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NECESSARY CONDITIONS FOR SOLVING INITIAL VALUE

PROBLEMS WITH INFIMA OF SUPERFUNCTIONS

RODRIGO LÓPEZ POUSO

(communicated by S. G. Leela)

Abstract. Goodman proved that the pointwise infimum of all superfunctions is the minimal
absolutely continuous solution of

x′ = f (t, x), t ∈ [0, 1], x(0) = 0,

in case f is a L1 -bounded Carathéodory function. How far can Carathéodory conditions be
weakened without loosing that property? First we establish necessary conditions over f for
Goodman’s method to be valid, and then we use them as a starting point to deduce sufficient
ones. In this way we obtain new existence results and we provide new insights concerning the
application of Goodman’s method.

1 Introduction

Let us consider the initial value problem

x′(t) = f (t, x(t)), t ∈ I = [0, 1], x(0) = 0, (1.1)

where f : I × R → R , and let us denote by AC(I) the set of all real valued functions
that are absolutely continuous on I . A (Carathéodory) solution of (1.1) is a function
x ∈ AC(I) such that x(0) = 0 and satisfies the differential equation for almost all
(a.a.) t ∈ I . We say that a solution xmin is the minimal one if xmin � x on I for any
other solution x , and we define the maximal solution symmetrically. When both the
minimal and the maximal solutions exist, we call them the extremal solutions. On the
other hand, a subfunction (or lower solution) for (1.1) is a function l ∈ AC(I) such
that l(0) � 0 and l′(t) � f (t, l(t)) for a.a. t ∈ I ; a superfunction (or upper solution)
is defined analogously reversing the inequalities. We note that x : I → R is a solution
if, and only if, it is both a subfunction and a superfunction.

Subfunctions and superfunctions were first used by Peano in the proof of his
classical existence result in the scalar case, see [7]. Goodman gave the above definitions
in [3] to adapt Peano’s technique to L1 -bounded Carathéodory right-hand sides, and
he showed that the minimal solution is the least superfunction, and that the maximal
solution is the greatest subfunction.
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It is the aim of this paper to solve as satisfactorily as possible the following problem:
to find the weakest sufficient conditions over a L1 -bounded right-hand side f so that
Goodman’s method can be succesfully carried out. To achieve this goal we start by
answering the following question in section 2: which conditions are necessary for a
bounded f so that the pointwise infimum of all superfunctions of (1.1) be a solution?
In section 3 we show how the results of section 2 lead to a new existence result for (1.1)
through Goodman’s approach, and in section 4 we adapt everything to subfunctions and
maximal solutions. We remark that our theorem 4.1 generalizes the results established
in [5, 8] for (1.1) and, thanks to the new viewpoint considered here, the proofs get
shorter and probably clearer.

All the results in this paper remain valid, with obvious changes, if we replace
I by any other compact interval [a, b] , and x(0) = 0 by any other initial condition
x(a) = x0 ∈ R . We have considered [0, 1] and x(0) = 0 only for simplicity.

2 Properties of the infimum of superfunctions

Throughout this section we shall assume that f is bounded in the following sense:
there exists M ∈ L1(I) such that for a.a. t ∈ I and all x ∈ R we have |f (t, x)| � M(t) .
This condition can probably be replaced by a more general one, but our main interest
concerns the study of how f depends on (t, x) .

We define the set of admissible superfunctions for (1.1) as

U := {u ∈ AC(I) : u(0) � 0 and |u′| � M + 1, u′ � f (t, u) a.e. on I },
and we note that U �= ∅ as u(t) :=

∫ t
0 M(r)dr , t ∈ [0, 1] , is an element of U .

The adjective “admissible” refers only to the condition that |u′| � M + 1 , which
is not needed in the today standard definition of superfunction, but it wipes out some
technical complications in the proofs.

In case f is a Carathéodory function the minimal solution of (1.1) is the least
superfunction, see [3]. Thus a good candidate for being the minimal solution is

uinf(t) := inf{u(t) : u ∈ U }, t ∈ I. (2.1)

Note that if u is a superfunction then ũ(t) =
∫ t

0 min{u′(s), M(s)}ds , t ∈ I ,
defines an admissible superfunction such that ũ � u on I . Therefore uinf is also the
pointwise infimum of all superfunctions.

Plainly uinf(0) = 0 . In the next lemma we state some properties of uinf which
follow from our boundedness assumption and which can be proven by means of standard
arguments (the reader is referred to [3] or [5, lemma 3.1]).

LEMMA 1. There exists a nonincreasing sequence {un}n ⊂ U that converges
uniformly on I to uinf ; as a consequence, uinf ∈ AC(I) and |u′inf(t)| � M(t) + 1 for
a.a. t ∈ I .

In the following two theorems we study the behavior of f over the graph of uinf .
Such results are fundamental in this paper, as they provide a clear vision of what f
should satisfy so that uinf be a solution.
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The function uinf has the following connection with (1.1):

THEOREM 1. For almost all t ∈ I we have

u′inf(t) � f (t, uinf(t))χI1(t) + lim inf
y→(uinf(t))+

f (t, y)χI2(t),

where I1 = {t ∈ I : u(t) = uinf(t) and u′(t) � f (t, u(t)) for some u ∈ U } , I2 =
I \ I1 , and χIi is the characteristic function of Ii , i = 1, 2 .

Proof. Let t0 ∈ I1 be such that u′inf(t0) exists, and let u ∈ U be a superfunction
corresponding to t0 by definition of I1 . Then it is elementary matter to show that
u′inf(t0) = u′(t0) � f (t0, uinf(t0)) . Since u′inf exists a.e., we conclude that

u′inf(t) � f (t, uinf(t)) for a.a. t ∈ I1 .

To study u′inf on I2 = I \ I1 , we take a sequence {un}n satisfying the conditions
of lemma 1. Since |u′n| is uniformly L1 -bounded on I we have that lim infn→∞ u′n ∈
L1(I) ; moreover for all s, t ∈ I Fatou’s lemma implies

uinf(t) − uinf(s) = lim
n→∞

∫ t

s
u′n(r)dr �

∫ t

s
lim inf
n→∞ u′n(r)dr,

and therefore for a.a. t ∈ I we have

u′inf(t) � lim inf
n→∞ u′n(t) � lim inf

n→∞ f (t, un(t)). (2.2)

Now if t0 ∈ I2 and uinf(t0) = un(t0) for some n , the definition of I2 implies that
either the derivative u′n(t0) does not exist, or u′n(t0) < f (t0, un(t0)) . Since ∪n∈N{t ∈
I : either � ∃u′n(t0) or u′n(t0) < f (t0, un(t0))} is a null-measure set, we conclude that for
a.a. t ∈ I2 we have uinf(t) < un(t) for all n ∈ N , and then

u′inf(t) � lim inf
y→(uinf(t))+

f (t, y) for a.a. t ∈ I2 ,

by virtue of (2.2). �
The set I1 may be empty in theorem 1, as it happens for (1.1) with f replaced by

f 1(t, x) =
{

0, if x �= 0 ,
1, if x = 0 .

Analogously, I2 may be empty, and an example is furnished by f 2 = 1 − f 1 . We note
that uinf(t) = 0 for all t ∈ [0, 1] in the previous two examples.

REMARK 1. Bearing theorem 1 in mind, it is obvious that u′inf � f (t, uinf)
a.e. on I (and consequently uinf is a superfunction) provided that the condition
“ lim infy→(uinf(t))+ f (t, y) � f (t, uinf(t)) a.e. on I ” is satisfied.

Next we present a necessary condition for uinf being a superfunction:

THEOREM 2. Assume that u′inf(t) � f (t, uinf(t)) for a.a. t ∈ I , then
(a) The set J := {t ∈ I : u′inf(t) > lim supy→(uinf(t))− f (t, y)} is a countable union

of sets which contain no positive measure set. Specifically, J = ∪n,m∈NJn,m where for
all n, m ∈ N the set

Jn,m := {t ∈ I : u′inf(t) − 1/n > sup{f (t, y) : uinf(t) − 1/m < y < uinf(t)}}
contains no positive measure set.
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(b) u′inf(t) � lim supy→(uinf(t))− f (t, y) for a.a. t ∈ I provided that for all n, m ∈ N

the set Jn,m is measurable.

Proof. We are going to show that (a) holds. Note first that for each t ∈ J there
exists n ∈ N such that

u′inf(t) −
1
n

> lim sup
y→(uinf(t))−

f (t, y) = inf
ε>0

sup
uinf(t)−ε<y<uinf(t)

f (t, y),

and therefore there exists m ∈ N such that t ∈ Jn,m . Conversely, for each t ∈
∪n,m∈NJn,m there exist n, m ∈ N such that

u′inf(t) −
1
n

> sup
uinf(t)−1/m<y<uinf(t)

f (t, y) � lim sup
y→(uinf(t))−

f (t, y),

and hence t ∈ J . Thus J = ∪n,mJn,m , and now it suffices to prove that for all n, m ∈ N

the set Jn,m contains no positive measure subset.
Reasoning by contradiction, assume there exist n, m ∈ N for which the corre-

sponding Jn,m has a positive measure subset, denoted again by Jn,m for simplicity.
By [5, lemma 2.3] there exist t0 ∈ Jn,m ∩ (0, 1) and δ ∈ (0, n/m) such that for all
t ∈ (t0, t0 + δ) we have

μ([t0, t] ∩ Jn,m) � 1
2
(t − t0), (2.3)∫

[t0,t]\Jn,m

(M(r) + 1)dr � 1
4n

μ([t0, t] ∩ Jn,m). (2.4)

Let us define u ∈ AC(I) such that u(0) = 0 and for a.a. t ∈ [0, 1]

u′(t) =

⎧⎪⎨
⎪⎩

u′inf(t), if t � t0,

u′inf(t) − 1/n,if t ∈ [t0, t0 + δ ] ∩ Jn,m,

M(t) + 1, otherwise.

Taking into account that uinf is a superfunction, it is easily seen that |u′(t)| � M(t) + 1
for a.a. t ∈ I and that u′(t) � f (t, u(t)) for a.a. t ∈ I \ ([t0, t0 + δ ] ∩ Jn,m) .

For t ∈ (t0, t0 + δ) we have

uinf(t) − u(t) =
∫ t

t0

(u′inf(r) − u′(r))dr

=
1
n
μ([t0, t] ∩ Jn,m) +

∫
[t0,t]\Jn,m

(u′inf(r) − M(r) − 1)dr

� 1
n
μ([t0, t] ∩ Jn,m) − 2

∫
[t0,t]\Jn,m

(M(r) + 1)dr (by (2.4))

� 1
2n

μ([t0, t] ∩ Jn,m) > 0 (by (2.3)),
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and, on the other hand,

uinf(t) − u(t) =
1
n
μ([t0, t] ∩ Jn,m) +

∫
[t0,t]\Jn,m

(u′inf(r) − M(r) − 1)dr

� 1
n
μ([t0, t] ∩ Jn,m) � 1

n
(t − t0) <

δ
n

<
1
m

.

Therefore for a.a. t ∈ (t0, t0 + δ) ∩ Jn,m we have

u′(t) = u′inf(t) − 1/n > sup
uinf(t)−1/m<y<uinf(t)

f (t, y) � f (t, u(t)),

and then u′(t) � f (t, u(t)) for a.a. t ∈ I . This is a contradiction, since u ∈ U and
u < uinf on (t0, t0 + δ) .

Part (b) follows rightaway from (a) and the extra assumption. �

REMARK 2. Combining Remark 1 with theorem 2, part (b) , we conclude that
uinf will be a solution of (1.1) in case the sets Jn,m are measurable and the following
condition is fulfilled:

lim sup
y→(uinf(t))−

f (t, y) � f (t, uinf(t)) � lim inf
y→(uinf(t))+

f (t, y) for a.a. t ∈ I .

Since uinf is not known a priori, a reasonable sufficient condition to impose is that

lim sup
y→x−

f (t, y) � f (t, x) � lim inf
y→x+

f (t, y) for a.a. t ∈ I and all x ∈ R ,

which was refered to as “quasisemicontinuity” in [2]. This condition seem to have been
considered for the first time in connection with (1.1) in [1].

The previous arguments reveal that quasisemicontinuity is a very fine assumption,
which seems to be difficult to improve in an essential way at least on the points of the
graph of uinf . However, it is somewhat stringent outside that graph, and in fact it can
be relaxed over sufficiently nice curves of the (t, x) plane, as already pointed out in [8].
We shall give a more precise formulation of this idea in section 3.

3 Existence of a minimal solution

As a consequence of theorems 1 and 2 we have the following existence principle
for (1.1):

THEOREM 3. Let f : [0, 1] × R → R be a mapping for which the following
conditions are fulfilled:
(i) there exists M ∈ L1(0, 1) such that for a.a. t ∈ [0, 1] and all x ∈ R we have

|f (t, x)| � M(t);
(ii) either for a.a. t ∈ I and all x ∈ R we have

lim sup
y→x−

f (t, y) � f (t, x) � lim inf
y→x+

f (t, y), (3.1)
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or there exist absolutely continuous γn : [an, bn] ⊂ I → R , n ∈ N , such that
for a.a. t ∈ I and all x ∈ R \ ∪{n/an�t�bn}{γn(t)} we have (3.1), while for each
n ∈ N and a.a. t ∈ [an, bn] we have either γ ′n(t) = f (t, γn(t)) , or

γ ′n(t) � f (t, γn(t)) whenever γ ′n(t) � lim inf
y→(γn(t))+

f (t, y), (3.2)

and
γ ′n(t) � f (t, γn(t)) whenever γ ′n(t) � lim sup

y→(γn(t))−
f (t, y). (3.3)

Then we have the following results:
(a) u′inf(t) = f (t, uinf(t)) a.a. t ∈ I \ J , where J is a countable union of sets

which contain no positive measure set. Specifically, J = ∪n,m∈NJn,m where for all
n, m ∈ N the set

Jn,m := {t ∈ I : u′inf(t) − 1/n > sup{f (t, y) : uinf(t) − 1/m < y < uinf(t)}}
contains no positive measure set.

(b) uinf is the minimal Carathéodory solution of (1.1) provided that for all
n, m ∈ N the set Jn,m is measurable.

Proof. We shall assume that the second alternative in (ii) holds, as the proof is
analogous but easier when the first alternative is satisfied.

By theorem 1 there exist I1 ⊂ I such that

u′inf(t) � f (t, uinf(t))χI1(t) + lim inf
y→(uinf(t))+

f (t, y)χI\I1 (t) for a.a. t ∈ I. (3.4)

By virtue of [6, theorem 38.2], for each n ∈ N we have u′inf(t) = γ ′n(t) for a.a.
t ∈ I such that uinf(t) = γn(t) . Thus (3.4) and the second inequality in (3.1) imply
u′inf(t) � f (t, uinf(t)) for a.a. t ∈ I \ ∪nΓn , where Γn := {t ∈ [an, bn] : uinf(t) =
γn(t) and γ ′n(t) �= f (t, γ (t)) } , n ∈ N .

Now let n ∈ N be fixed and let t0 ∈ Γn be such that u′inf(t0) = γ ′n(t0) . If γ ′n(t0) <
lim infy→(γn(t0))+ f (t0, y) then u′inf(t0) < lim infy→(uinf(t0))+ f (t0, y) and then (3.4) im-
plies that either t0 belongs to a nullmeasure set or t0 ∈ I1 , i.e., u′inf(t0) � f (t0, uinf(t0)) .
If, on the other hand, we have γ ′n(t0) � lim infy→(γn(t0))+ f (t0, y) , then condition (3.2)
implies that either t0 belongs to a null measure set or γ ′n(t0) � f (t0, γn(t0)) as well,
hence u′inf(t0) � f (t0, uinf(t0)) .

Therefore we have

u′inf(t) � f (t, uinf(t)) for a.a. t ∈ I, (3.5)

and then theorem 2 yields

u′inf(t) � lim sup
y→(uinf(t))−

f (t, y) for a.a. t ∈ I \ J. (3.6)

The first inequality in (3.1) implies that for a.a. t ∈ I \ J , t �∈ ∪n∈NΓn , we have
u′inf(t) � f (t, uinf(t)) .

On the other hand, for each n ∈ N and each t0 ∈ Γn such that u′inf(t0) =
γ ′n(t0) we may have either γ ′n(t0) > lim supy→(γn(t0))− f (t0, y) (hence u′inf(t0) >
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lim supy→(uinf(t0))− f (t0, y) and (3.6) implies that either t0 belongs to a null set or
t0 ∈ J ), or γ ′n(t0) � lim supy→(γn(t0))− f (t0, y) and then, by condition (3.3), either
t0 belongs to a null measure set or γ ′n(t0) � f (t0, γn(t0)) , which is equivalent to
u′inf(t0) � f (t0, uinf(t0)) . Therefore u′inf(t) � f (t, uinf(t)) for a.a. t ∈ I \ J , and then
(3.5) yields u′inf(t) = f (t, uinf(t)) for a.a. t ∈ I \ J .

Part (b) follows from (a) and the extra assumption. �
REMARK 3. In order to have a clearer comparison between our results with the

existing literature on the topic, we shall discuss briefly about condition (ii) . A family
of absolutely continuous functions γn : [an, bn] → R , n ∈ N , satisfies the conditions
prescribed in (ii) provided that for each n ∈ N one of the following conditions holds:

(1) for a.a. t ∈ [an, bn] either γ ′n(t) = f (t, γn(t)) , or there exists εt > 0 such that

γ ′n(t) � max{f (t, γn(t)), lim inf
y→(γn(t))+

f (t, y), lim sup
y→(γn(t))−

f (t, y) + εt},

(2) for a.a. t ∈ [an, bn] either γ ′n(t) = f (t, γn(t)) , or there exists εt > 0 such that

γ ′n(t) � min{f (t, γn(t)), lim inf
y→(γn(t))+

f (t, y) − εt, lim sup
y→(γn(t))−

f (t, y)}.

In turn (1) is implied by
(1′) there exists ε > 0 and δ > 0 such that

γ ′n(t) � ε + f (t, x) for a.a. t ∈ [an, bn] and all x ∈ [γn(t) − δ, γn(t) + δ ] ,

and there is analogous condition stronger than (2) . This shows that theorem 3 improves
the information given in [8, theorem 3.1] concerning minimal solutions.

REMARK 4. Part (a) of theorem3 ensures that uinf is a sort of “weak” Carathéodory
solution. The problem with that concept of a solution is that it is extremely weak, as
countable unions of sets having no positive measure subset may be rather big. Indeed,
the very real line can be expressed as such an union: see, for instance, the construction
of non measurable sets described in pages 69 and 70 in [4].

It would have been more interesting to have obtained absolutely continuous “solu-
tions” which solve the differential equation on I \K , for some K containing no positive
measure set. Such “solutions” x immediately become Carathéodory solutions in case
t ∈ I 
→ f (t, x(t)) is measurable. Unfortunately, so far we have not been able to obtain
this type of solutions just by supposing that the conditions of theorem 3 hold, neither to
construct any counterexample.

Anyway, we emphasize the fact that only measurability of the sets Jn,m is sufficient
to turn uinf into a Carathéodory solution, and thus only invoking the axiom of choice
can one construct a function f satisfying the conditions of theorem 3 and such that uinf

is not a Carathéodory solution.
The following lemma is a mild extension of [5, lemma 2.1], and it gives an easily

verifiable sufficient condition for the measurability of Jn,m . The proof is included for
completeness.

LEMMA 2. Let N ⊂ I be a null-measure set and let f : I × R → R be such that
f (·, q) is measurable for each q ∈ Q .
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If, moreover, for all t ∈ I \ N and all x ∈ R we have

max

{
lim inf
y→x−

f (t, y), lim inf
y→x+

f (t, y)
}

� f (t, x),

then the mapping t ∈ I 
→ sup{f (t, y) : x1(t) < y < x2(t)} is measurable for each
pair x1, x2 ∈ C (I) such that x1(t) < x2(t) for all t ∈ I .

Proof. We denote by S the following set of step functions: v : [0, 1) −→ R

belongs to S if v assumes only rational values, x1(t) < v(t) < x2(t) on [0, 1) and
there exists j ∈ N such that v is constant on every interval[

0,
1
j

)
,

[
1
j
,
2
j

)
, . . . ,

[
j − 1

j
, 1

)
.

As x1, x2 are continuous and x1 < x2 on [0, 1] , one can prove reasoning by
contradiction that there is j ∈ N such that for all k ∈ {0, 1, . . . , j − 1} we have

max{x1(t) : t ∈ [k/j, (k + 1)/j]} < min{x2(t) : t ∈ [k/j, (k + 1)/j]},
which implies that S is not empty. Note, moreover, that for each q ∈ (x1(t), x2(t))∩Q

there exists v ∈ S such that v(t) = q .
Since S is a countable family and any composition f (·, v(·)) with v ∈ S is

measurable on [0, 1) , it suffices to prove that

σ(t) := sup
y∈(x1(t),x2(t))

f (t, y) = sup
v∈S

f (t, v(t)) =: σ0(t)

a.e. on [0, 1) to deduce that σ is measurable.
Clearly, σ(t) � σ0(t) on [0, 1) . To prove that σ(t) � σ0(t) on [0, 1)\N , we fix

t ∈ [0, 1)\N and we take a sequence {yn}n ⊂ (x1(t), x2(t)) such that

lim
n→∞ f (t, yn) = σ(t). (3.7)

Our assumptions guarantee that for each n we have

lim inf
y→y−n

f (t, y) � f (t, yn) (or lim inf
y→y+

n

f (t, y) � f (t, yn)),

thus there exists qn ∈ (x1(t), yn) ∩ Q (or qn ∈ (yn, x2(t)) ∩ Q ) such that f (t, qn) �
f (t, yn)− 1/n. Since there exists vn ∈ S such that vn(t) = qn we have, for all n , that

σ0(t) = sup
v∈S

f (t, v(t)) � f (t, vn(t)) � f (t, yn) − 1
n

and, using (3.7), we conclude that

σ0(t) � lim
n→∞

[
f (t, yn) − 1

n

]
= σ(t).

�
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4 Extremal solutions

The reader can verify that analogous arguments with the set of admissible sub-
functions L := {l ∈ AC(I) : l(0) � 0 and |l′| � M + 1, l′ � f (t, l) a.e. on I },
and

lsup(t) = sup{l(t) : l ∈ L } for all t ∈ I , (4.1)

lead to the corresponding obvious versions concerning maximal solutions for all the
previous results. We shall only state here the following consequence of theorem 3,
lemma 2, and their analogous for lsup , which improves the main results for scalar
problems established in [1, 2, 5, 8]:

THEOREM 4. Let f : [0, 1]×R → R be a mapping which satisfies (i) , (ii) , and
(iii) f (·, q) is measurable for each q ∈ Q and, moreover, for a.a. t ∈ I and all x ∈ R

we have

min

{
lim sup
y→x−

f (t, y), lim sup
y→x+

f (t, y)

}
� f (t, x)

� max

{
lim inf
y→x−

f (t, y), lim inf
y→x+

f (t, y)
}

.

Then (2.1) is the minimal solution of (1.1) and (4.1) is the maximal one.
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Carathéodory’s hypotheses, J. Differential Equations, 7, (1970), 232–242.

[4] P. R. HALMOS, Measure theory, Van Nostrand Reinhold Company, New York, 1950.
[5] E. R. HASSAN, W. RZYMOWSKI, Extremal solutions of a discontinuous differential equation, Nonlinear

Anal. 37, (1999), 997–1017.
[6] E. J. MCSHANE, Integration, Princeton University Press, Princeton, 1967.
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