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A CERTAIN CLASS OF APPROXIMATION OPERATORS
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Abstract. In this paper we are studying the sequences of linear positive operators (P 2‘ B) defined
%)

to the identity operator and we give some results for the rate of convergence for P,?’ f.

by means of the umbral calculus. We are proving that the sequence (P,? ™) converges uniformly

1. Introduction

This section contains some basic facts needed in the subsequent analysis. The
reader is referred to Gian-Carlo Rota and Steven Roman (1978) for the details about
delta operators, as well as for historical remarks on the study of binomial sequence and
Sheffer polynomials.

A sequence (p,)n>o of polynomials, where for all n, p, is exactly of degree n, is
called a polynomial sequence. Examples of such sequences are (po(x) :=1):

1. e,(x) =x" (the monomials);

2. ay(x) = x(x — na)"!, (Abel);

3. ()Y =x(x+1)-...- (x+n—1), (upper-factorials);

4. () =x(x—1)-. (x —n + 1), (lower-factorials);

B O L (Gould).
:x(x+a+n[3)(x+2a+nﬁ) o (x+(n=1Da+np),

A polynomial sequence (ay)n>o is called binomial, if for all x,y

an(x +y) = Z (Z)ak(x)an_k(y), n=0,1,2,....

k=0

All above mentioned sequences are of binomial type. These binomial sequences occur
in analysis and in combinatorics.

Further, let us denote by IT the (real) linear space of all polynomials with real
coefficients. Let us put in evidence some operators Il — II. For instance, I is the
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identity, D is derivative, E* is shift-operator, i.e. (E%f)(x) =f (x + a). We shall use
the notation

M"={U:MM—1IL; U linear }
M = {U e TI*; E°U = UE*, V a}.

Let us remind that if U;, U, € II}, then U U, = U,U;.

An operator Q is called a delta operator if Q € [T} and Qe; =const.# 0.

Let X, X € IT*, be defined as (Xp)(x) = xp(x), p € I1. If U is shift-invariant
operator, i.e. U € ITf then the linear operator U’ defined by U’ = UX — XU, is the
so-called Pincherle derivative of U. IT§ denotes the set of all delta operators.

Examples of delta operators:

1) 01 =D - D);

2) Ay,=E"—I=EP—1, a#0,

3) V=I-E!;

4) A = DE“, (Abel operator);

5) G=L(1—-E*EP =LA EP o+#0,(Gould operator).

At the same time is well-known that if Q is a delta operator, then Q(IT,) C IT,—4
where 11, is the linear space of all polynomials of degree n.

It is known that

UclIl: = U €Ilf, QcIIf = Q' exists.

Let Q € IT§. If ap(x) =1, a,(0) =0, Qa, = na,_, n > 1, then (a,) is a basic
sequence associated to Q.

THEOREM 1.1. ([7],[8],[9])
i) Every delta operator has an unique sequence of basic polynomials;
ii) If (ay) is a basic sequence for some delta operator Q, then it is binomial;
iii) If (a,) is a binomial sequence, then it is a basic sequence for some delta operator.

Now, a polynomial sequence (s,) is called a Sheffer set or a set of Sheffer poly-
nomials for the delta operator Q if so(x) =const.# 0 and QOs, = ns,—;, n 0. A
Sheffer set for the delta operator Q is related to the set of basic polynomials of O by
the following

THEOREM 1.2. ([7],[8],[9]) Let Q be a delta operator with basic polynomial set
(an). Then (sy) is a Sheffer set relative to Q if and only if there exists an invertible
shift-invariant operator S such that s, = S~la,, n>0.

The defining property of polynomial sequence of binomial type has the following
analog for Sheffer polynomials.

THEOREM 1.3. Let Q be a delta operator with basic polynomials (a,) and let
(su) be a Sheffer set relative to Q and to some invertible shift-invariant operator S.

Then the following identity holds

st = 3 (2t

k=0
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This identity which characterizes the Sheffer polynomials, suggest us to consider
the sequences of linear polynomial operators L, : Cjo1] — Cjo,1] defined by

1 < (n k
L0 = 5 3 (3 sttt =07 (£)
(see [3], [6]). k=0
Now we consider the Gould operator

1
G:E(I—E*“)E*ﬁ, G:TI—TI, o#0.

If
gy (x) = x(x + )"~
is the basic set for the delta operator

1
= —(I-E“
0= —(-E)
then s&P (x) = (E"q%)(x) is a Sheffer set for the delta operator G. We have
(Gsi)() = (QEPE" i) () = n (E"~PgiL,) (x) = ns,—1(x)
and

5670 = g5 () = 1.
Let Py P be the linear positive operators defined by

(P%PF) (x Zznk (—) , fecol] (1)

where

ﬂﬁ@y_()p§%>3iu—x>
W)
and
P = x(x + o+ )1
is the basic set for G, o >0, > 0.
REMARK Now we wish to notice that the Cheney-Sharma operator

o (M X+ EB) (1 —x+ (n— k)P k
nw =3 ;) T 7).

(see [2]), may be obtained as a limiting case of our operator (1). For o¢ — 0 we have
Q — D and G — DE~P (the Abel operator). Next

PP (x) = x(e By ", 5P (x) — (x4 nB)"

and
PZ"B — Sff.
Now we remark that in the special case oo — 0, § = 0 the operator (1) reduces,
obviously, to the classic Bernstein operator, P B, B, where

e = (1) - (£,

k=0
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2. Approximation properties

LEMMA 2.1. The operators peP defined by (1) verify
(PrPeo)(x) = eo,  (PiPer)(x) = an,

-1 1 -1
(Pi?ﬁez)(x) = 1 dﬂxz + <bn + —Cp — 1 dn> x7
n n n

where
en(x) =X, n=0,1,2,...
o= g 2o (11 ety
- m > (175 oty
0 = e | 0B +Z (23 oo (>],

B 1 "~ (n—2 2B)(G 2
dn—iqg(lﬂﬂ);(. z)qn ()G )(1),

and G' is the Pincherle derivative of G.

Proof. Let us denote

suterm =3 (1) s (£)

k=0
and let P the linear operator defined by P = xG'~!. Using the identity

s t9) = 3 (§)pef0sih o
k=0

Sm(x,y,n Zld() S(m, k)PE*sP (x)

where S(m, k) are the Stirling numbers of second kind.

But
X " /n—1 oB
PE’s,_1(x) = 0)p%h
1) x+y§,-_1:<i—1) O+ ),

we obtain

i X n—2 "
PE'sya(x) = —— (l. - 2) se 0P (x +y)
i=2

—xyz( )OGS  4)
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Now we have
SO(x7y7n):sf:’B(x+y)7
X = /n—1 of
S 0)p™P
o) = 3 (07 )ity

i=1

1 x - /n-1
Sat) = 23 (17 D)t e+

nx-+y )

+”;1xiyi(’:‘§> 0

i=2

xyz( PG 4 y)

Pren) =5 3 (1) Jshomean,

Eey = =53 (17 sttt

nsy B(l) i—1 1
(n—1)x " /n-2 wp o
" nsffﬁ(l) ; <i_2) 5,2 (0)piP (1)
*w - n—2 /— 2 Otﬁ
nsg P (1) ; <i2> L0)(G2ph)(1).

We obtain (2) with
d,<b,<a,<1 and 0<¢, < 1.

THEOREM 2.2. Let P“P be defined by (1). If o = a(n) > 0, B = B(n) > 0
with lim noa(n) = lim nf(n) = 0 then for f € C|0, 1] one has

lim Pef =

uniformly on the compact [0,1], || f ||l= sup |f(x)|.
x€[0,1]

Proof. We have (see [4])
pef (1) < (G (1) <pf(1), n=2.3,...
and we can write

< =2

pn 1 i=
q?(1+np) = g3 (1 +np)
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Taking into account that

! 1 (1+a+m—1m)“2< ph(1)

1+nB 1+ (n—a+np 1+ o+np g1 +np)
we have
Pf’_ﬁl(l) _
n—oo g¥(1+nf)
and hence

lim d, =1, Ilim b, = lim aq, =1.

n—oo n—oo

Now according to the Bohman—Korovkin theorem it is sufficient to show that

lim |lex — P%Pe]| =0, k=0,1,2.

We have
lleo = PiPeol| = 0
ler = PPer|| = |lx — aux]| = 1 - a,
and
lim |le; — P%Pey|| =0
Finally
1 n—1
*PO{’B g 1*bn i " bn*—dn
lex = PPl < (1 b0) + 2 4 5 (- 2
where ,
1 n
1—--<1<—
n d,
Therefore

lim |le; — P%Pe,|| =0
n—o0o

THEOREM 2.3. If PP s defined by (1) then for each x € [0, 1] the following
inequality

(PP )~ £ ()| < Swi (7530 0) G)

holds, where

-1 n n —1 1 1
An(x): 1_2an+n—dn )C2+ a_+bn+c__n dn__ X+ —
n n n n n 3n?

n

and
Wl(f;S) = Sup{V(x) 7f(y)|7 X,y € [Oa l]a |X7y| < 575 > 0}
is the usual first modulus of continuity of a function f : [0,1] — R.
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Proof. We have

(PEPF) Zl ar () - Lt
k=0

3o [ (5)a-n>oute [rwa
k=0 k k=0 k
n op - k

—n>oufo [l (%) -sw]ar
k=0

and n e k
(ex9w £l <n Y0 [l (5) s
k
Using the method of [1] we obtain for |f — x| < 8

P (E) —F @) S wilfle—x]) < (14872 - 22w (2 )

where wy(f;0) is the first modulus of continuity. For |[r — x| > § we have
=« (t—x)° :
wi <f, 5 Sl <1+ 5 wi(f;90)

|(P%P)(x) |<nZzaB / 2t — x)Ywi(f; 8)dt

Now we observe that

”ZlZf(X)/Wl(f:5)dt: ( f (x )) wi(f:8) = wi(f:9),
k=0 k

k+1
n

nS 1P ) / 5-2(1 — x)2w1 (f: 8)d
k=0

n

1 1 1
{P‘X Pey + (— - 2x) PYPey + (x2 - —x+ —) Pﬁ"ﬁeo] 8 2wi(f:9)

32
= 672An(x)w1(f;6),

Hence

and

S

where
-1 1 1 —1 1 1
An(x) =|1-2a,+ n—dn x2 + | —an+ by + —cn — " dy— = | x+ =,
n n n n n 3n2

A,(x) > 0, for each x € [0, 1].
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Hence
(PEPF) () = f ()] < 1+ 82 A, (0)]wa (£3 8).
Choosing § = /3A,(x) we obtain

(BEPF)() —F ()] < (3 v/3A00).

REMARK 2.1. For f =0, o« — 0 wehave a, — 1, b, —1,d, — 1, ¢, =0

and . ) .
2
An(x) — 7;){' + ZX‘F W
Hence of (3) we obtain
4 3 1
[ (Baf () = £ () < S (34 221 =) + =5 ). @)

Next we observe that

3 1 3 1 1

21 — Il S >

nx(l x)—&—n2 \4n+n2 <o for n >4,

and of the inequality (4) we obtain the inequality of Popoviciu (see [11]) corresponding
to the Bernstein polynomial

3 1
| (an)(x) _f(x) |< Ewl (f, W)
THEOREM 2.4. Let PSP defined by (1). Then for f € C'[0,1] one has

(PEPF)) —F 01 < (1= @l "l + [+ (1= @ (£ VAGIB) - (5)

where A,(x) is defined by Theorem 2.3, B,(x) > 0 is defined by
-1 1 -1
B, (x) = (1 —2a, + n—dn> 2+ (bn + —c, — n dn> X,
n n n

no_ /
I = ma IF'(x)

and

Proof. We have

(PP (x Zz p() —f ()

and we can write

(%) -rw=(E-x)rw+ (5-x) @ -rw

n

where & = &(x, k,n) is a point of the interval determined by x and £.
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Next
PEEF) ) £ 00l < D210 |5 — o )
k=0
+D L) |- = IF(8) ()]
and =0
@ | I \vuzznk b <110 - an)x
k=0
Now

F(&) —f )| <suplf'(e) —f'(x)| = wi(f's |t — x])
- (f 6“ ><(1+6-1|t—x)wl(f’;5)

Tri-rom

S| i) el =D |5
k=0 k=0
kel
<Y rf |5 -x [ 8 - aw(0)
=0 i
k+1
=wi(f’;8) lkﬁ —fx +nZlnk x| 87 wi(f';8) /\t—x\dr
k=0
kel
< (1 —ap)xwi (f';8) +n8 'wi(f'; 8) Zl ——x/|t—x|dt
k=0 L
According to Cauchy’s inequality we have
kot i N 12 1/2 ko 1/2
1
/|t—x|dt< /dt /(t—x)zdt =7 /(r—x)zdt
: :
and ko 1/2
\/ﬁSilwl(f' Zl - —x /(tfx)zdt
x
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n 2 1/2 n
=5"'wi(f;9) ( lf:’B(x) k —x > n lf:’B(x) (t — x)%dt

k=0

Now using (2)

"\ k 2 n—1 ) 1 n—1
Zln’k(x) - —x) =(1-2a,+——d, | x+ | b, + —c, — d, | x
P n n n n

and

n

ny 1P () / (t — x)%dt = A, (x)
k=0

k
where A,(x) is defined by Theorem 2.3.
We note

—1 1 -1
B, (x) = <1 —2a, + n—d,,) X+ (bn + —cn — 1
n n

d,,) X B(x)>0
and we have
(PR ) = f ()] < (1=l 'l + [ (1 = @)+ 87 VABL 0| wa ('3 9).
For § = \/A,(x)B,(x) we obtain
(PEPF ) = f (] < (1= @l "l + 1+ (1= @ wi (5 /A (B ) )

and the proof of our theorem is complete.

REMARK 2.2. For f =0, a — 0 we have

1 1
An(x) — ;x(l —.X) + W’
1

B,(x) — ;x(l—x),

and of (5) we obtain

| (Buf )(x) — £ () | < wi (f’; ¢ LRl xP 4 2ol x)) .

| (Baf )(x) —f (@) | < wi <f';\/@+ﬁ>. 6)

Whence
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‘We observe that
1 1 1

— +—== <
16n2 + 12n3 " n

and of (6) we have the inequality

(B /() |< S (1" ﬁ

due to Lorentz (see [11]).
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