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NONLINEAR INTEGRAL INEQUALITIES
OF BIHARI-TYPE WITHOUT CLASS H

SUNG KYU CHOI, SHENGFU DENG, NAM Jip KOO AND WEINIAN ZHANG

(communicated by N. Elezovic)

Abstract. Integral inequalities of Bihari-type without restriction to the class H are discussed.
The main result can be applied to generalize Pinto’s results and Choi et al’s results. It is also
applied to show boundedness of solutions of a functional differential equation.

1. Introduction

Gronwall-Bellman inequality is a very useful tool in the study of existence, unique-
ness, boundedness, stability, invariant manifolds and other qualitative properties of solu-
tions of differential equations and integral equations. Many results on its generalization
can be found, for example in [1, 2, 3, 7, 10, 11, 12, 13, 14, 17], and, in particular, Pach-
patte obtain many important results in [11, 12, 13]. Among them one of the important
things is Bihari’s generalization [4] for the nonlinear inequality

u(r) < ao+/0 A(s)w(u(s))ds, t > 0. (L.1)

Dannan [6] considered Bihari’s inequality (1.1) again with a function a(z) instead of the
constant o while he introduced a class H consisting of all nonnegative, nondecreasing
and continuous functions w(u) on [0, 00) such that

w(u) >0 forall u >0 and w(ou) < y(a)w(u) forall o >0 and u >0,

where v (called multiplier function) is a certain nonnegative continuous function on
[0,00). This class H allows a reduction of a(z) to the case of constant ag by dividing
a(t). With this class H, Pinto [15] further investigated the inequality with function

a(r)
u(t) < alt) +£ (1) 1) / D) wiu(s))ds, 1> 1o > 0, (12)
i=1 To
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where all w; € H. In order to study stability of some nonlinear functional differential
equations, in 1997 Choi et al [5] discussed the inequality

u(t) < a(t)—i—/t A ()wy (u(s))ds

+ /, () /, As()wau(e))deds, 1> 1o > 0, (13)

where wy,w, are both in H. Actually, when we study behaviors of solutions of a
differential equation or an integral equation ( e.g., see inequalities in [16] for almost
periodicity of invariant manifolds), a(z) may be a function but w may not satisfy the
condition: w € H. So it is interesting to avoid such a condition.

Motivated by this observation in this paper, we consider the inequality

u(t) < a(t)+Z/tf,-(t,s)w,-(u(s))ds, t>1 >0, (1.4)

where we do not restrict these w; to the class H. We also show that many integral
inequalities of Bihari-type such as (1.2) and (1.3) can be reduced to the form of (1.4).
So our main result is applied to improve results in [5] and [15]. In particular, an error
in [15] can be corrected. Our main result is also applied to estimate solutions of a
functional differential equation and to prove boundedness of solutions.

2. Main results

Asin [15] we say wy oc wy for wi, w2 : A C R — R\{0} if 32 is nondecreasing
on A. This concept helps us to compare the monotonicity of different functions. For
convenience we always let ¢y, represent a nonnegative constant. Consider inequality
(1.4) and suppose that

(Cy) all w; (i=1,---,n) are continuous and nondecreasing functions on [0, c0) and
are positive on (0, 00) such that wy o wy o< -+ - X Wy, ;

(C2) a(t) is continuously differentiable in ¢ and nonnegative on [f, 00) ;

(C5) all fi(z,s) (i=1,---,n) are continuous and nonnegative functions on [y, 00) X

[lo, OO) .

We use the notation W;(u,u;) := f: %(ZZ), for u > u;, where u; > 0 is a given
constant. It is denoted by W;(u) simply when there is no confusion. Clearly, W; is
strictly increasing, so its inverse W;~! is well defined, continuous and increasing in its
corresponding domain.

THEOREM 1. Suppose (Cy), (Cz), (C3) hold and u(t) is a continuous and
nonnegative function on [ty, 00) satisfying (1.4). Then

t

u(t) < W, {Wo(b,(1)) + | max fu(7,8)ds], to<t<Ti, (2.1)

to H<T!
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where by(t) is determined recursively by

t

bi(t) = alty) + /t ' (5)|ds, biy(£) := Wl Wi(bi(0) + | max fi(z,5)ds], (2.2)

fo HT!

W1(0) := 0, and T, is the largest number such that

T1 o0
W,-(b,-(Tl))+/ max f,-(r,s)dsg/ i (2.3)
0 ui

10<T<Ty wi(z)’

REMARK 1. T is confined by (2.3). In particular, 73 = oo when all w; (i =
1,---,n) satisfy f;o %é) =00.

REMARK 2. Different choices of u; in W; do not affect our results. In fact, for
positive constants v; # u;, let W;(u) = fvlj Wf(zz> . Then W;(u) = W;(u) + W;(w;), and

Wt (v) = Wit (v — Wi(w;)) . Thus, W, {Wi(bi(1)) +ft(t)f~,-(t’ s)ds] = Wi [Wi(bi(1)) +
ft;f;(l, s)ds], and

Wibi(T)) + [ Fi(T1, 5)ds = W) + Wibi(T) + [ F(T1, 5)ds

I 0]

That is, (2.1), (2.2) and (2.3) are independent of the choice of u; > 0.

Proof. Obviously, f;(,s) := max,<c<.fi(7,s) is nonnegative and nondecreasing
in ¢ for each fixed s, and satisfies f;(z,s) > fi(t,s) foreach i =1,--- ,n.

We first discuss the case that a(¢) # 0 forall 7 € [fy, 00) . It means that by (r) #Z 0
forall 7 € [tg, 00), thatis, by(¢) > 0 forall ¢ € [fy, 00) . Insuch acircumstance b () is
positive, differentiable and nondecreasing on (o, c0) and by (1) > a(ty) + ] : d'(s)ds =
a(t) . Consider the auxiliary inequality

u(t) < by (r) + i/tﬂ(T, s)wi(u(s))ds, 1 <t<T, (2.4)
i=1 7
where T is chosen arbitrarily such that ¢y < T < T; . Having (2.4) we claim
u(t) < WA W (5a(T, 1)) + / TS, t0<1<T<Ts (2.5)
1o
where
bi(T,1) = ba(0), it (T,1) = W Wilbi(T,1)) + /tf?(T, s)ds], (2.6)
fo
i=1,---,n—1,and T, is the largest number such that

T> [e%s)
Wi(bi(T, T2)) + f;(T,s)dsg/ i (2.7)
to uj W,‘(Z)
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Notice that Ty < T . In fact, both b;(T, ) and f;(T,) are nondecreasingin 7. Thus,
T, satisfying (2.7) gets smaller as T is chosen larger. In particular, T, satisfies the
same (2.3) as T, when T =T

To prove (2.5) for n = 1, we observe that (2.4) is equivalent to u(¢) < b (¢) +z(z)
for ¢ € [to, T] where z(t) := ft: F1(T, s)wi(u(s))ds is a nonnegative and differentiable
function on [to, T]. Since wy is nondecreasing and z(¢) + b,(¢) > 0, we have

@460 [T )i (u() n by (1)
wi(z(t) + b1(1) — wi(z(t) +b1(r))  wi(z(t) +bi(2))
_ AT owmE) +bi0) | b0
= wi(z(7) + b1 (2)) wi(b1(1))
- b (1)
< fl(T> t) + Wi (;71(1‘)) (28)
Integrating both side of the above inequality from 7y to ¢, we obtain
Wi (Z(l) + bl(l)) < W (bl(l)) + /tﬂ(T, s)ds, fh<t<T. (29)

By (2.7), we see that W (b()) + frofl (T,s)ds is in the domain of W, for all
t € [to, T] for n = 1. Thus the monotonicity of W ! implies

I/t(l) < bl(l‘) —|—Z(l) < W W1 bl /f1 T, S dS <t KTy, (210)

ie., (2.5)istrueforn=1.
Assume that (2.5) is true for n = m. Consider

m+1

+Z/f,Tswl s))ds, to<t<T.

Let z(1) = S fto fi(T,s)wi(u(s))ds. Then z(z) is differentiable, nonnegative and
nondecreasmg on [fo, T] and satisfies u(r) < by(r) + z(¢) for ¢ € [ty, T]. Since w; is
nondecreasing and z(¢) + b1(r) > 0, we have

20+ 610 _ S AT wiu() n by (1)
WG T bi0) S w0 + bi0) wi(z(1) + bi(2))
) +

w,r bi(r) | b
<A T 5() T i)

y m+1 B b/ (l)
A0 A0 005, gy

) mo b1 (1)
AT+ 3 Finr @9 Cl) + 0i0) + S0 T
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for 1o < t < T, where ¢;1(u) := Vﬁ—ii‘)‘), i =1,---,m. Integrating the above
inequality from #, to ¢, we get

Wi(z(f) + b1(2)) < Wi(b1(2)) + /tfl(T, s)ds

+Z/ [T, 8) i1 (2(s) + bi(s))ds, 10 <t<T,
i=1 7

or equivalently
S <a)+ Z/fiJrl(T’ )91 (W (E(9))ds, 10 <t<T,
i=1 Y

the same as (2.5) for n = m, where £(r) = W, (z(r) + by (¢
ft:)f](T, s)ds . From the assumption (Cy), each ¢y, (W, "
ous and nondecreasing on [0, 00) and is positive on (0, 00) since W ! is continuous
and nondecreasing on [0, 00). Moreover, (W, ') o< ¢ (W) oc - -+ o< @it (W ).
By the inductive assumption, we have

~—

) and ¢ () = Wi (b1(2)) +

,i=1,--- m,is continu-

~—

£() <¢,Zi1[q>m+1(cm(t))+/fm+1(T7S)dSL fo <t <min{7, T3},  (2.11)

~ -1 . .
where @, (1) = j;,l-ﬂ m, u > 0,ii1 = Wi(ur), ) is the inverse of

Qy,i=1,---,m,

ciJrl(t) = ijrll [q)i+l(ci(t)) + / f~i+l(T7 s)ds], i= 17 T, m = 17

fo

and T3 is the largest number such that

T3 - Wl(oo) dZ
o)+ [ faTas< [ Lo )
o i1 Gt (W7 '(2))
Note that
" dz o (W (2)dz
o= [t [ Ok G
a Wy (2)  Jwiw) wi(Wy (2)

Wi 1(”) dZ
1 .
:/u,' W,‘(Z):Wiowl (M)7 l:27...7m_~_1.

Thus, we have from (2.11) that
u(t) < bit) +2(1) = W' (1)

< W W (W) (en(0)) + / Forer (T, 5)ds], (2.13)

/A
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for tp <t < min{T, T3}. Let &(t) = W, '(c;(¢)). Obviously,
51(1‘) = W;l(Cl(l)) W W1 b1 /fl T, S dS
=W DRG0 + [ AT s)as] = Ba(T, ).
fp

Moreover, with the assumption that &, (¢) = Byt (T,t), we have

chrl (t) l{q)m+l[ m+1 Cm /fm+1 T S ds]}
_ —1 1
- Wm+l[Wm+1(W1 cm / fm+1 T N ds]
= Wr;ll[Werl /fm+1 T S ds]
= Wm+l[Wm+1(l~7m+l(T, 1)) +/f~m+1(T, s)ds]

To
= E}?1+2(T7 t)-
This proves that

Ei(t):biJrl(T,t), l:l’ , M.
Therefore, (2.12) becomes
dz

B Ts Wi (o)
Wit1(biz1 (T, T3)) +/ fir1(T,s)ds g/ —
o i G (W (2)

> dz .
= 3 l = 17 A ’m-
Ui+ Wi+1 (Z)

It means that 7, = T3 and T < Ts. From (2.13) we have

u(t) < w,;jl[WmH(zBmH(T, D)+ / Funi(T,8)ds], 1o <t<T<T.
to

This proves (2.5) by induction.
Finally, from (1.4) we have

n T
n+Y / Fi(T,5)wi(u(s))ds
1+ Y [ AT wius)as
i=1 Y1

namely, the auxiliary inequality holds for = T'. By (2.5),

u(T) < W, {W,(b,(T, T)) /fnTsds}

SW; /fnTsds to <t < Ty,
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where we apply the facts that b,(7T,T) = b,(T) and T, = T;, which can be easily
verified and found in the sentences after (2.7) respectively. This proves (2.1) because
T is arbitrarily chosen.

In case a(r) = 0 for all ¢ € [ty,00), by definition we have that b,(r) = 0 for
all 7 € [ty,00). Let by, (t) := bi(t) + uy forall 7 € [ty,00), where u; > 0 is given
in Wi(u) = fuul Wi” Using the same arguments as in (2.8) and (2.9) where b;(z) is

replaced with the positive by, (1), we get
Z(f)‘f’blul (f) d by ”l
/ < g/ /f1 (T,s)d (2.14)
Z(’O)+bl.u1(t0> Wl (Z) bl uj tO
Notice that by 4, (t0) = b1, (#) = u; . Then the second integral of (2.14) equals 0 and
we get Wi (z(1) +up) < fofl(T,s)ds,i.e.,

() Z(t +b1ul()\ ()+M1

WH/ﬁTsds fh<t<T<T, (2.15)

which is the same as (2.10) with a complementary definition that W;(0) := 0. Being
the first step, the estimate of (2.15) is independent of u;. Then, as for (2.5) as the
above we similarly obtain (2.1) and all b,(r) are defined by the same formula (2.2),
where we note that W;(0) := 0. This completes the proof. [

3. Generalization of known results

Taking a(t) = c, a positive constant, and f;(7,s) = A;(s) in (1.4), we get from
Theorem 1 that

u(t) < W, W, (ba(2)) + /t/l,,(s)ds], 1o <t <Ti,

which generalizes Pinto’s estimate (6) in [15]. Actually, let ¢; denote the maximum
of b;(t) on [to, Ty], thatis, ¢; = b;(T;). Then the above estimate where all b;(¢) are
replaced by ¢; is just the result of Theorem 1 in [15].

Consider the inequality

*Z/ gilt;s / (s, Dwi(u(z))dds, 121020, (3.1)

which looks more complicated than (1.4).

COROLLARY 1. Supposethat (Cy) and (Cz) hold and that the functions gi(t, s), hi(t, s)
are both nonnegative and continuous on [ty, 00) X [tg,00), i = 1,--- ,n. If u(t) isa
continuous and nonnegative function such that (3.1) holds on [ty, ), then

t

u(t) < W, W, (b,(1) + max g,(7, v)/ ha(v, T)dsdv], to <t < Tg,
to

fo H<TS!
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where b, and its related functions are defined as in Theorem 1 by replacing fi(t,s)
. t
with [} max, <o< &i(T,v)hi(v, s)dv.
Proof. Because g;, h; and w; are continuous, we have

[ stts) [ ts, emmtutonanas = [witu(e) [ e, mts, vasae

o o Iy T

= [ [ st Om(e sy < / File, sywilu(s))ds,

Iy s

where f;(z,s) := f; max,,<r<: &i(T, v)hi(v,s)dv. Then (3.1) is reduced to

O+ / Fit, )wiu(s))ds, 1> 1o,
i=1 7t

which is just the form of (1.4). Note that for fixed s the function f;(7,s) is increasing
in 7. So fi(t,s) := max,<r<.fi(7,5) = fi(t,s). By Theorem 1,

() < W W6 0) + [ 0905

<w, ' w, / / max g,(7, v)h,(v, s)dvds)

L STt

< W, W, (ba(2) + max g,(7, v)/ ha(v,8)dsdv], tn<t<Tg. O

fo HT! o

Similarly, (1.3) can also be changed into the form of (1.4). Hence, Theorem 1 also
answers in the cases discussed in Theorems in [5].

COROLLARY 2. Suppose that (C1) and (C3) hold and that a(t) is continuous,
nondecreasing and positive on [ty,0). Let each function w;(u) be in the class H
with a multiplier v;, i = 1,---  n. If u(t) is a continuous and nonnegative function
satisfying (1.4) on [ty, 00), then

u(t) < a()W, ! [Wa(ba(1)) +/ Ils) max £, (7, )W (a(s))ds], to<t<T,

HTS!

where b, and other notations are defined in Theorem 1 by replacing a(ty),d’(s),fi(t, s)
with 1,0,fi(z, s)yi(a(s))/a(s) respectively.

Proof. We can not apply Theorem 1 immediately because (C,) does not hold.
However, w; is in the class H . Thus from (1.4) we have

) < 143 [T aaas
i=1 710

<y 4 0y ats) et s, (2)
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where z(r) := u(t)/a(t). Clearly inequality (3.2) is in the form of (1.4) and the term
corresponding to a(t) becomes 1, a constant function, which of course satisfies (C,).
Applying Theorem 1 to (3.2) we get

t
1
g . n bn N n n ) < g T:.
1) < Wy (e (0) + [ s mas (e wala(9)as], 10 <1< Ty
Together with the relation u(¢) = a(r)z(r), it gives the estimate of « in the corollary. [

As (1.3) can be changed into the form of (1.4), Corollary 2 also answers in the
case of Corollary 2.4 in [5]. Moreover, by taking f;(z,s) to be A;(s), fi(f)Ai(s) and
F()fi(£)Ai(s) respectively, our Corollary 2 also implies Pinto’s Theorem 3, Corollaries
1 and 2 in [15]. In particular, as in Theorem 3 in [15], we get from our Corollary 2 that

u(t) < h(AW Wa(cnr) + / ’;8 ro(h(s))ds],

which corrects an error in [15]. In fact, the first line on page 395 of [15] should be

Yo;(z(s))ds.

Corresponding to Theorem 4 in [15], another inequality

u(t) < a(t)+/tf1(t,s)w1(u(s))ds

+ / 't s)wa / (s s (u(D)dD)ds, 151030, (33)

is also interesting. It is just the case of Theorem 4 in [15] where a(f) = ¢ (a positive

constant) and f;(t,s) = Ai(s), i = 1,2,3. The following result gives an estimate to
inequality (3.3).

COROLLARY 3. Suppose that functions a, f; and w;, i = 1,2,3, satisfy (Cy),
(Cy) and (C3). If the continuous and nonnegative function u(t) satisfies (3.3) on
[f0, 00), then

o <T!

I/t(l) W W3 bq / max f3 T,8 ds} to <t < Ty,
fo

where the notations by and T, are defined as in Theorem 1.

Proof. Take T arbitrarily such that 1o < T < T;. Let

bilo) = atuo) + [ sl

- / Fo(T, 5w (u(s))ds + / (T, s)waleals))ds,
:/f}(T,s)W3(u(s))ds
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where fi(t,s) := max, <r<.fi(7,5). Thus, by (f),z1(f),z2() are all nonnegative, differ-
entiable and nondecreasing on [ty, 7|, and u(t) < by(t) + z1(¢) + z2(¢) for ¢ € [0, T].
Note that the function z(7) := b;(¢) + z1(¢) 4+ z2(¢) satisfies

(1) = |d' (0)] + (T, )wi (u(0)) +f2(T, ) wa(22(1) +f3(T, )ws (u(t))
< a' (O] + 1T, w1 (1)) +f2(T, )wa (2(0)) + f3(T, D)ws (2(1))

because w; (i = 1,2,3) are nondecreasing. Integrating the above inequality, we get

3 t
n+Y / FAT,)wilzls)ds, 1 <1<T,
i=1 71

which is in the form of (1.4). Applying Theorem 1 we obtain the result of this
corollary. [J

4. Applications

Consider the differential equation

x():i—kexp NV [x(@)] + 1+ texp (—1)%x(t), (4.1)

where x : [0,00) — R is a differentiable function and ¥ is a continuous operator on
C(R,R) such that |Tx| < colx| for a constant ¢o > 0. In particular, when we take
Tx(1) f H(t,s,x(s))ds or ¥x(t) = x(t — ), equation (4.1) becomes an integro-
d1fferent1al equation or retarded functional differential equation. General theory can be
found, for example, in [8, 9]. From (4.1),

Ix(0)] < ba(0) + / £ (sywi (1x(s))ds + / gswa(lx(s))ds, 1>10>0, (42)

where by (1) = |x(t)] + % — 2, wi(u) = Vu+1, wa(u) = cou, f(t) = exp(—1),
g(t) = texp(—1). Clearly, WTEZ; = coa= is nondecreasing for u > 0, that is,

wy < wy . Then for uy,u, > 0

1
7
w

z u
=2(Vu+1 u + 1 —+Vu + 17 -1,
u \/Z+1 ! (2 ! )
" dz 1 _
Wo(u) = ; o aln o’ W, ! (u) = ugexp(cou),

pa(0) = [0 + 141+ Jexp (1) ~ exp(-) 1.
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_ O dz  __ [ _dz __ © _dz _ [° dz _
Note that T} = oo because [~ ;%5 = [© =5 =ooand [~ &5 = [ 7 £ = oo.
Then

t

X)) < W5 [Waba(r)) + / ¢(s)ds]

to

<Ay Bl + =~ 1+ 1+ Jexp(~10) — exp(~)F - 1}

x explco(to + 1) exp (—to) — co(t + 1) exp (—1)], V= to.

In particular,

tim suplx(o)] < {[y/lx)] + -+ 1+ 3 exp (~)” = 1} explea(t + 1) exp (~1)]

This implies that every solution of (4.1) is bounded.

It is worth mentioning that theorems and corollaries in [15] and [5] do not work in

this example because the inequality corresponding to (4.2) involves the non-constant
function b,(¢) and w; is notin the class H.
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