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DIFFERENTIAL SYSTEMS AND APPLICATIONS
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(communicated by D. Bainov)

Abstract. Initial boundary value problems for quasilinear hyperbolic systems are transformed
by discretization in space variables into systems of ordinary functional differential equations.
Sufficient conditions for the convergence of the method of lines are given. An implicit difference
method is proposed for the numerical solving of systems thus obtained. This leads to an implicit
difference method for the original problem. A comparison technique is used. We give a complete
convergence analysis for the methods and we show by an example that the new methods are
considerable better than the classical schemes.

1. Introduction

For any metric spaces U and V we denote by C(U, V) the class of all continuous
functions from U into V. Let Mk×n be the space of all k×n matrices with real elements.
We will use vectorial inequalities with the understanding that the same inequalities hold
between their corresponding components. Write

E = [0, a] × [−b, b], E0 = [−b0, 0] × [−b, b],

∂0E = [0, a]× (
[−b, b] \ (−b, b)

)
where a > 0 , b0 ∈ R+ , R+ = [0, +∞) , b = (b1, . . . , bn) ∈ R

n and bi > 0 for
1 � i � n. Set Ω = E × C(E0 ∪ E, Rk) and suppose that the functions

f : Ω → Mk×n, f =
[
f ij

]
i=1,...,k, j=1,...,n

,

g : Ω → Rk, g = (g1, . . . , gk),

ϕ : E0 ∪ ∂0E → Rk, ϕ = (ϕ1, . . . ,ϕk),

are given. We consider the problem consisting of the system of functional differential
equations

∂tzi(t, x) =
n∑

j=1

f ij(t, x, z) ∂xj zi(t, x) + gi(t, x, z), i = 1, . . . , k, (1)
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and the initial boundary condition

z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E, (2)

where x = (x1, . . . , xn) and z = (z1, . . . , zk). Write

Et =
(
E0 ∪ E

) ∩ (
[−b0, t] × R

n
)
, 0 � t � a.

We assume that f and g satisfy the following Volterra condition: if (t, x) ∈ E and
z, z̄ ∈ C(E0 ∪ E, Rk) are such functions that z

∣∣
Et

= z̄
∣∣
Et

then f (t, x, z) = f (t, x, z̄) and
g(t, x, z) = g(t, x, z̄).

The method of lines for partial differential or functional differential equations
consists in replacing derivatives with respect to spatial variables by difference expres-
sions. Then the original problem is transformed into a system of ordinary differential or
functional differential equations. It is easy to construct a differential difference system
which satisfies a consistency condition with respect to the original problem on suffi-
ciently regular solutions. The main question in these considerations is to find sufficient
conditions for the stability on the numerical method of lines. The method of differential
inequalities is a basic tool in the investigation of the stability.

There is a wide literature on the numerical method of lines for parabolic differen-
tial or functional differential equations and for nonlinear first order partial functional
differential problems ([3], [7], [10] - [12], [14], [18]). The monographs [9], [16], [17]
contain a large bibliography.

The method of lines is also treated as a tool for proving of existence theorems
for differential problems corresponding to parabolic equations ([19], [20]) and for first
order hyperbolic systems ([8], [15]).

Our concern is the numericalmethod of lines for problem (1),(2). Bymaking use of
a discretization of the spatial variable x , we associate to problem (1), (2) a net of Cauchy
problems for ordinary functional differential equations. Solutions of such systems are
considered as approximate solutions of (1), (2). Then we estimate the difference
between the exact and approximate solutions of (1), (2) and, as a consequence, we
prove that approximate solutions converge to the solution of (1), (2).

Note that theorems on the numerical method of lines for nonlinear equations ([3],
[9] Chapter VI) are not applicable to (1), (2).

The second part of the paper deals with the discretization in time of differential
difference systems corresponding to (1), (2). An application of one step difference
methods is a natural way of the numerical solving of such problems .

In the paper we propose implicit difference schemes for the numerical solving of
the above problems. They have the following properties:

(i) the numerical realization of our method is very simple,
(ii) results obtained by using implicit difference methods of the Euler type are

better than those obtained by classical Runge - Kutta schemes.
We give a complete convergence analysis for the methods and we show by an

example that the new methods are considerable better than the classical schemes.
The paper is organized as follows. In Section 2 we formulate a numerical method

of lines for (1), (2). In the next section we present a comparison result for differential
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difference inequalities. It will be a generalization of corresponding results from [2] and
[9]. A convergence result and an error estimate of approximate solutions are presented
in Section 4. Difference problems generated by the method of lines are investigated in
Section 5. Numerical examples are given in the last part of the paper.

Let N and Z be the sets of natural numbers and integers, respectively. For x, y ∈
R

n , p ∈ R
k , X ∈ Mk×n where x = (x1, . . . , xn) , y = (y1, . . . , yn) , p = (p1 . . . , pk),

and
X =

[
xij

]
i=1,...,k, j=1,...,k

,

we put
‖x‖ =

n∑
j=1

|xj|, ‖p‖0 = max{ |pi| : 1 � i � k },

and

‖X‖ = max{
n∑

j=1

|xij| : 1 � i � k } and x � y = (x1y1, . . . , xnyn).

Set θ = (0, . . . , 0) ∈ R
n. If X ∈ Mk×n then XT is the transpose matrix. For

z ∈ C(E0 ∪ E, Rk) we write

‖z‖t = max { ‖z(τ, y)‖0 : (τ, y) ∈ Et }, 0 � t � a.

Note that differential systems with deviated variables and differential integral problems
can be derived from (1) by specializing the operators f and g.

Two types of assumptions are needed in a theorem on the uniqueness of classical
solutions of problem (1), (2). The first type conditions deal with the regularity of
given functions. It is assumed that f and g are continuous on Ω and that they satisfy
nonlinear estimates of the Perron type with respect to the functional variable. The
assumptions of the second type are connected with the theory of bicharacteristics and
they have the following form. Write

f i =
(
f i1, . . . , f in

)
, 1 � i � k.

It is assumed that
f i(t, x, z) � x � θ, 1 � i � k, (3)

where (t, x, z) ∈ Ω. The uniqueness criteria are consequences of comparison results
for functional differential inequalities with initial boundary conditions ([2], [9]).

Existence results for (1), (2) can be deduced from [9], Chapter V. They are based
on a method of bicharacteristics. Condition (3) is essential to the proof of existence
results.

The existence theory of classical or generalized solutions for nonlinear differen-
tial functional systems is based on the method of bicharacteristics. The method was
introduced and widely studied in nonfunctional setting by S. Cinquini and M. Cinquini
Cibrario ([5], [6]). It was also adpoted by L. Cesari ([4]) and P. Bassanini ([1]) for
quasilinear systems in the second canonical form.

Assumption (3) states that bicharacteristics of system (1) satisfy the following
monotonicity conditions. Suppose that v : E0 ∪ E → R

k is of class C1 . Let us denote
by

gi[v]( · , t, x) =
(
gi.1[v]( · , t, x), . . . , gi.n[v]( · , t, x)

)
, (t, x) ∈ E,
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the i− th bicharacteristic of (1) corresponding to v . Then gi[v] is a solution of the
Cauchy problem

y′(τ) = −f i(τ, y(τ), v), y(t) = x.

Condition (3) asserts that the function gij( · , t, x) is non increasing if 0 � xj � bj and
it is nondecreasing if −bj � xj < 0.

This property of bicharacteristics and assumptions on regularity for given function
ensure the existence and uniqueness of solutions of (1), (2). It is easily seen that
condition (3) may be replaced by the following assumption: there is x̄ ∈ (−b, b) such
that

f i(t, x, z) � (x − x̄) � 0, 1 � i � k,

where (t, x, z) ∈ Ω .
We deal with the numerical method of lines and the implicit difference method for

(1), (2). It is important that theorems on the uniqueness of classical solutions to (1),
(2) and our convergence results have the same assumption on f and g. Condition (3)
is assumed for f and for adequate coefficients of difference functional equations.

2. Differential difference problems

We define a mesh in R
n in the following way. Let (h1, . . . , hn) = h > θ stand for

steps of the mesh. For m ∈ Z
n , m = (m1, . . . , mn) , we define nodal points as follows

x(m) = m � h, x(m) = (x(m1)
1 , . . . , x(mn)

n ).

Let us denote by H the set of all h for which there exist (N1, . . . , Nn) = N ∈ N
n such

that N � h = b. We assume that H 	= ∅. Write

R
1+n
t.h = { (t, x(m)) : t ∈ R, m ∈ Z

n }
and

Eh = E ∩ R
1+n
t.h , E0.h = E0 ∩ R

1+n
t.h , ∂0Eh = ∂0E ∪ R

1+n
t.h .

Elements of Eh ∪ E0.h will be denoted by (t, x(m)) or (t, x). Let Fc(E0.h ∪ Eh, R
k) be

the set of all functions z : E0.h∪Eh → R
k such that z( · , x(m)) ∈ C([−b0, a], Rk) where

−N � m � N. In a similar way we define the set Fc(E0.h ∪ ∂0Eh, R
k) . For a function

z ∈ Fc(E0.h ∪ Eh, R
k) and for a point (t, x(m)) ∈ E0.h ∪ Eh we write z(m)(t) = z(t, x(m))

and

‖z‖h.t = max {‖z(m)(τ)‖0 : (τ, x(m)) ∈ E0.h ∪ Eh, τ � t }, 0 � t � a.

Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
n with 1 standing on the j -th place. Given

w : E0.h ∪ Eh → R , let δ = (δ1, . . . , δn) be the difference operator defined by

δjw
(m)(t) =

1
hj

[
w(m+ej)(t) − w(m)(t)

]
for 0 � x

(mj)
j < bj, (4)

δjw
(m)(t) =

1
hj

[
w(m)(t) − w(m−ej)(t)

]
for − bj < x

(mj)
j < 0. (5)
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Write Ωh =
(
Eh \ ∂0Eh

) × Fc(E0.h ∪ Eh, R
k) and suppose that

f h : Ωh → Mk×n, f h =
[
f h.ij

]
i=1,...,k, j=1,...,n

,

gh : Ωh → R
k, gh = (gh.1, . . . , gh.k),

ϕh : E0.h ∪ ∂0Eh → R
k, ϕh = (ϕh.1, . . . ,ϕh.k),

are given functions. Let us denote by Fh = (Fh.1, . . . , Fh.k) the operator defined on Ωh

in the following way

Fh.i[z](m)(t) =
n∑

j=1

f h.ij(t, x(m), z) δjz
(m)
i (t) + gh.i(t, x(m), z), 1 � i � k.

We will approximate classical solutions of problem (1), (2) by solutions of the system
of ordinary functional differential equations

d
dt

z(m)(t) = Fh[z](m)(t) (6)

with the initial boundary condition

z(m)(t) = ϕ(m)
h (t) on E0.h ∪ ∂0Eh. (7)

We assume that f h and gh satisfy the following Volterra condition: if (t, x) ∈ Eh \∂0Eh

and z, z̄ ∈ Fc(E0.h ∪ Eh, R
k) are such functions that z(τ, y) = z̄(τ, y) for (τ, y) ∈

(E0.h ∪ Eh) ∩ ( [−b0, t] × R
n) then f h(t, x, z) = f h(t, x, z̄) and gh(t, x, z) = gh(t, x, z̄).

3. Differential difference inequalities

For a function z ∈ Fc(E0.h ∪ Eh, R
k) , z = (z1, . . . , zk), we write

D−z(m)(t) =
(
D−z(m)

1 (t), . . . , D−z(m)
k (t)

)
,

where D− is the left hand lower Dini derivative. Put

δz(m)(t) =
[
δjz

(m)
i (t)

]
i=1,...,k, j=1,...,n

.

If X ∈ Mk×n , Y ∈ Mn×k and

X =
[
xij

]
i=1,...,k, j=1,...,n

, Y =
[
yij

]
i=1,...,n, j=1,...,k

then the vector ζ = X � Y , ζ = (ζ1, . . . , ζk) , is defined by

ζi =
n∑

j=1

xij yji, 1 � i � k.
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LEMMA 3.1. Suppose that
1) the function G : [0, a] × R+ → R+ is continuous and for each η ∈ R+ the

maximal solution ω( · ,η) of the Cauchy problem

ω ′(t) = G(t,ω(t)), ω(0) = η,

is defined on [0, a],
2) the function λ : Ωh → Mk×n where

λ =
[
λij

]
i=1,...,k, j=1,...,n

and λi = (λi1, . . . , λin), 1 � i � k,

satisfies the condition

λi(t, x, w) � x � θ, 1 � i � k, (8)

where (t, x, w) ∈ Ωh

3) the function v ∈ Fc(E0.h ∪Eh, R
k) , v = (v1, . . . , vk) , satisfies the initial boundary

estimate
‖v(t, x)‖0 � η̃ f or (t, x) ∈ E0.h ∪ Eh

and the differential difference inequality∥∥ D−v(m)(t) − λ (t, x, w) �
[
δv(m)(t)

]T ∥∥
0

� G(t, ‖v‖h.t) (9)

holds on Eh \ ∂0Eh .
Under these assumptions we have

‖v(m)(t)‖0 � ω(t, η̃) on Eh. (10)

Proof. Write
γ (t) = ‖ v ‖h.t, t ∈ [0, a], (11)

and
J+ = { t ∈ (0, a] : γ (t) > ω(t, η̃) }.

We claim that
D−γ (t) � G( t, γ (t) ) for t ∈ J+. (12)

Suppose that t̃ ∈ J+. It follows from (11) that two possibilities can happen, either (i)
D−γ (t̃) > 0 or (ii) D−γ (t̃) = 0.

Suppose that possibility (i) holds. Then there are (m̃1, . . . , m̃n) = m̃ , −N < m̃ <

N, and i , 1 � i � k, such that γ (t̃) = |v(m̃)
i (t̃)|. If γ (t̃) = v(m̃)

i (t̃) then we have

D−γ (t̃) � D−v(m̃)
i (t̃) �

n∑
j=1

λij(t̃, x(m̃), v) δjv
(m̃)
i (t̃) + G( t̃, γ (t̃) ).

We conclude from (8) that
D−γ (t̃) � G( t̃, γ (t̃) ). (13)

In a similar way we prove (13) if γ (t̃) = −v(m̃)
i (t̃). It is clear that (13) is satisfied if the

case (ii) holds. Then (12) is proved.
Since γ (0) � η̃, it follows from (12) and from a comparison theorem for dif-

ferential inequalities ([13], Theorem 1.4.2) that γ (t) � ω(t, η̃) for t ∈ [0, a] which
completes the proof of (10).
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4. Convergence of the numerical method of lines

Suppose that uh ∈ Fc(E0.h ∪ Eh, R
k) and there are γ : [0, a] × H → R+ and

α0 : H → R+ such that

∥∥ d
dt

u(m)
h (t) − Fh[uh](m)(t)

∥∥ � γ (t, h) on Eh \ ∂0Eh (14)

and ∥∥ u(m)
h (t) − ϕ(m)

h (t)
∥∥ � α0(h) on E0.h ∪ ∂0Eh. (15)

The function uh satisfying the above relations is considered as an approximate solution
of (6), (7). We prove a theorem on the estimate of the difference between the exact and
approximate solutions of (6), (7).

Assumption H [f h, gh] . Suppose that
1) the function σ : [0, a] × R+ → R+ is continuous and it is nondecreasing with

respect to the second variable,
2) for each γ ∈ C([0, a], R+) and η ∈ R+ , c � 1, the maximal solution of the

Cauchy problem

ω ′(t) = cσ(t,ω(t)) + γ (t), ω(0) = η, (16)

is defined on [0, a] and the maximal solution of (16) with γ (t) = 0 for t ∈ [0, a] ,
η = 0 , c � 1 is ω̄(t) = 0 for t ∈ [0, a],

3) the functions f h : Ωh → Mk×n and gh : Ωh → R
k satisfy the conditions

(i) for each (x(m), w) ∈ (−b, b) × Fc(E0.h ∪ Eh, R
k) we have

f h( · , x(m), w) ∈ C([0, a], Mk×n), gh( · , x(m), w) ∈ C([0, a], Rk),

(ii) for each (t, x, w) ∈ Ωh we have

f h.i(t, x, w) � x � θ where f h.i = ( f h.i1. . . . , f h,in ),

(iii) the estimates

‖f h(t, x, w) − f h(t, x, w̄)‖ � σ(t, ‖w − w̄‖h.t),
‖gh(t, x, w) − gh(t, x, w̄)‖0 � σ(t, ‖w − w̄‖h.t)

are satisfied on Ωh.

THEOREM 4.1. Suppose that Assumption H [f h, gh] is satisfied and
1) uh ∈ Fc(E0.h ∪ Eh, R

k) and γ : [0, a] × H → R+ , α0 : H → R+ are such
functions that estimates (14), (15) are satisfied and there is c̃ ∈ R+ such that

‖ δiu
(m)
h (t) ‖0 � c̃ f or (t, x(m)) ∈ Eh \ ∂0Eh, 1 � i � n, (17)

2) ϕh ∈ Fc(E0.h∪∂0Eh, R
k) . Then there is a solution zh : E0.h∪Eh → R

k of problem
(6), (7) and ∥∥ z(m)

h (t) − u(m)
h (t)

∥∥
0

� ωh(t) on Eh, (18)

where ωh : [0, a] → R+ is the solution of the Cauchy problem

ω ′(t) = (1 + c̃)σ(t,ω(t)) + γ (t, h), ω(0) = α0(h).
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Proof. At first we prove that the solution zh of (6), (7) is defined on E0.h ∪ Eh.
It follows that there is ã > 0 such that the solution zh is defined on (E0.h ∪ Eh) ∩
( [−b0, ã),×R

n ). Let z̃h ∈ Fc(E0.h ∪ Eh, R
k) , z̃h = (z̃h.1, . . . , z̃h,k) , be such a function

that z̃h(t, x) = ϕh(t, x) for (t, x) ∈ E0.h ∪ Eh and the derivative d
dt z̃

(m)
h (t) exists for

(t, x(m)) ∈ Eh \ ∂0Eh. Let c̃h ∈ R+ be such a constant that
∥∥ δjz̃

(m)
h (t)

∥∥
0

� c̃h for (t, x(m)) ∈ Eh \ ∂0Eh, 1 � j � n. (19)

Consider the function Γ̃h : Eh \ ∂0Eh → R
k defined by

Γ̃(m)
h (t)=gh(t, x(m), zh) − gh(t, x(m), z̃h)+

[
f h(t, x(m), zh)−f h(t, x(m), z̃h)

]
�
[
δ z̃(m)

h (t)
]T

.

It follows from Assumption H [f h, gh] and from (19) that∥∥ Γ̃(m)(t)
∥∥

0
� (1 + c̃h)σ(t, ‖zh − z̃h‖h.t)

where (t, x(m)) ∈ E \ ∂0Eh . There is γ̃ : [0, a] × H → R+ such that

∥∥ d
dt

z̃(m)
h (t) − Fh[z̃h](m)(t)

∥∥
0

� γ̃ (t, h) on Eh \ ∂0Eh.

The function zh − z̃h satisfies the relation

d
dt

(
zh − z̃h

)(m)(t) = f h(t, x(m), zh) �
[
δ( zh − z̃h )(m)(t)

]T

+ Fh[z̃h](m)(t) − d
dt

z̃(m)
h (t) + Γ̃(m)

h (t)

where (t, x(m)) ∈ (
Eh \ ∂0Eh

) ∩ (
[0, ã)×R

n
)
. We thus get the differential difference

inequality

∥∥ d
dt

(zh − z̃h)(m)(t) − f h(t, x(m), zh) �
[
δ(zh − z̃h)(m) ]T ∥∥

0

� (1 + c̃h)σ(t, ‖zh − z̃h‖h.t) + γ̃ (t, h) on
(
Eh \ ∂0Eh

) ∩ (
[0, ã),×R

n
)

and
(zh − z̃h)(m)(t) = 0 on

(
E0.h ∪ ∂0Eh

) ∩ (
[−b0, ã) × R

n
)
.

It follows from Lemma 3.1 that

‖(zh − z̃h)(m)(t)‖ � ω̃h(t), (t, x(m)) ∈ Eh ∩
(
[0, ã) × R

n
)
, (20)

where ω̃h is the maximal solution of the Cauchy problem

ω ′(t) = (1 + c̃h)σ( t,ω(t) ) + γ̃ (t, h), ω(0) = 0.

The solution of (6), (7) can be extended to the boundary of the domain of the right hand
sides of (6). Then we conclude from (20) that zh is defined on E0.h ∪ Eh.

Now we prove (18). Let the function Γh : Eh \ ∂0Eh → R
k be defined by

Γ(m)
h (t) =

[
f h(t, x(m), zh) − f h(t, x(m), uh)

]
�

[
δu(m)

h (t)
]T

+ gh(t, x(m), zh) − gh(t, x(m), uh).
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Then the function zh − uh satisfies the relation

d
dt

(
zh − uh

)(m)(t) = f h(t, x(m), zh) �
[
δ( zh − uh )(m)(t)

]T

+ Fh[uh](m)(t) − d
dt

u(m)
h (t) + Γ(m)

h (t) on Eh \ ∂0Eh.

It follows from Assumption H [f h, gh] and from (15), (17) that the differential difference
inequality

∥∥ d
dt

(zh − uh)(m)(t) − f h(t, x(m), zh) �
[
δ(zh − uh)(m) ]T ∥∥

0

� (1 + c̃)σ(t, ‖zh − uh‖h.t) + γ (t, h) on Eh \ ∂0Eh,

and the initial boundary estimate

‖(zh − uh)(m)(t)‖0 � α0(h), (t, x(m)) ∈ E0.h ∪ ∂0Eh,

are satisfied. The above conditions andLemma3.1 imply (18). This proves the theorem.
Now we consider a class of problems (6), (7) where f h, gh are superpositions of

f , g and some interpolating operators. We will need the following assumptions.
Assumption H [Th]. Suppose that the operator Th : Fc(E0.h ∪ Eh, R

k) → C(E0 ∪
E, Rk) satisfies the conditions
1) for z, z̄ ∈ Fc(E0.h ∪ Eh, R

k) we have
∥∥ Th[z] − Th[z̄]

∥∥
t
� ‖ z − z̄ ‖h.t, t ∈ [0, a],

2) for each function z : E0 ∪ E → R
k which is of class C1 there is C ∈ R+ such that

‖ z − Th[zh] ‖t � C ‖h‖, t ∈ [0, a],

where zh is the restriction of z to the set E0.h ∪ Eh.

REMARK 4.2. Condition 1) of Assumption H [Th] states that Th satisfies the
Volterra condition and the Lipschitz condition holds a constant L = 1. It follows
from condition 2) that the function z is approximated by Th[zh] and the error of this
approximation is estimated by C‖h‖.

We will approximate solutions of (1), (2) by solutions of the system of ordinary
functional differential equations

d
dt

z(m)
i (t) =

n∑
j=1

f ij(t, x(m), Th[z]) δjz
(m)
i (t) + gi(t, x(m), Th[z]), 1 � i � k, (21)

with the initial boundary condition

z(m)(t) = ϕ(m)
h (t) on E0.h ∪ ∂0Eh. (22)

We give an example of Th which satisfies Assumption H [Th] . Write

S+ =
{

s = (s1, . . . , sn) : si ∈ {0, 1} for 1 � i � n
}
. (23)
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Suppose that z ∈ Fc(E0.h ∪ Eh, R
k) and (t, x) ∈ E. There is m ∈ Z

n such that
x(m) � x � x(m+1) where m + 1 = (m1 + 1, . . . , mn + 1) and x(m), x(m+1) ∈ [−b, b].
Set

Th[z](t, x) =
∑
s∈S+

z(m+s)(t)
( x − x(m)

h

)s (
1 − x − x(m)

h

)1−s

where ( x − x(m)

h

)s
=

n∏
i=1

( xi − x(mi
i

hi

)si

and (
1 − x − x(m)

h

)1−s
=

n∏
i=1

(
1 − xi − x(mi

i

hi

)1−si

We put 00 = 1 in the above definitions.
It is easily seen that Th[z] ∈ C(E0∪E, Rk) and that Assumption H [Th] is satisfied.

See [3], [9] for more details.
Assumption H. [f , g]. Suppose that

1) the function σ : [0, a] × R+ → R+ is continuous and it is nondecreasing with
respect to the second variable,

2) for each γ ∈ C([0, a], R+) and η ∈ R+ , c � 1, the maximal solution of the
Cauchy problem

ω ′(t) = cσ(t,ω(t)) + γ (t), ω(0) = η, (24)

is defined on [0, a] and the maximal solution of (24) with γ (t) = 0 for t ∈ [0, a]
and c � 1 , η = 0 is ω̄(t) = 0 for t ∈ [0, a],

3) f ∈ C(Ω, Mk×n) , g ∈ C(Ω, Rk) and the estimates

‖ f (t, x, z) − f (t, x, z̄)‖ � σ(t, ‖z − z̄‖t),
‖ g(t, x, z) − g(t, x, z̄)‖0 � σ(t, ‖z − z̄‖t)

are satisfied on Ω,
4) estimates (3) are satisfied for (t, x, z) ∈ Ω .

REMARK 4.3. If Assumption H [f , h] is satisfied then initial boundary value prob-
lem (1), (2) admits one classical solution at the most. Indeed, if v, v̄ : E0 ∪ E → R

k

are solutions of (1), (2) then the function ψ(t) = ‖v − v̄‖t , t ∈ [0, a], satisfies the
differential inequality

D−ψ(t) � (1 + c0)σ(t,ψ(t)), t ∈ (0, a],

where c0 = max{Cv, Cv̄} and

Cv = max{‖ ∂xv(t, x)‖ : (t, x) ∈ E }, Cv̄ = max{‖ ∂xv̄(t, x)‖ : (t, x) ∈ E }.
Then the assertion follows from a comparison theorem for differential inequalities. See
[2], [9] for more details.
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THEOREM 4.4. Suppose that Assumptions [Th] and H [f , g] are satisfied and
1) u : E0 ∪ E → R

k is a solution of (1), (2) and u is of class C1,
2) there is α0 : H → R+ such that

‖ϕh(t, x) − ϕ(t, x)‖0 � α0(h) on E0.h ∪ Eh

and limh→0 α0(h) = 0.
Then there exists a solution zh : E0.h ∪ Eh → R

k of problem (21), (7) and there
is α : H → R+ such that

‖u(m)(t) − z(m)
h (t)‖0 � α(h) on Eh and lim

h→0
α(h) = 0. (25)

Proof. Write
uh = u

∣∣
E0.h∪Eh

, uh = (uh.1. . . . , uh.k),

and
f h(t, x, w) = f (t, x, Th[w]), gh(t, x, w) = g(t, x, Th[w])

where (t, x, w) ∈ Ωh. Let the function Λh : Eh \ ∂0Eh → R
k , Λh = (Λh.1, . . . ,Λh.k),

be defined by

Λ(m)
h.i (t) =

n∑
j=1

f ij(t, x(m), u) ∂xju
(m)
i (t) + gi(t, x(m), u)

−
n∑

j=1

f ij(t, x(m), Th[uh]) δju
(m)
h.i (t) − gi(t, x(m), Th[uh]), 1 � i � k.

We thus get
d
dt

u(m)
h (t) = Fh[uh](m)(t) + Λ(m)

h (t) on Eh \ ∂0Eh.

There are A, c̃ ∈ R+ and ζ : H → R+ such that

‖ f (t, x, u) ‖ � A, (t, x) ∈ E,

‖∂xiu
(m)(t) − δiu

(m)
h (t)‖0 � ζ(h), (t, x(m)) ∈ Eh \ ∂0Eh, 1 � i � n,

and limh→0 ζ(h) = 0 and

‖∂xiu(t, x)‖0 � c̃, 1 � i � k, (t, x) ∈ E. (26)

It follows from Assumption H [f , g] that

∥∥Λ(m)
h (t)

∥∥
0

� γ (h), (t, x(m)) ∈ Eh \ ∂0Eh,

where
γ̄ (h) = Aζ(h) + (1 + c̃)σ(t, ‖h‖).

Thus we see that relation (14) is satisfied with γ (t, h) = γ̄ (h). Let ω̄h : [0, a] → R+
be the solution of the Cauchy problem

ω ′(t) = (1 + c̃)σ( t,ω(t) ) + γ̄ (h), ω(0) = α0(h). (27)
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It follows from Theorem 4.1 that

‖(uh − zh)(m)(t)‖0 � ω̄h(t), (t, x(m)) ∈ Eh.

Then we get (25) with α(h) = ω̄h(a). This proves the theorem.

REMARK 4.5. If all the assumptions of Theorem 4.4 are satisfied with σ(t, p) =
Lp , (t, p) ∈ [0, a] × R+ , then there are C0, C1 ∈ R+ such that

‖uh − zh‖h.t � C0α0(h) + C1‖h‖, t ∈ [0, a].

The above inequality may be proved by using (25) and by solving the comparison
problem (27). We have assumed the Lipschitz condition for f and g in this case.

5. Difference methods generated by numerical method of lines

We are interested in discretization in time of problem (21), (22). We define a mesh
on [−b0, a] in the following way. Let h0 be the step of the mesh and t(r) = rh0 , r ∈ Z,
be the nodal points. Let us denote by H′ the set of all h′ = (h0, h) such that h ∈ H
and there is K0 ∈ Z with the property K0h0 = b0. For h′ ∈ H′ we put

R
1+n
h′ = { (t(r), x(m)) : (r, m) ∈ Z

1+n }
and

E0.h′ = E0 ∩ R
1+n
h′ , Eh′ = E ∩ R

1+n
h′ ,

∂0Eh′ = ∂0E ∩ R
1+n
h′ .

Let K ∈ N be defined by the relations Kh0 � a < (K + 1)h0. Set

Ẽh′ = { (t(r), x(m)) ∈ Eh′ \ ∂0Eh′ : 0 � r � K − 1 }.
For a function z : E0.h′ ∪ Eh′ → R

k we write z(r,m) = z(t(r), x(m)) and

‖z‖h′.r = max { ‖z(i,m)‖0 : (t(i), x(m)) ∈ E0.h′ ∪ Eh′ , i � r }, 0 � r � K.

Suppose that Assumption H [f , g] is satisfied with

σ(t, p) = Lp, (t, p) ∈ [0, a] × R+ (28)

where L ∈ R+ and that Assumption H [Th] holds. Then f and g satisfy the Lipschitz
condition with respect to the functional variable and the right hand sides of system (21)
satisfy the Lipschitz condition with respect to the unknown function with a constant
L(h) and

lim
h→0

L(h) = +∞. (29)

Suppose that we apply the Euler method to solve numerically problem (21), (22). Then
we get a classical difference method for (1), (2). It follows from (29) that we need
additional assumptions for h0 and h to get a stable difference scheme.
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If Assumptions H [f , g] and H [Th] are satisfied then the following inequalities

1 − h0

n∑
j=1

1
hj

∣∣ f ij(t, x, z)
∣∣ � 0 on Ω for 1 � i � k (30)

are sufficient for the stability of the classical differencemethod, (see [3], [9]). The above
inequalities can be considered as the Courant - Friedrichs - Levy (CFL) conditions for
quasilinear hyperbolic functional differential systems.

Now we formulate a new class of difference problems corresponding to (1), (2).
Consider the difference operators (δ1, . . . , δn) = δ defined by (4), (5) and we write

δjw
(r,m) = δjw

(m)(t(r)), 1 � j � n,

where w ∈ F(E0.h′ ∪ Eh′) . Set

δ0w
(r,m) =

1
h0

(
w(r+1,m) − w(r,m) )

.

For a function z : E0.h′ ∪ Eh′ → R
k we define δ0z = (δ0z1, . . . , δ0zk).

Assumption H [Th′ ] . Suppose that the operator Th′ : F(E0.h′ ∪ Eh′ , R
k) → C(E0 ∪

E, Rk) satisfies the conditions
1) for z, z̄ ∈ F(E0.h′ ∪ Eh′ , R

k) we have

‖ Th′ [z] − Th′ [z̄] ‖t(r) � ‖z − z̄‖h′.r, 0 � r � K,

2) for each function z : E0 ∪ E → R
k which is of class C1 there is C̃ such that

‖ z − Th′ [zh′ ] ‖t(r) � C̃ ‖h′‖, 0 � r � K,

where zh′ is the restriction of z to the set E0.h′ ∪ Eh′ and ‖h′‖ = h0 + ‖h‖.
REMARK 5.1. Condition 1) of Assumption H [Th′ ] states that the operator Th′

satisfies the Lipschitz condition with a constant L = 1 and it satisfies the Volterra
condition. Assumption 2) implies that the function z is approximated by Th′ [zh′ ] and
the error of this approximation is estimated by C̃‖h′‖.

Write

Fh′.i[z](r,m) =
n∑

j=1

f ij(t(r), x(m), Th′ [z]) δjz
(r+1,m)
i + gi(t(r), x(m), Th′ [z]), 1 � i � k,

and
Fh′ [z](r,m) =

(
Fh′.1[z](r,m), . . . , Fh′.k[z](r,m) )

.

We will approximate solutions of (1), (2) by solutions of the difference functional
equation

δ0z
(r,m) = Fh′ [z](r,m) (31)

with the initial boundary condition

z(r,m) = ϕ(r,m)
h′ on E0,h′ ∪ ∂0Eh′ (32)
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where ϕh′ : E0.h′ ∪ ∂0Eh′ → R
k is a given function. Note that condition (3) implies

that there exists exactly one solution zh′ : E0,h′ ∪ Eh′ → R
k od (31), (32).

We give an example of Th′ which satisfies Assumption H [Th′ ]. Suppose that
z ∈ F(E0.h′ ∪ Eh′ , R

k) and (t, x) ∈ E0 ∪ E. Two cases will be distinguished
(I) Suppose that there is (r, m) ∈ Z

1+n such that (t(r), x(m)), (t(r+1), x(m+1)) ∈
E0.h′ ∪ Eh′ and t(r) � t � t(r+1) , x(m) � x � x(m+1). Set

Th′ [z](t, x) =
(

1 − t − t(r)

h0

) ∑
s∈S+

z(r,m+s)
( x − x(m)

h

)s (
1 − x − x(m)

h

)1−s

+
t − t(r)

h0

∑
s∈S+

z(r+1,m+s)
( x − x(m)

h

)s (
1 − x − x(m)

h

)1−s
(33)

where S+ is defined by (23). We adopt the convention that 00 = 1.
(II) If (t, x) ∈ E0∪E and Kh0 < t � a then we put Th′ [z](t, x) = Th′ [z](Kh0, x).
Then Assumption H [Th′ ] is satisfied. This can be found in [3], [9].
There are the following differences between the classical Euler method presented

in [3], [9] and our scheme.
I. We will omit (CFL) condition (30) in a theorem on the convergence of method

(31), (32).
II. Suppose that we calculate the vector z(r+1,m)

h′ by using (31), (32). Then we
apply the vectors

δzh′.j =
(
δ1zh′.j, . . . , δnzh′.j

)
, 1 � j � n,

considered at the point (t(r+1), x(m)). In the classical case we use the vectors δzh′.j ,
1 � j � k, at the point (t(r), x(m)).

Numerical results obtained by (31), (32) are better than those obtained by classical
methods. We show adequate examples.

THEOREM 5.2. Suppose that Assumptions H [f , g] and H [Th′ ] are satisfied and
1) u : E → R

k is a solution of (1), (2) and u is of class C1,
2) there is α0 : H′ → R+ such that

‖ϕ(r,m)
h′ − ϕ(r,m)‖0 � α0(h′) on E0,h′ ∪ ∂0Eh′ and lim

h′→0
α0(h′) = 0,

3) zh′ : E0.h′ ∪ Eh′ → R
k , zh′ = (zh′.1. . . . , zh′.k), is a solution of (31), (32). Then

there is α : H′ → R+ such that

‖u(r,m)
h′ − z(r,m)

h′ ‖0 � α(h′) on Eh′ and lim
h′→0

α(h′) = 0, (34)

where uh′ is the restriction of u to the set E0.h′ ∪ Eh′ .

Proof. For a function z : E0.h′ ∪ Eh′ → R
k and for a point (t(r)x(m)) ∈ E′

h′ we put

P(r,m)[z] = (t(r), x(m), Th′ [z]).

Let us denote by Γh′ , Λh′ : Ẽh′ → R
k where

Γh′ =
(
Γh′.1, . . . ,Γh′.k

)
, Λh′ =

(
Λh′.1, . . . ,Λh′.k

)
,
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the functions defined by

δ0u
(r,m)
h′ = Fh′ [uh′ ](r,m) − Γ(r,m)

h′

and

Λh′.i =
n∑

j=1

[
f ij(P(r,m)[zh′ ]) − f ij(P(r,m)[uh′ ])

]
δju

(r+1,m)
h′.i

+ gi(P(r,m), [zh′ ]) − gi(P(r,m)[uh′ ]), 1 � i � k.

Then the function vh′ = zh′ − uh′ , vh′ = (vh′.1, . . . , vh′.k), satisfies the difference
equations

δ0v
(r,m)
h′.i =

n∑
j=1

f ij(P(r,m)[zh′ ]) δjv
(r+1,m)
h′.i + Γ(r,m)

h.i + Λ(r,m)
h′.i , 1 � i � k. (35)

Write

I+[m] = { i : 1 � i � n, mi > 0 } and I−[m] = {1, . . . , n] \ I+[m].

According to (4), (5) and (35) we have

v(r+1,m)
h′.i

[
1 + h0

∑
j∈I+[m]

1
hj

f ij(P(r,m)[zh′ ])) − h0

∑
j∈I− [m]

1
hj

f ij(P(r,m)[zh′ ])
]

= v(r,m)
h′.i +

∑
j∈I+[m]

1
hj

f ij(P(r,m)[zh′ ])) v
(r+1,m−ej)
h′.i

−h0

∑
j∈I−[m]

1
hj

f ij(P(r,m)[zh′ ]) v
(r+1,m−ej)
h′.i + h0

[
Λ(r,m)

h′.i + Γ(r,m)
h′.i

]
, 1 � i � k. (36)

It follows that there is γ : H′ → R+ such that
∥∥Γ(r,m)

h′
∥∥

0
� γ (h′) on Ẽh′ and lim

h→0
γ (h′) = 0. (37)

Let c̃ ∈ R+ be such a constant that relations (26) are satisfied. Write

ε(r)
h′ = max{ ‖v(i,m)

h′ ‖0 : (t(i), x(m)) ∈ E0.h′ ∪ Eh′ , i � r }, 0 � r � K.

It follows from Assumption H [f , g] that
∥∥Λ(r,m)

h′
∥∥

0
� (1 + c̃)σ( t(r), ε(r)

h′ ) on Ẽh′ . (38)

We conclude from (36) - (38) that the function εh′ satisfies the difference inequality

ε(r+1)
h′ � ε(r)

h′ + h0(1 + c̃)σ( t(r), ε(r)
h′ ) + h0γ (h′), 0 � r � K − 1,

and ε(0)
h′ � α0(h′).
Let us denote by ωh′ : [0, a] → R+ the solution of the Cauchy problem

ω ′(t) = (1 + c̃)σ(t,ω(t)) + γ (h′), ω(0) = α0(h′). (39)
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Then
lim
h′→0

ωh′(t) = 0 uniformly on [0, a].

It is easy to see that ωh′ satisfies the recurrent inequality

ω (r+1)
h′ � ω (r)

h′ + h0(1 + c̃)σ( t(r),ω (r)
h′ ) + h0γ (h′), 0 � r � K − 1.

This gives ε(r)
h′ � ω (r)

h′ for 0 � r � K and condition (34) is satisfied with α(h′) =
ωh′(a). This proves the theorem.

REMARK 5.3. If all the assumptions of Theorem 5.2 are satisfied with σ given by
(28) then there are C0 C1 ∈ R+ such that we have the following error estimate

‖u(r,m)
h, − z(r,m)

h′ ‖0 � C0 α0(h′) + C1 ‖h′‖ on Eh′ .

The above inequality is obtained from (34) and by solving of problem (39).

6. Numerical experiments

For n = 1 we put

E = [0, 0.5]× [−1, 1], E0 = {0}× [−1, 1], ∂0E = [0, 0.5]×(
[−1, 1]\ (−1, 1)

)
. (40)

Consider the differential integral equation

∂tz(t, x) = x
[
1−t sin

∫ x

−x
z(t, s)ds

]
∂xz(t, x)+12

∫ 0.5(x+1)

0.5(x−1)
z(t, s)ds+f (t, x) (41)

with the initial boundary condition

z(t, x) = 0 on E0 ∪ ∂0E (42)

where
f (t, x) = x2 − 1 + 2x2t2 sin

[
2t

(1
3
x3 − x

)]
+ t(11 − 5x2).

The solution of the above problem is known, it is u(t, x) = t(x2 − 1).
Write x(m) = mh , −N � m � N, where Nh = 1. The discretization of (41), (42)

with respect to x leads to the system

d
dt

z(m)(t) = x(m)
[
1 − t sin

∫ x(m)

−x(m)
Th[z](t, s)ds

]
δz(m)(t)

+12
∫ 0.5(x(m)+1)

0.5(x(m)−1)
Th[z](t, s)ds + f (m)(t), −N < m < N,

(43)

where

z(−N)(t) = z(N)(t) = 0 for t ∈ [0, 0.5] and z(m)(0) = 0 for − N < m < N (44)

and Th is the interpolating operator defined by (33). Difference operator δ is defined
according to (4), (5). Write t(r) = rh0 , 0 � r � K where Kh0 = 0.5.
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We apply the Runge-Kutta method of order four to get the numerical solution of
(43), (44). Let us denote by vRK the solution which is obtained in this way.

Let vIM denote the solution which is obtained by solving the implicit difference
method for (41), (42). Write

ε(r)
RK =

1
2N − 1

N−1∑
m=−(N−1)

∣∣ u(r,m) − v(r,m)
RK

∣∣ (45)

and

ε(r)
IM =

1
2N − 1

N−1∑
m=−(N−1)

∣∣ u(r,m) − v(r,m)
IM

∣∣ (46)
where 0 � r � K.

The numbers ε(r)
RK and ε(r)

IM are the arithmetical means of the errors with fixed t(r).
We have solved problems (43), (44) and the implicit Euler method with the same steps
of the mesh.

In the table we give experimental values for the functions εRK and εIM and we
write “× ” if ε(r)

RK > 10 .

1. Table of errors (εIM ; εRK)

(h0, h) = (10−3, 2 · 10−3) (h0, h) = (5 · 10−4, 10−3)

t = 0.36 (0.0057; 0.0329) (0.0028; 0.0167)

t = 0.37 (0.0064; 0.0371) (0.0032; 0.0188)

t = 0.38 (0.0072; 0.0419) (0.0036; 0.0213)

t = 0.39 (0.0082; 0.0473) (0.0041; 0.0240)

t = 0.40 (0.0092; 0.0533) (0.0047; 0.0276)

2. Table of errors (εIM ; εRK)

(h0, h) = (5 · 10−3, 10−3) (h0, h) = (10−3, 5 · 10−4)

t = 0.350 (0.0086;×) (0.0024;×)

t = 0.375 (0.0114;×) (0.0032;×)

t = 0.400 (0.0115;×) (0.0043;×)

t = 0.425 (0.0200;×) (0.0058;×)

t = 0.450 (0.0265;×) (0.0078;×)

If 2h0 � h then the condition (CFL) is satisfied and the classical difference
method for (41), (42) is stable.

In Table 1 we give the experimental values of the errors for such steps (h0, h) that
the stability condition is satisfied. We have ε(r)

IM < ε(r)
RK for all values of r.

In Table 2 we present experimental values of the errors in the case when the
stability condition is not satisfied. Then the Runge-Kutta method is not applicable and
the implicit difference method is convergent.
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Now we consider the differential equation with deviated variables. Suppose that
E, E0, ∂0E are the sets defined by (40). We take into considerations the differential
equations

∂tz(t, x) = sin x
[
1 − x cos

(
z(t, 0.5(x + 1)) − z(t, 0.5(x − 1))

)]
∂xz(t, x)

+ 2
[
z(t, 0.5x) + z(t,−0.5x)

]
+ f (t, x)

(47)

with the initial boundary condition (42) where

f (t, x) = x2 − 1 − t(x2 − 4) − 2tx
[
1 − x cos(tx)

]
sin x.

The function u(t, x) = t(x2 − 1) is the solution of the above problem.
Consider the numerical method of lines

d
dt

z(m)(t)= sin x(m)[1−x(m) cos
(
Th[z](t, 0.5(x(m)+1))−Th[z](t, x(m)−1))

)
δz(m)(t)

+2
[
Th[a](t, 0.5x(m))+th[z](t,−0.5(m)] + f (m)(t), −N < m < N,

(48)
with initial boundary condition (44) and δ is defined according to (4), (5). Let us
denote by vRK the numerical solution the above problem which is obtained by using the
Runge Kutta method of order four.

We have solved also problem (47), (42) by using the implicit difference method
presented in Section 4. Let vIM be the solution. Suppose that the function εRK and εIM

are defined by (45), (46). The experimental values of εRK and εIM are listed in the
tables. We write “× ” if ε(r)

RK > 10 .

3. Table of errors (εIM ; εRK)

(h0, h) = (10−3, 2 · 10−3) (h0, h) = (2 · 10−4, 4 · 10−4)

t = 0.300 (3.187 · 10−5 ; 0.0010) (6.379 · 10−6 ; 0.0002)

t = 0.325 (3.537 · 10−5 ; 0.0012) (7.080 · 10−6 ; 0.0002)

t = 0.350 (3.902 · 10−5 ; 0.0013) (7.810 · 10−6 ; 0.0002)

t = 0.375 (4.281 · 10−5 ; 0.0015) (8.570 · 10−6 ; 0.0003)

t = 0.400 (4.676 · 10−5 ; 0.0017) (9.359 · 10−6 ; 0.0003)

4. Table of errors (εIM ; εRK)

(h0, h) = (10−3, 5 · 10−4) (h0, h) = (2.5 · 10−4, 2 · 10−4)

t = 0.350 (0.00023;×) (6.194 · 10−5;×)

t = 0.375 (0.00026;×) (6.800 · 10−5;×)

t = 0.400 (0.00028;×) (7.446 · 10−5;×)

t = 0.425 (0.00030;×) (8.136 · 10−5;×)

t = 0.450 (0.00033;×) (8.875 · 10−5;×)
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The classical difference method for (47), (42) is stable for 2h0 � h. In Table 3
we give the experimental values of the errors for such steps (h0, h) that the stability

condition is satisfied. We have ε(r)
IM < ε(r)

RK for all values of r.
In Table 4 we present experimental values of the errors in the case when the

condition (CFL) is not satisfied. Then the Runge-Kutta method is not applicable and
the implicit difference method is convergent.

Note that we have a little better results for the differential equation with devi-
ated variables then for the differential integral problem. This is due to the fact that
we use interpolating values Th′ [z](t, ·) on the intervals [x(−m), x(m)] and [0.5(x(m) −
1), 0, 5(x(m) + 1)] in the first example we calculate the function Th′ [z](t, ·) at the points
x(−m) , x(m) and 0.5(x(m) − 1) , 0, 5(x(m) + 1) in the second example.

Implicit difference methods, described in Section 5, have the potential for appli-
cations in the numerical solving of differential integral equations or equations with
deviated variables.
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premier ordre dans le cas hyperbolique de deux variables indépedanates, Ann. Polon. Math.3, (1956),
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Wit Stwosz Street 57

80-952 Gdańsk
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Poland

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


