δ)

∫
G\B(x,δ)

|x − y|(α−n−1)(p′−−ω(δ))dy + 1

)

� Cμ
(
μ−p′−+ω(δ)δ (α−n−1)(p′−−ω(δ))+n + 1

)
� Cμ

(
μ−p′−+ω(δ)δ−p′−(log(1/δ))(α−n−1)aα2/(n−α)2

+ 1
)

.

Now, considering μ such that μ = δ−1(log(1/δ))−aα2/{p′−(n−α)} , we find∫
G\{B(x0,δ)∪B(x,δ)}

|x − y|α−n−1f (y)dy � Cδ−1(log(1/δ))−aα2/{p′−(n−α)}.

Further, we obtain by (4)∫
G∩B(x0,δ)\B(x,δ)

|x − y|α−n−1f (y)dy � δ−1
∫

G∩B(x0,δ)
|x0 − y|α−nf (y)dy

� Cδ−1(log(1/δ))−A.

Therefore it follows that∫
G\B(x,2|x−z|)

||x − y|α−n − |z − y|α−n|f (y)dy � C(log(1/|x − z|))−A.

Now we establish

|Uα f (x) − Uα f (z)|
�
∫

G∩B(x,2|x−z|)
|x − y|α−nf (y)dy +

∫
G∩B(x,2|x−z|)

|z − y|α−nf (y)dy

+
∫

G\B(x,2|x−z|)
||x − y|α−n − |z − y|α−n|f (y)dy

� C(log(1/|x − z|))−A,

as required. �

COROLLARY 1. Suppose

p(x) = p(x1, ..., xn) � n/α +
a log(e + log(1/|xn|))

log(e/|xn|)

for a > (n − α)/α2 . Let f be a nonnegative measurable function on B = B(0, 1)
with ‖f ‖p(·),B � 1 . Then Uα f is continuous in B and it satisfies

|Uα f (x) − Uα f (z)| � C(log(1/|x − z|))−A

whenever x, z ∈ B(0, 1/2) and |x − z| < 1/2 , where A = (aα2/(n − α) − 1)/p′− .
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Proof. According to the proof of Theorem 1, it suffices to show that∫
B(x,r)

|x − y|(α−n)p′(y)dy � C(log(1/r))1−aα2/(n−α) (5)

for 0 < r < 1/2 and |x| < 1/2 . To show this, we may assume that

p′(y) � p′− − ω(|yn|) for y ∈ B ,

where ω(r) = (aα2/(n− α)2) log(log(1/r))/ log(1/r)−C/ log(1/r) for 0 < r � r0

and ω(r) = ω(r0) for r > r0 . Then, by use of Lemma 1 , we have∫
B(x,r)

|x − y|(α−n)p′(y)dy � C
∫
{yn:|xn−yn|<r}

|xn − yn|−1+(n−α)ω(|yn|)dyn

� C(log(1/r))1−aα2/(n−α).

Thus (5) holds, and the proof is completed. �
REMARK 2. Let b > (a + 1)/n > 1 , 0 < r0 < 1/e and

p(y) = n +
a log(log(1/|y|))

log(1/|y|)
for y ∈ B(0, r0) . Consider the function

f (y) = |y|−1(log(1/|y|))−b

for y ∈ B(0, r0) and f = 0 on Rn \ B(0, r0) . Then we easily see that∫
B(0,r0)

|x − y|1−nf (y)dy � C(log(1/|x|))1−b for x ∈ B(0, r0)

and ∫
B(0,r0)

f (y)p(y)dy �
∫

B(0,r0)
{|y|−1(log(1/|y|))−b}n(log(1/|y|))ady < ∞

since −bn + a + 1 < 0 by our assumption.
This means that the exponent A in Theorem 1 is best possible.
REMARK 3. Let a = n − 1 and

p(y) = n +
(n − 1) log(log(1/|y|))

log(1/|y|)
for y ∈ B(0, r0) . Then there exists a measurable function f on Rn such that U1f (0) =
∞ and ‖f ‖p(·) < ∞ .

In fact, for 1/n < b � 1 , consider the function

f (y) = |y|−1(log(1/|y|))−1(log(log(1/|y|)))−b

for y ∈ B(0, r0) and f = 0 on Rn \ B(0, r0) . Then we have∫
B(0,r0)

|y|1−nf (y)dy = ∞.
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Since bn > 1 by our assumption, we obtain∫
B(0,r0)

f (y)p(y)dy �
∫

B(0,r0)
{|y|−1(log(1/|y|))−1(log(log(1/|y|)))−b}n(log(1/|y|))n−1dy

=
∫

B(0,r0)
|y|−n(log(1/|y|))−1(log(log(1/|y|)))−bn < ∞

In this case we can show exponential integrability (see e.g. [1]), as will be discussed
soon.

3. Exponential integrability

This section concerns with p(·) such that

p(y) � p− +
n − α
α2

log(log(1/|x0 − y|))
log(1/|x0 − y|)

for y ∈ B(x0, r0) . In this case, since α -potentials of f ∈ Lp(·)(G) may not be
continuous, we discuss the exponential integrability of Trudinger type. Our discussions
here can be carried out along the same lines as in Hedberg [8].

Before doing so we prepare the following lemma under conditions (p1) and (p2).

LEMMA 2. If 0 < b < a � (n − α)/α2 , then∫
G\B(x,δ)

|x − y|(α−n)p′(y)dy � C(log(1/δ))1−bα2/(n−α)

for x ∈ G and 0 < δ < 1/2 .

Proof. For 0 < b < a � (n − α)/α2 , set

ω(r) =
bα2

(n − α)2

log(log(1/r))
log(1/r)

.

As in (2) , we can find r1 > 0 such that

p′(y) � p′− − ω(|x0 − y|)
for all y ∈ B(x0, r1) ; in this proof we assume that r1 = 4r0 .

If x ∈ B(x0, 2r0) , then we have∫
B(x,|x0−x|/2)\B(x,δ)

|x − y|p′(y)(α−n)dy �
∑

j

∫
B(x,2jδ)\B(x,2j−1δ)

|x − y|p′(y)(α−n)dy

�
∑

j

(2j−1δ)(α−n)(p′−−ω(2j−1δ))σn(2jδ)n

� C
∑

j

(2j−1δ)−(α−n)ω(2j−1δ)
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� C
∑

j

(log 1/(2j−1δ))−bα2/(n−α)

� C
∫ r0

δ
(log(1/t))−bα2/(n−α)t−1dt

= C(log(1/δ))1−bα2/(n−α).

If δ � |x0 − x|/2 and x ∈ B(x0, 2r0) , then∫
B(x0,4r0)\B(x,δ)

|x − y|p′(y)(α−n)dy � C
∫

B(x0,4r0)\B(x,δ)
|x0 − y|p′(y)(α−n)dy

� C(log(1/δ))1−bα2/(n−α).

Finally, since infG\B(x0,r0) p(x) > p− = n/α , we note that∫
G
|x − y|p′(y)(α−n)dy � C < ∞

for x ∈ G \ B(x0, 2r0) .
Thus the required conclusion follows from these facts. �
If f is a locally integrable function on G , then we consider Hardy-Littlewood

maximal function defined by

Mf (x) = sup
r>0

1
σnrn

∫
G∩B(x,r)

|f (y)|dy.

We next prove the estimate of Riesz potentials by use of maximal functions, as in
Hedberg [8].

LEMMA 3. Let f be a nonnegative measurable function on G with ‖f ‖p(·) � 1 .
If 0 < a � (n − α)/α2 and A > (1 − aα2/(n − α))/p′− , then

Uα f (x) � C(log(Mf (x) + 2))A.

Proof. If (1 − aα2/(n− α))/p′− < A , then there exist 0 < b < a and 0 < p0 <
p′− such that

(1 − bα2/(n − α))/p0 < A.

We can find r1 > 0 such that p′(y) > p0 for y ∈ B(x0, r1) and∫
B(x0,r1)\B(x,δ)

(|x − y|α−n/μ)p′(y)dy � Cμ−p0(log(1/δ))1−bα2/(n−α)

for μ > 1 and x ∈ G ; in this proof, we may assume that r1 = 4r0 . Since (3) holds
by the assumption ‖f ‖p(·) � 1 , we have for μ > 1∫

B(x0,4r0)\B(x,δ)
|x − y|α−nf (y)dy

� μ

(∫
B(x0,4r0)\B(x,δ)

(|x − y|α−n/μ)p′(y)dy +
∫

G\B(x,δ)
f (y)p(y)dy

)

� μ
(
Cμ−p0(log(1/δ))1−bα2/(n−α) + 1

)
.
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Now, considering μ such that μ−p0(log(1/δ))1−bα2/(n−α) = 1 , we have

∫
B(x0,4r0)\B(x,δ)

|x − y|α−nf (y)dy � C(log(1/δ))β

with β = {1 − bα2/(n − α)}/p0 . Since infG\B(x0,r0) p(x) > p− = n/α , we note that

∫
G
|x − y|α−nf (y)dy � C

for x ∈ G \ B(x0, 2r0) . Consequently it follows from [1, (3.1.1)] that

Uα f (x) =
∫

B(x,δ)
|x − y|α−nf (y)dy +

∫
G\B(x,δ)

|x − y|α−nf (y)dy

� CδαMf (x) + C(log(1/δ))β .

Here, as in the proof of Proposition 3.1.2 in [1], let

δ = (Mf (x))−1/α (log(Mf (x) + 2))β/α

when Mf (x) is large enough. Then we have

Uα f (x) � C(log(Mf (x) + 2))β � C(log(Mf (x) + 2))A,

as required. �

By Lemma 3 and the fact that Mf ∈ Lp−(G) , we establish the following expo-
nential inequality for f ∈ Lp(·)(G) .

THEOREM 2. For A > (1 − aα2/(n − α))/p′− � 0 , there exist positive constants
c1 and c2 such that ∫

G
exp(c1(Uα f (x))1/A)dx � c2

for all nonnegative measurable functions f on G with ‖f ‖p(·) � 1 .

THEOREM 3. Let f be a nonnegativemeasurable function on G with ‖f ‖p(·) < ∞ .
If A > (1 − aα2/(n − α))/p′− � 0 , then

∫
G

exp(c(Uα f (x))1/A)dx < ∞ for all c > 0 .

REMARK 4. When a = 0 , Theorems 2 and 3 hold for A = 1/p′− = (n − α)/n .
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4. Sobolev’s inequality

In this section we are concerned with p(·) satisfying :
(p4) 1 < p− = infG p(x) � p(x) < p+ = supG p(x) = n/α ;

(p5) |p(x)−p(y)| � ã
log(1/|x − y|) whenever |x−y| < 1/2, for some ã > 0 .

As an example, we may consider the function of the form

p(y) = p0 − ω(|x0 − y|), ω(r) =
ã

log(1/r)
,

for y ∈ B(x0, r0) with r0 chosen sufficiently small; set p(y) = p+ − ω(r0) outside
B(x0, r0) . Note here that

ω(s + t) � ω(s) + ω(t)

for 0 < s < r0 and 0 < t < r0 .
Let 1/p�(x) = 1/p(x) − α/n .

LEMMA 4. If μ > 1 and 0 < δ < 1/2 , then

∫
G\B(x,δ)

(|x − y|α−n/μ)p′(y)dy � C

(
μ−p′(x) δ−q(x)/(p(x)−1)

q(x)
+ 1

)

for x ∈ G, where q(x) = n − αp(x) > 0 .

Proof. First find C > 0 such that

|p′(y) − p′(x)| � C
log(1/|x − y|)

whenever |x − y| < 1/2 . Then we have for μ > 1∫
B(x,μ1/(α−n))\B(x,δ)

(|x − y|α−n/μ)p′(y)dy

� Cμ−p′(x)
∫

B(x,μ1/(α−n))\B(x,δ)
|x − y|(α−n)p′(x)dy

� Cμ−p′(x) δ p′(x)(α−n/p(x))

−p′(x)(α − n/p(x))
,

which yields the required inequality. �

LEMMA 5. Let f be a nonnegative measurable function on G with ‖f ‖p(·) � 1 .
Then ∫

G
|x − y|α−nf (y)dy � Cq̃(x)−α(p(x)−1)/nMf (x)p(x)/p�(x).

for x ∈ G, where q(x) = n − αp(x) > 0 and q̃(x) = min{q(x), 1} .
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Proof. First consider the case

Mf (x)q̃1/p′(x) > 2α+q(x)/p(x). (6)

Since ‖f ‖p(·) � 1 , we have for μ > 1∫
G\B(x,δ)

|x−y|α−nf (y)dy � μ

(∫
G\B(x,δ)

(|x−y|α−n/μ)p′(y)dy +
∫

G\B(x,δ)
f (y)p(y)dy

)

� Cμ
(
μ−p′(x) δ−q(x)/(p(x)−1)

q(x)
+ 1

)

because of Lemma 4. Now if we set

μ−p′(x) δ−q(x)/(p(x)−1)

q̃(x)
= 1,

then ∫
G\B(x,δ)

|x − y|α−nf (y)dy � C
δ−q(x)/p(x)

q̃(x)1/p′(x) .

It follows from [1, (3.1.1)] that∫
G
|x − y|α−nf (y)dy =

∫
B(x,δ)

|x − y|α−nf (y)dy +
∫

G\B(x,δ)
|x − y|α−nf (y)dy

� CδαMf (x) + C
δ−q(x)/p(x)

q̃(x)1/p′(x) .

Letting Mf (x)q̃(x)1/p′(x) = δ−α−q(x)/p(x) by (6) as in the proof of Proposition 3.1.2 in
[1], we find ∫

G
|x − y|α−nf (y)dy � CMf (x)p(x)/p�(x) 1

q̃(x)α(p(x)−1)/n
.

Next consider the case
Mf (x)q̃1/p′(x) � 2α+q(x)/p(x).

Then we have∫
G
|x − y|α−nf (y)dy � CMf (x)

= C
(
Mf (x)q̃1/p′(x)

)
q̃−1/p′(x)

� C
(
Mf (x)q̃1/p′(x)

)p(x)/p�(x)
q̃−1/p′(x)

= CMf (x)p(x)/p�(x) 1
q̃(x)α(p(x)−1)/n

,

as required. �
In view of Lemma 5 we see that(

q̃(x)α(p(x)−1)/nUα f (x)
)p�(x)/p(x)

� CMf (x)
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for all nonnegativemeasurable functions f on G with ‖f ‖p(·) � 1 . Since M is bounded
from Lp(·) to itself according to the result by Diening [2], we have the following result.

THEOREM 4. There exist positive constants c1 and c2 such that∫
G

(
c1q̃(x)α(p(x)−1)/nUα f (x)

)p�(x)
dx � c2

for all nonnegative measurable functions f on G with ‖f ‖p(·) � 1 .

When α = 1 , we refer the reader to the paper by Edmunds-Rákosník [4]; compare
also with the paper by Diening [3] concerning Sobolev’s embeddings.

REMARK 5. For 0 < ε < 1 , set p(x) = n − ε and 1/q = 1/p(x) − 1/n . Then
we see from Lemma 5 that

(1/q)n/(n−1) ‖U1f ‖q � C‖f ‖n−ε

(see also [11]). Hence we have the following fact by Fusco-Lions-Sbordone [5]:
If f is a nonnegative measurable function on G such that

lim
ε→0+

εδ
∫

G
f (y)n−εdy = 0

for some 0 < δ < 1 , then∫
G

exp(c(U1f (x))1/A)dx < ∞ for all c > 0 ,

where A = (n − 1 + δ)/n .
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